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Abstract

We consider an information-theoretic model studying the
conditions when a separation between the dynamics of a
’proto-cell’ and its proto-symbolic representation becomes
beneficial in terms of preserving the proto-cell’s information
in a noisy environment. In particular, we are interested in
understanding the behaviour at the “error threshold” level
which, in our case, turns out to be a whole “error inter-
val”. We separate the phenomena into a “waste” and a “loss”
component; the “waste” measures “packaging” information
which envelops the proto-cell’s information, but itself does
not contain any information of interest, the “loss” measures
how much of the proto-symbolically encoded information is
actually lost. We observe that transitions in the waste/loss
functions correspond to the boundaries of the “error inter-
val”. Secondly, we study whether and how different proto-
cells can share such information via a joint code, even if they
have slightly different individual dynamics. Implications for
the emergence of biological genetic code are discussed.

Introduction
It can be argued that “the capacity to represent nucleic acid
sequences symbolically in terms of a (colinear) amino acid
sequence” (Woese, 2004) did not exist at the very early evo-
lutionary stages, and developed only in response to certain
environmental conditions. The phase of nucleic acid life that
did not use genetic coding is separated from the later evolu-
tionary stages where such coding became beneficial, by the
“coding threshold”. In this paper, we consider a model for
evolutionary dynamics in the vicinity of the “coding thresh-
old”. The model is an extension of the model introduced
by Piraveenan et al. (2007) who identified conditions under
which a separation between a proto-cell and its symbolic en-
coding becomes beneficial in terms of preserving the infor-
mation within a noisy environment.
It is important to realize two features of the early phase

in cellular evolution that existed before the “coding thresh-
old”. First of all, the “players are cell-like entities still in
early stages of their evolution”, and that “the evolutionary
dynamics. . . involves communal descent” (Vetsigian et al.,
2006). That is, the cells are not yet well-formed entities that
replicate completely, with an error-correcting mechanism .

Rather, the proto-cells can be thought of as conglomerates
of substrates, that exchange components with their neigh-
bours freely — horizontally. The notion of vertical descent
from one generation to the next is not yet well-defined. This
means that the descent with variation from one generation to
the next is not genealogically traceable but is a descent of a
cellular community as a whole.
Secondly, genetic code that appears at the coding thresh-

old is “not only a protocol for encoding amino acid se-
quences in the genome but also an innovation-sharing pro-
tocol” (Vetsigian et al., 2006), as it used not only as a part
of the mechanism for cell replication, but also as a way to
encode relevant information about the environment. Differ-
ent proto-cells may come up with different innovations that
make them more fit to the environment, and the “horizon-
tal” exchange of such information may be assisted by an
innovation-sharing protocol - a proto-code. With time, the
proto-code develops into a universal genetic code.
Such innovation-sharing is perceived to have a price:

it implies ambiguous translation where the assignment of
codons to amino acids is not unique but spread over related
codons and amino acids. (Vetsigian et al., 2006). In other
words, accepting innovations from neighbours requires that
the receiving proto-cell is sufficiently flexible in translating
the incoming fragments of the proto-code. Such a flexible
translation mechanism, of course, would produce imprecise
copies. However, a descent of the whole innovation-sharing
community may be traceable: i.e., in a statistical sense, the
next “generation” should be correlated with the previous
one. As noted by Woese (2004), “a sufficiently imprecise
translation mechanism could produce “statistical proteins”,
proteins whose sequences are only approximate translations
of their respective genes (Woese, 1965). While any individ-
ual protein of this kind is only a highly imprecise translation
of the underlying gene, a consensus sequence for the var-
ious imprecise translations of that gene would closely ap-
proximate an exact translation of it”. That is, the consensus
sequence would capture the main information content of the
innovation-sharing community.
Moreover, it can be argued that the universality of the
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code is a generic consequence of early communal evolu-
tion mediated by horizontal gene transfer (HGT), and that
thus HGT enhances optimality of the code (Vetsigian et al.,
2006):

HGT of protein coding regions and HGT of transla-
tional components ensures the emergence of clusters of
similar codes and compatible translational machineries.
Different clusters compete for niches, and because of
the benefits of the communal evolution, the only stable
solution of the cluster dynamics is universality.

In this paper, we adopt an information-theoretic view that
allows us to concentrate on generic processes common to a
collection of primitive cells rather than on specific biochem-
ical interactions within an environmental locality. Moreover,
it allows us to handle particular HGT scenarios where cer-
tain fragments necessary for cellular evolution begin to play
the role of the proto-code. One scenario may assume that
the proto-code is initially located within its proto-cell, and is
functionally “separated” from the rest of the cell when such
a split becomes beneficial. Another scenario suggests that
the proto-code is present in an environmental locality, and
subsequently entrapped by the proto-cells that benefit from
such interactions. We believe that the first scenario (“inter-
nal split”) is less likely to produce either universal code or
universal translational machinery than the second scenario
(“entrapment”). In general, it is quite possible that internal
split and entrapment played complementary roles. Impor-
tantly, however, there was an indirect exchange of informa-
tion among the cells via their local environment, which is in-
dicative of stigmergy. Henceforth, we would like to refer to
such gene transfer as stigmergic gene transfer (SGT): proto-
cells find matching fragments, use them for coding, modify
and evolve their translation machinery, and exchange certain
fragments with each other via the local environment. SGT
can be thought of as a sub-class of HGT, differing from the
latter in that the fragments exchanged between two proto-
cells may be modified during the transfer process by other
cells in the locality.
It is conjectured that maximization of information trans-

fer through selected channels is one of the main evolutionary
pressures (Prokopenko et al., 2006; Klyubin et al., 2007; Pi-
raveenan et al., 2007; Laughlin et al., 2000; Bialek et al.,
2007): although the evolutionary process involves a larger
number of drives and constraints, information preservation
is a consistent motif throughout biology. Adami, for in-
stance, argues that the evolutionary process extracts valuable
information and stores it in the genes (Adami, 1998). Since
this process is relatively slow (Bennett, 1990; Lloyd, 1990),
it is a selective advantage to preserve this information, once
captured.
In this paper, we follow the model of Piraveenan et al.

(2007), and focus on the information preservation property
of evolution within a coupled dynamical system. Piraveenan

et al. (2007) verified that the ability to symbolically encode
nucleic acid sequences does not develop when environmen-
tal noise ϕ is too large or too small. In other words, it is
precisely a limited reduction in the information channel’s
capacity, brought about by the environmental noise, that cre-
ates the appropriate selection pressure for the separation be-
tween a proto-cell and its encoding.
Here we extend the model of Piraveenan et al. (2007) by

identifying both encoding and translation that maximize the
ability to recover as much original information as possible in
the face of environmental noise and in presence of an imper-
fect internal processing. In doing so, we enhance the anal-
ysis by considering both the loss and the waste of the infor-
mation. Finally, we study effects of co-evolution of multiple
encodings entrapped by multiple ensembles using SGT.

Modelling evolutionary dynamics
Our generic model for evolutionary dynamics involves a
dynamical coupled system, where a proto-cell is coupled
with its potential encoding, evolving in a fitness landscape
shaped by a selection pressure. The selection pressure re-
wards preservation of information in presence of both envi-
ronmental noise and inaccuracy of internal coupling. When
the proto-cell is represented as a dynamical system, the in-
formation about it may be captured generically via the struc-
ture of the phase-space (e.g., states and attractors) of the dy-
namical system.
For example, the states of the system may loosely cor-

respond to dominant substrates (e.g., prototypical amino
acids), used by the cell. The chosen representation does
not have to deal with the precise dynamics of biochemical
interactions within the cell, but rather focuses on structural
questions of the cell’s behavior: does it have more than one
attractor, are the attractors stable (periodic) or chaotic, how
many states do the attractors cycle through, etc. Represent-
ing the dynamics in this way avoids the need to simulate
the unknown cellular machinery, but allows us to analyze
under which environmental conditions the SGT may have
become beneficial. In particular, if the potential encoding
develops to have a compact structure that matches the struc-
ture of the cell’s phase-space, then the encoding would be
useful in recovering such structure, should it be affected by
environmental noise. Information is understood in Shannon
sense (reduction of uncertainty), and a loss of such informa-
tion corresponds to a loss of structure in the phase-space. At
the same time, informational recovery would correspond to
recovery of some isomorphic structure in the phase-space.
The generic dynamical coupled system is described by the

equations

Xt,m =







fm (Xt−1,m) + ϕt t != t∗

α [fm (Xt−1,m) + ϕt ] +
(1 − α)hm (Yt−1,m + ψt,m) t = t∗

(1)
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Yt,m =

{

gm (Xt,m + ψt,m) t = t0
Yt−1,m t > t0

(2)

where Xt,m are the variables that describe multiple proto-
cells, 1 ≤ m ≤ M , and and Yt,m their potential encodings
at time t, respectively. Function fm defines the dynamical
system representing the dynamic for proto-cell m. Parame-
ter α ∈ [0, 1] sets the relative importance of the translation
h from symbols (e.g., proto-codons) into the proto-cell state
(e.g., proto amino acids).
In the simplest case, m = 1 (one cell), and α = 1/2, the

system reduces to

Xt =

{

f (Xt−1) + ϕt t != t∗
1

2
[f (Xt−1) + ϕt ] + 1

2
h (Yt−1 + ψt) t = t∗

(3)

Yt =

{

g (Xt + ψt) t = t0
Yt−1 t > t0

(4)

The function ϕt describes the external (environment) noise
that affects the proto-cells: it is the same for all cells, i.e, ϕt

is independent ofm. It is implemented as a random variable
ϕt ∈ [−l, u], where u > 0 and l > 0, which is uniformly
distributed, with probability 1/2, between 0 and l, and with
probability 1/2 between 0 and u (sampled at each time step).
The function ψt,m represents both the matching noise asso-
ciated with accessing information from Xt0,m by Yt0,m at
time t0, and the noise of ambiguous back-translation (ap-
plied only at t∗). In other words, it represents the inaccuracy
within the internal encoding/translation channel. This noise
is modelled as uniform random noise ψt,m ∈ [−bm, bm],
where 0 < bm % 1.0, and is used only at t0 and t∗.
The entrapment mechanism that matches information

from the proto-cell with its encoding (i.e. which encodes its
information) at time t0 is given by gm. At time t = t0, noise
is introduced into the environment affecting dynamics of the
proto-cell. At the time t = t0, information from the proto-
cell Xt0,m is accessed by the system Yt0,m (encoding) via
the matching function gm. This process is affected by the
noise ψ. The feedback from Y to X (henceforth we drop
subscripts when the meaning is clear) occurs at time t∗, i.e.
the function hm translates the input Yt∗−1,m from the en-
coding back into the proto-cell. This internal translation is
subjected to internal noise as well.
Piraveenan et al. (2007) considered the casem = 1, equa-

tions (3)–(4), and function h being the identity (a single sys-
tem). Here we consider a system with multiple proto-cells:
m ≥ 1, and contrast universality of the translation machin-
ery: all functions hm are identical, while gi != gj for i != j,
with universality of the proto-code: all proto-codes gm are
identical, while hi != hj for i != j. We would like to point
out that the system (1)–(2) is coupled not only due to the
common environment noise ϕ, but also due to the shared

translation machinery h or shared proto-code g. This cou-
pling supports a simple information-theoretic model of HGT
and specifically, SGT. As we are dealing only with the infor-
mation content, the consideration of identical hm’s and/or
identical gm’s allows us to study gene transfers without de-
tails of molecular (state-to-state) interactions.

Coupled logistic maps
The dynamical system employed is a logistic map Xt+1 =
rXt (1 − Xt), where r is a parameter, i.e. the function
fm is given by f (x) = rmx (1 − x). The logistic map f
is initialized with a value between 0.0 and 1.0, and stays
within this range if the value of r is within the range [0, 4.0].
We used r = 3.5 (for the single system), resulting in four
states of the attractor of the logistic map (approximately
0.38, 0.50, 0.83, 0.87). For multiple proto-cells, we used
proto-cells with r = 3.5 as well as with r = 3.46 and
r = 3.48. Each of these possesses four states of the respec-
tive attractor. The time t = t0 is set after the logistic map
settles into its attractors, having passed through a transient.
The functions g and h are mappings from [0, 1] to [0, 1].
Coupled logistic maps have been extensively used in mod-

elling of biological processes. One prominent study is the
investigation of spatial heterogeneity in population dynam-
ics (Lloyd, 1995) who examined the dynamic behaviour of
the model using numerical methods and observed a wide
range of behaviours. For instance, the coupling was shown
to stabilize individually chaotic populations as well as cause
individually stable periodic populations to undergo more
complex behaviour. Importantly, a single logistic map can
only have one attracting periodic orbit, but multiple attrac-
tors were shown by Lloyd (1995) for coupled logistic maps.
Logistic maps were chosen to model the system (1)–(2)

mostly due to their simplicity, well-understood behaviour in
the vicinity of chaotic regimes (e.g., bifurcations and sym-
metry breaking), the possibility of multiple attractors in cou-
pled maps, as well as their ability to capture both reproduc-
tion and starvation effects (that are important for studying
the structure in the phase-space).

Information preservation
In evolving the potential encoding system Y coupled withX
via a suitable function g, we minimize Crutchfield’s infor-
mation distance (Crutchfield, 1990) between the initial Xt0

and recovered Xt∗ states of the system:

d(Xt0 , Xt∗) = H(Xt0 |Xt∗) + H(Xt∗ |Xt0) (5)

The entropies are defined as

H(A) = −
∑

a∈A

P (a) log P (a) , (6)

H(A,B) = −
∑

a∈A

∑

b∈B

P (a, b) log P (a, b) , (7)
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H(A|B) = H(A,B) − H(B) (8)

where P (a) is the probability that A is in the state a, and
P (a, b) is the joint probability.
The distance d(Xt0 , Xt∗) measures the dissimilarity of

two information sources Xt0 and Xt∗ ; it is a true metric in
the sense that it fulfils the axioms of metrics, including the
triangle inequality. In addition, as opposed to the mutual in-
formation used in Piraveenan et al. (2007), the information
metric d is sensitive also to the case when one information
source is contained within another. While the results do not
radically depend on the choice of distance d over the mu-
tual information, the former leads to a more crisp recovery
of structure in the phase-space.
The use of d also indicates the presence of two compo-

nents of dissimilarity. The first is the loss of information,
H(Xt0 |Xt∗), which measures how much uncertainty the fi-
nal state has about the original state of the system. The sec-
ond is the waste, H(Xt∗ |Xt0); as the system will aim to
preserve as much information as possible about the stateXt0

(and only this information), any additional variability inXt∗

will be considered as “waste”.
Minimization of the information distance (more precisely,

maximization of −d(Xt0 , Xt∗)) is achieved by employing a
simple genetic algorithm (GA) (described in the Appendix).
In order to estimate the probability distribution of a ran-

dom variable (X or Y ) at a given time, we generate an ini-
tial random sample (X0) = (X1

0 , X2
0 , . . . , XK

0 ) of size K.
Each Xi

0, where 1 ≤ i ≤ K, is chosen from a uniform
random distribution within [0.0, 1.0]. The mapping Xi

t+1 =
f(Xi

t) produces an ensemble of K corresponding time se-
ries, 1 ≤ i ≤ K, denoted as [X] = [X1

t , X2
t , . . . , XK

t ],
where 0 ≤ t ≤ T , and T is a time horizon. Within the
ensemble, each time series Xi

t may have a different initial
value Xi

0. At any given time t′, we can obtain a sample
(Xt′) = (X1

t′ , X
2
t′ , . . . , X

K
t′ ).

Given the sample (Xt0) at the time t = t0, and the
mapping Yt0 = g(Xt0 + ψ), we can generate the sample
(Yt0) = (Y 1

t0
, Y 2

t0
, . . . , Y K

t0
) for the variable Y . In the corre-

sponding ensemble [Y ] = [Y 1
t , Y 2

t , . . . , Y K
t ] each sample is

identical to the the sample (Yt0).

Recapitulation of the Results for a Single
System

We begin by revisiting the simple casem = 1 that was con-
sidered by Piraveenan et al. (2007): the function h is iden-
tity h(y) = y. The structure evolving in Y can be associated
with “proto-symbols” (“codes”) that help to retrieve at time
t∗ some (or most of the) information stored at t0.
Figure 1 shows the ensemble [X] at the time t∗ − 1, i.e.

right before the moment when the feedback from Y toX oc-
curs. The environment noise ϕ (u = 0.025 and l = 0.025)
disrupts the logistic map dynamics, and some information
about the attractor of X and its four states is lost in the
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Figure 1: Two remaining “clusters” in the sample (Xt∗−1).
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Figure 2: Evolved g (noise ϕ = ±0.025; ψ = ±0.015)
containing four clusters in the encoding (Yt∗−1). Function
h is identity.

course of time: the observed sample (Xt∗−1) does not con-
tain four clear clusters.

Figure 2 shows the evolved encoding ensemble [Y ] at the
time t∗ − 1, while Figure 3 shows the recovered ensemble
[X] of the evolved coupled system at the time t∗. The sam-
ple (Yt∗−1) settles into four clusters that can be easily rep-
resented by four “codes” corresponding to the four states of
the attractor of X . The evolved encoding allows to recover
the information within X , as evidenced by four clear clus-
ters within the sample (Xt∗).

The clustering corresponds to the emergence of discrete
“proto-symbols” in the encoding Y . The information recon-
structed at time t∗ is not precise, and rather than having four
crisp states, X can be described as an individual with an
imprecise translation of the underlying gene within a “con-
sensus sequence” (Woese, 2004), analogous to a “statistical
protein”. So far the recapitulation of the past results.
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Figure 3: Four recovered clusters in sample (Xt∗).
d(Xt0 , Xt∗) ≈ 1.5 bits. Contrast with Figure 1.
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Figure 4: Evolved g (noise ϕ = ±0.025; ψ = ±0.015), with
variable function h (see Figure 5).

Optimizing the Recovery Function h

Now we consider the extended case where the translation
function h is subject to optimization as well. This time, the
evolved encoding ensemble [Y ] at the time t∗ − 1 (Figure
4), does not have four clear clusters. However, this lack of
adequate encoding is complemented by a more refined trans-
lation that evolved in parallel, as evidenced by Figure 5. The
end result (not shown) is analogous to the one presented by
Figure 3.
Figure 6 traces fitness, −d(Xt0 , Xt∗) (for the best indi-

vidual), over the external noise ϕ, for different internal noise
levels ψ. We can observe a steady decrease in fitness punc-
tuated by two sharper transitions, that form three plateaus.
As conjectured by Piraveenan et al. (2007), the encoding is
not beneficial when the environmental noise ϕ is outside a
certain range. The middle plateau is precisely the region
specifying this range, i.e. the “error interval”. It is also ev-
ident that within this plateau, sensitivity to internal noise ψ
is the highest.
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Figure 5: Evolved h (noise ϕ = ±0.025; ψ = ±0.015),
complementing the encoding g (see Figure 4).
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Figure 6: Fitness, i.e. −d(Xt0 , Xt∗), over noise ϕ, for dif-
ferent noise levels ψ.

Be reminded that the information distance d(Xt0 , Xt∗)
consists of two components: the loss H(Xt0 |Xt∗), and
the waste H(Xt∗ |Xt0). The waste measures packaging in-
formation which envelops the proto-cell’s information, but
itself does not contain any information of interest, while
the loss measures how much of the proto-symbolically en-
coded information is actually lost. Figure 7 plots fitness
over noise ϕ, for specific ψ, and shows loss and waste for
the best individual. At the first plateau (very small noise),
d(Xt0 , Xt∗) = 0, and both loss and waste are zero. At the
medium plateau, the recovered system cannot get any closer
toX , because the waste cannot be avoided, while the loss is
still zero or minimal. At the last plateau (ϕ > 0.025), the
loss begins to increase for the first time. So not only is there
a waste, but the recovered system loses some information.
The loss reaches 0.5, waste reaches 2.5, and d(Xt0 , Xt∗)
reaches 3.0 (twice as large as the distance at the medium
plateau). So the cascade of plateaus is explained by: (i) ev-
erything is recoverable (the first plateau); (ii) waste appears
(the medium plateau); (iii) loss appears (the last plateau).
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Figure 7: Fitness −d(Xt0 , Xt∗), loss H(Xt0 |Xt∗), and
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Figure 8: LossH(Xt0 |Xt∗) over noise ϕ, for different noise
levels ψ.

Figures 8 and 9 “zoom” into the dynamics of loss and
waste for different levels of internal noise ψ, and show that
the loss also appears if the internal noise ψ > 0.015. It is
also evident that the loss is more sensitive to internal noise
than waste. The waste, on the other hand, simply follows the
cascade of plateaus. The difference between loss and waste
is highlighted in Figure 10 that traces the ratio H(Xt0

|Xt∗ )

H(Xt∗ |Xt0
)
.

This ratio is most turbulent at the medium plateau, support-
ing the hypothesis of its special role. We note that the tran-
sitions in the waste/loss functions correspond to the bound-
aries of the medium plateau, marking the “error interval”.

Results for multiple systems

In this section, we now focus on a system with multiple
proto-cells which share the coding channel. Concretely, we
consider m = 3 (r = 3.5, r = 3.46, and r = 3.48), and
contrast the universality of the translation machinery with
the universality of the proto-code.
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Figure 9: Waste H(Xt∗ |Xt0) over noise ϕ, for different
noise levels ψ.
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Figure 10: Loss/waste ratio over noise ϕ, for different noise
levels ψ.

Single g and multiple h

Let us assume that all available proto-codes gm are identical
(universal code), but hi != hj for i != j. In this case, the sys-
tem achieves recovery comparable with the single system for
each of the logistic maps, d(Xt0 , Xt∗) ≈ 1.5, but the struc-
ture of the code is slightly different. As shown in Figure
11, for the logistic map r = 3.5 fewer clusters evolve than
for the singular system (shown in Figure 4). However, the
translation machinery depicted in Figure 12 is as structured
as that of the singular system (shown in Figure 5). This sup-
ports a conjecture that multiple systems exert some pressure
for proto-code’s universality.

Multiple g and single h

Here we consider the opposite case: abundance of available
proto-codes: gi != gj for i != j, but translation machinery
is universal: all functions hm are identical. Again, the sys-
tem achieves the recovery of the singular system for each
of the logistic maps, d(Xt0 , Xt∗) ≈ 1.5, but the structure of
both the code and translation machinery is more compact, as
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Figure 11: Single g. Evolved g (noise ϕ = ±0.025; ψ =
±0.015), for three ensembles with variable function h (see
Figure 12). Shown for ensemble with r = 3.5.
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Figure 12: Single g. Evolved h (noise ϕ = ±0.025; ψ =
±0.015), for ensemble with r = 3.5, co-evolved with three
ensembles; complementing the encoding g (see Figure 11).

shown in Figures 13 and 14. This supports a conjecture that
co-evolution of multiple systems may yield not only univer-
sality of proto-code, but also uniform translation machinery.

Conclusion and Future Work
We considered an information-theoretical model based on
dynamical systems for the emergence of protected infor-
mational channels able to preserve information in a system
over time when the main channel is suffering from perturba-
tions. Doing so, we extended previous work, by not only in-
troducing the optimization of a backtranslation mechanism,
but also the consideration of the information metric and the
more refined analysis able to resolve loss as well as waste in
the resulting encoding. Furthermore we studied the effects
on a small population of systems sharing an encoding.
It is striking that the pressure to develop a distinctive

“symbolic” encoding does only develop if the noise in the
original system is in a particular range, not too small and
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Figure 13: Single h. Evolved g (noise ϕ = ±0.025; ψ =
±0.015), for ensemble with r = 3.5, co-evolved with three
ensembles; complementing the translation h (see Figure 14).
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Figure 14: Single h. Evolved h (noise ϕ = ±0.025; ψ =
±0.015), for three ensembles with variable function g (see
Figure 13).

not too large.
Scanning through different noise levels, we observe sev-

eral plateaus of the fitness corresponding to qualitative
jumps in the way not only the initial state is encoded but how
the system dynamics is affected by the noise. The middle
plateau which is most relevant for the emergence of distinct
symbols turns out to be the most sensitive for the precise
level of noise.
The waste/loss analysis shows that with increasing noise,

first the waste grows away from 0, at first without any loss.
Only at higher noise levels the loss begins its growth. These
transitions correspond closely to the plateau transitions.
The multiple system scenario shows that joint translation

“machineries” can be successfully used by several systems
which differ slightly. However, at this point, we did not yet
model the competition between different translation and in-
formation exchange models. This will be addressed in future
work.
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Appendix
We generate an ensemble ofXt time series, each series gov-
erned by equation (1). The ensemble [X] provides a fixed
constraint on the optimization. For each function g, an en-
semble [Y ] is then generated, using equation (2) — i.e., the
values of the series Yt depend on the choice of function
g (and function h). The ensemble [X] is kept unchanged
while we evolve the population of functions g (and h), be-
ing an optimization constraint, but the ensemble [Y ] differs
for each individual within the population. The fitness of
each function g (and h) is determined by the negative dis-
tance between Xt0 and Xt∗ , denoted d(Xt0 ;Xt∗), defined
by equation (5), and estimated via the respective conditional
entropies between samples (Xt0) and (Xt∗).
Since the information from Yt∗−1 (different for each indi-

vidual) is fed back into Xt∗ , equation (1), the sample (Xt∗)
is specific for each individual within the population. There-
fore, it may be contrasted with the sample (Xt0) which is
identical across the population, producing distinct fitness
values Ig(Xt0 ;Xt∗) for each individual g. The experiments
were repeated for different ensemblesXt.
We generate a population of g (and h) functions (the size

of the population is fixed at 400). In order to implement the
mapping g, the domain of g is divided into n consecutive
bins xi such that xi = [(i − 1)/n, i/n) for 1 ≤ i < n,
where [a,b) denotes an interval open on the right, and xn =
[(n− 1)/n, 1]. The range of g is divided intom consecutive
bins yj such that yj = [(j − 1)/m, j/m) for 1 ≤ j < m,
and ym = [(m − 1)/m, 1]. Then each bin xi in the domain
is mapped to a bin yj in the range: G : xi → yj , where G
represents the discretized mapping. Formally, any x ∈ xi

is mapped to g(x) ≡ G(xi), where G(xi) is the median
value of the bin G(xi). For example, if n = 100, m = 10,
and y7 = G(x30), that is, the bin x30 = [0.29, 0.30) is
mapped to the bin y7 = [0.6, 0.7), then for any x ∈ x30

(e.g., x = 0.292), the function g(x) would return 0.65 = y7.
Therefore, in the GA, each function g can be encoded as

an array of n integers, ranging from 1 to m, so that the i-th
element of the array (the i-th digit) represents the mapping
yj = G(xi), where 1 ≤ j ≤ m. Function h is coded analo-
gously.
We have chosen a generation gap replacement strategy. In

our experiments, we set the generation gap parameter 0.3. In
other words, the entire old population is sorted according to
fitness, and we choose the best 30% for direct replication in
the next generation, employing an elitist selection mecha-
nism. The rest of selection functionality is moved into the
(uniform) crossover. Mutation is implemented as additive
creeping or random mutation, depending on the number of
“digits” in the genome. If the number of digits is greater
than 10, then additive creeping is used: a digit can be mu-
tated within [−5%,+5%] of its current value. If the number
of digits is less than 10, the random mutation is used with
the mutation rate of 0.01.

Acknowledgments
The authors are grateful to Joseph Lizier for open and moti-
vating discussions; and to Mahendra Piraveenan for his ex-
ceptionally valuable prior contribution to this effort.

References
Adami, C. (1998). Introduction to Artificial Life. Springer, New

York.

Bennett, C. H. (1990). How to define complexity in physics, and
why. In Zurek (1990), pages 137–148.

Bialek, W., de Ruyter van Steveninck, R. R., and Tishby, N. (2007).
Efficient representation as a design principle for neural cod-
ing and computation. In preparation.

Crutchfield, J. P. (1990). Information and its Metric. In Lam, L.
and Morris, H. C., editors, Nonlinear Structures in Physical
Systems – Pattern Formation, Chaos and Waves, pages 119–
130. Springer Verlag.

Klyubin, A., Polani, D., and Nehaniv, C. (2007). Representa-
tions of space and time in the maximization of information
flow in the perception-action loop. Neural Computation,
19(9):2387–2432.

Laughlin, S. B., Anderson, J. C., Carroll, D. C., and de Ruyter van
Steveninck, R. R. (2000). Coding efficiency and the
metabolic cost of sensory and neural information. In Bad-
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