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Abstract

In this paper we study the emergence of homeodynamics and
adaptation in a two-layer system of the Game of Life in which
the Game of Life in the first layer couples with another cellu-
lar automata system in the second layer. Homeodynamics is
defined here as a space-time dynamic that regulates the num-
ber of cells in state-1 in the Game of Life layer. A genetic
algorithm is used here to evolve the rules of the second layer
to control the pattern of the Game of Life. We discovered that
there are two antagonistic attractors that control the numbers
of cells in state-1 in the first layer. The homeodynamics sus-
tained by these attractors are compared with the homeostatic
dynamics observed in Daisy world.

Introduction
Living systems require a stable and sustainable structure on
top of unstable and highly chaotic open environments. The
maintenance of such a structure is called ”homeostasis”, as
named by Cannon (1932), and became one of the central
themes in Cybernetic studies(Wiener, 1948). Several mech-
anisms underlying homeostasis have been proposed and they
have become a guiding principle of our everyday technol-
ogy. For example, positive/negative feedback loops and af-
ferent/efferent copies are well studied and developed.
The study of homeostasis has revealed those mechanisms,

but they are often introduced as a controlling device and the
evolution of homeostasis itself has not been discussed se-
riously. People continue to study ecological homeostasis,
in particular after Lovelock (1972) proposed his Gaia hy-
pothesis. The Gaia hypothesis posits that the complex and
global network of living/nonliving systems we observe self-
organizes into homeostatic states. The Gaia hypothesis has
been theoretically examined byWatson and Lovelock (1983)
by developing the Daisy world model, a simple implementa-
tion of the Gaia theory. In Daisy world, temperature should
be sustained at a certain range independent of the environ-
mental temperature. Harvey (2004) calls the mechanism
underlying the Daisy world a ”rein control,” a controlling
mechanism which serves to pull the temperature toward the
viability zone.

What has been missing thus far in the study of Daisy
world is the self-organizing and dynamic nature of home-
ostasis. Ikegami and Suzuki (2008) studied a dynamic ver-
sion of Daisy world controlled by spatio-temporal chaos.
Because the homeostasis here is dynamically sustained, we
refer to this as homeodynamics. Moreover, Homeodynamics
doesn’t simply hold the average temperature constant, as in
a conventional Daisy world simulation, but instead aims to
keep the temperature variation around the average. Holding
variation brings adaptability into the Homeodynamic sys-
tem, as it can respond to novel environmental conditions.
This is the most significant characteristic of homeodynam-
ics, which we will also focus on in this study.

With respect to this adaptability of homeo-systems,
Ashby (1960) proposed an interesting design principle for
the brain and for life forms as a whole which was mainly
driven by homeostasis. He posited that the adaptive behavior
of life is only an outcome of homeostatic properties and pro-
posed a different type of homeostatic system called an ultra-
stable system. This new system has two feedback loops. The
primary feedback loop is driven by a mutual interaction be-
tween an organism’s complex sensory and motor channels
and the environment. Another feedback loop develops from
the interaction between viability constraints and the relevant
reacting parts via the essential variables that control the re-
acting parts. Usually, the second feedback loop is intended
to change the meta-parameters of the system. When param-
eter values are outside of the viability constraints, the second
feedback loop adjusts the essential parameters to let the sys-
tem move towards a more stable state. These characteristics
of the ultra-stable system share common features with our
homeodynamic systems. That is, two dynamics co-exist in
the same system with different time scales and they coopera-
tively control the homeostasis by keeping sufficient fluctua-
tions in the system. In other words, we need both stable and
unstable dynamics to develop homeostasis and adaptation at
the same time.

In this paper, we study the notion of homeodynamics and
adaptation by using Conway’s Game of Life. A major draw-
back of most homeostatic models, including ours, is that
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many systems can be too stable in the sense that they can sur-
vive without paying significant costs ( or in the other word
a system never dies). Therefore our challenge is to see how
homeostasis can emerge even in a very unstable world, as
in the Game of Life. A second objective of the paper is to
see how robust homeostatic behavior is balanced with pur-
poseful behavior such as memorizing the initial states. Ro-
bust homeostasis (keeping the system’s state density con-
stant) can be achieved by making a system insensitive to the
initial Life density. But memorizing the initial state density
means that a system should become sensitive to the initial
Life patterns. These two opposite properties must be bal-
anced within the same system.
In the next section we describe how to use the Game of

Life to study homeostasis. In §3, we describe and analyze
the results, and in §4, we discuss the observed characteris-
tics of homeodynamics and adaptation in the Game of Life
and also attempt to apply these results to the more general
notions of homeodynamics.

The Model
The basic idea of the model is inspired from work by Taylor
(2004). In his model, the system under examination con-
sists of two layers of cellular automata: one is the Game of
Life, and the other layer serves to control the Game of Life
pattern. The dominating cell layer does not have to be gov-
erned by the rules of Life, but instead can be driven by a
different rule set. Taylor evolved the rules of this layer by
using an evolutionary algorithm to control a virtual sensori-
motor flow arranged on the first layer. For example, when an
input bit on the first layer is state 1, the output (target) area
should have many state-1 cells. This contingency between
input and output bits is mediated by the intermediate area,
in which some of the bits are governed by the rules in the
second layer.
The purpose of Tayler’s study is to examine an unsepa-

rated body-environment boundary and to see the emergence
of the boundary itself. We will also investigate this point,
but here we will use his approach to study homeostasis. Our
setup is described below.
The model consists of a 2D cellular automata running the

Game of Life. Extra rules encoded in the genome can over-
ride Life states in a certain part of the CA space. A target
area is also designated, which is significant for the central
tasks of the simulation.
In Taylor’s work there are two kinds of rules for genes:

conditional and temporal genes. The conditional gene is ac-
tivated when a certain requirement of neighboring cells is
satisfied. The temporal gene is activated when a certain time
step passes. In both cases, the genes have a coordinate spec-
ifying the target cell.
Here we used only the conditional rule. We modified the

rule to become a so-called “totalistic rule” in which the gene
only takes into account the number of neighboring state-1
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Figure 1: A gene component consists of a 26-bit binary
string, 18 bits of which encode the totalistic CA rules. The
remaining bits encode the coordinate of the site where the
rule activates. A group of these genes is called the genome.
The simulation is run using Game of Life dynamics and one
genome.

cells, and not any specific neighboring patterns. Figure 1
illustrates the gene components we used. Note that in our
model, all the genes are activated every time step, due to
the construction of the genome and the use of this totalistic
rule. The gene consists of a 26-bit binary string, 18 bits of
which represent a totalistic rule. As is usually the case, the
2D CA rule is specified by the pair of numbers Bx/Sy, which
specifies when to change the cell’s state to 1, whether its own
state is 1 or 0, respectively. For example, the Game of Life
is represented by B3/S23. We use 9 bits to represent those
two parameters.
The remaining 8 bits encode the spatial position of the

site controlled by the second layer (4 bits for each x and y
coordinate). The length of each gene is fixed and each gene
specifies a particular single site in the 16×16 cell space.
The total cell space is given as a square of the size 40×40

and the intermediate area controlled by those genes is given
as a square of the size 16×16. The target area is defined as
a square space and all three squares share a common center.
The size of the target area is 32×32 bits and includes the
intermediate area (See Fig. 2). The boundary of the space is
always set to state-0.

The target behavior of the model
While evolving the rule set of the intermediate cell space we
will study homeostatic behaviors observed in the Game of
Life. Instead of a temperature value as in Daisy world, we
use the density of cells in the state-1 as the target variable to
keep constant.
In Daisy world, the system consists of two types of flow-

ers, black and white daisies, with their local temperature
values. The black daisies increase the temperature and
the white daisies decrease the temperature. By setting the
growth rate of these flowers according to the local tempera-
ture, both flowers show positive feedback effects in their re-
lationship to changing local temperatures. While the black
daisies increase both the temperature and their population,
the white daisies decrease the temperature and increase their
population. Loosely linked by the the two local tempera-
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Figure 2: The space used for the simulation. Filled squares
represent the area governed by Game of Life rules. Lined
squares represent the area which the genome specifies. The
inner square shows the area in which genes override the Life
states, and the outer square depicts the target area. The dy-
namics is only evaluated in this target area.

ture, the global temperature is sustained constantly while
both population of daisies change according to environmen-
tal temperature changes.
This result shows that the homeostatic behavior does not

result from insensitivity to the environmental stimulus, but
is actively achieved by an adaptive coupling of components
which are sensitive to the environment.
In order to observe the underlying dynamics of homeosta-

sis in the Game of Life, we constructed three different tasks.

task A Sustain the same density of the target area regardless
of the initial Life pattern density.

task B Control the density of the target area, making it pro-
portional to the given initial Life pattern density.

task C Control the density of the target area, making it in-
versely proportional to the given initial Life pattern den-
sity.

The first task is designed to directly aid the development
of a homeostatic behavior in the Game of Life patterns. We
will see how this behavior is achieved in the Game of Life
space. The second and third tasks are intended to facilitate
the development of sensitivity to the given conditions. These
target behaviors in task B and C are not directly connected
to homeostatic behavior, but might be connected to the prop-
erty of adaptability in homeostasis.

GA
In order to observe those behaviors, the CA rules encoded in
the genes are evolved by a simple genetic algorithm (GA).
We prepared 30 genomes in a population, each of which con-
sists of 30 genes, which specify each spatial location and

Parameter Values
population 30
the mutation rate 0.05
the crossover rate 0.01
the mutation rate for genome length 0.01
the number of elite 5
initial density(higher) 0.5
initial density(lower) 0.0
evaluated duration(time steps) 500

Table 1: The parameters used in our simulation

the rule content of the 30 CA rules in the intermediate area.
Mutation occurs at every site of the gene at a certain rate per
bit, which modifies the spatial locations and the rule content.
The number of genes also changes during this process, so the
number of CA sites in the intermediate area also varies. For
the selection algorithm, we used a roulette selection proce-
dure and chose an elite strategy.
The GA goes through both an evolving phase and a testing

phase. In the evolving phase, 30 genomes are evolved as a
unit against two different initial states with lower and higher
density patterns. Here the lower density is set to 0 and the
higher density is set to 0.5.
Fitness of the genome is calculated by finding how the

average density of state-1 within the target area compares
to the specified target densities. The target densities in the
three tasks are set as follows.

0.5 (for task A)

dI (for task B)

1 − dI (for task C)

Here, dI is the intial density of state-1 cells, set as either 0
or 0.5.
Note that we only use a fixed random initial pattern for

all evolutionary processes. Once the system evolves, it de-
velops a sufficient generalization capability; the system can
do well with new initial patterns. However, a full general-
ization capability is difficult to obtain. We will revisit this
point later. Table 1 shows the parameter values used in this
experiment.

Result
Evolved Dynamics
In each of three tasks, the genomes in our population were
evolved for higher fitness. Figure 3 show the temporal
changes of the state-1 density of the fittest genome in each
task.
Two lines on the graphs are shown, one for the low initial

density case ( null pattern ) and another for the high den-
sity case (0.5). These density values were used in the GA
dynamics.
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Figure 3: Temporal changes of the state-1 density of the
fittest genome in each task. The initial Life patterns used
here are the same as those used during the GA procedure.
When begun with both low and high density initial states,
the state-1 densities are maintained at around 0.2(task A).
With the higher-density initial state, the state-1 density is
kept around 0.2, but with the lower-density initial state, the
state-1 density decreases to 0(task B). The result observed
here is the inverse of task B. The higher-density initial state
shows a state-1 density which drops almost to 0, but the
lower-density initial state causes a growth in state-1 density
until the density reaches approximately 0.15(task C).
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Figure 4: Histograms of the number of state-1 outputs out of
the overall outputs for the fittest genomes in each of the three
tasks. Task A and B genomes have a biased distribution to-
wards larger values, while task C is biased in the opposite
direction.

In task A, the density almost always reaches the same
value of approximately 0.2 regardless of the initial density.
We can see here that this attracting state is maintained by
the generators of the Game of Life pattern, which will be
discussed later. Cloud-like patterns in the Life space are
generated by the evolved CAs.
In task B, the initial low-density state almost always cre-

ates a sparse pattern in the target area. Using the higher ini-
tial density state, the average resultant density state tends to
fluctuate around a value of 0.2. The genomes generally in-
crease the density if the target area is surrounded by a high-
density pattern; the density tends to decrease in the sparse
case. A generator of this type creates cloud-like patterns
in the higher-density environment, but suppresses cloud-like
patterns in the lower-density environment.
In task C, the densities are altered to be inversely propor-

tional to the initial states. When the initial state has a low
density, the evolved CA creates a high density state. In con-
trast, when presented with the high-density initial state, the
density is decreased until all Life patterns are diminished.
In the higher-density initial state, we expect an increase in
the resultant density. The evolved CAs have to inhibit the
spontaneous generator to decrease the state-1 density. Thus,
the genome in task C behaves like an activator in the initial
low-density state, but behaves like an inhibitor in the initial
high-density state.

CA rules of the second layer
Each of the 30 sites in the second layer has a different CA
ruleset. One way to characterize them is to compute the
number of state-1 outputs as a fraction of overall outputs
(e.g. the Game of Life has 3/16). Figure 4 shows a his-
togram comparison of these state-1 outputs for the evolved
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Figure 5: The average densities observed during 500 time
steps when starting from different initial densities. The
evolved genomes in task A, B, C and runs in which only
Game of Life rules exist are compared. Each value is aver-
aged over 100 different initial Life patterns.

genome sets.
Before evolving genome sets, the output is normally dis-

tributed around 8. The rulesets of tasks A and B are biased
toward higher state-1 outputs, but those of task A are more
biased towards larger values than those of task B. In task C,
the rule sets are biased in the opposite direction.
In task A, the genome generates a cloud-like pattern re-

gardless of the initial pattern. The generator is a strong ac-
tivator of the state-1 LIFE pattern. Task B (proportion) also
generates a cloud-like pattern, but only in the higher-density
initial condition. The decrease of the density in the lower
initial pattern may require a weaker activator in this task than
that in task A. In task C (inverse proportion), the genome has
to inhibit the cloud-like patterns in the higher-density initial
state and activate the cloud patterns in the lower-density ini-
tial states.
The genomes in task B and C can be compared with the

black and white daisies of Daisy world. The genome in task
B has a tendency to output state-1, which can be regarded
as similar to the black daisy which increases the local tem-
perature. Likewise, the genome in task C has a tendency
to suppress state-1, which can be regarded as similar to the
white daisy which decreases the local temperature. How-
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Figure 6: Histogram of the average densities observed from
the task A genome in 100 samples with different initial Life
patterns. Here, initial densities of 0.01, 0.05, and 0.10 are
used.
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Figure 7: Histogram of the average densities observed from
the task B genome in 100 samples with different initial Life
patterns. Here, initial densities of 0.01, 0.05, and 0.10 are
used.

ever, it should be noted that the behavior of the evolved CA
rule is also affected by their spatial configuration. Thus, the
state-1 output levels do not fully reflect howmany cloud-like
patterns these evolved CA rules can make by themselves.

Generalization
While the genomes under discussion here have been trained
with only two fixed initial Life patterns, the final genome
acquired a generalization capability to some extent. After
training the genome set with these two different initial den-
sities of 0.1 and 0.5, we have tested the evolved genome
against other initial densities. Figure 5 shows the average
density after 500 GA time steps for the given initial den-
sity. Each density is averaged over 100 different initial Life
patterns of a given state-1 density. For a comparison, we
also show the average density obtained with only the origi-
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Figure 8: Histogram of the average densities observed from
the task C genome in 100 samples with different initial Life
patterns. Here, initial densities of 0.01, 0.05, and 0.10 are
used.

nal Life dynamics, without any second layer.
The genome evolved by task A achieves almost identical

values of high average density against a wide range of initial
densities from 0.0 to 1.0. Compared with the original Game
of Life, this evolved genome sustains a higher density, par-
ticularly around the lowest and highest initial state. This is
achieved by a state-1 generator which increases the state-1
density regardless of the initial states. However, similar be-
havior can be seen when one adds noise to the Game of Life.
So the genome does not regulate state-1 density, but rather
works as a “random generator”.
We are not certain how many attractors this two-layered

system has when starting from identical initial density states.
Fig. 6 shows that there are two peaks in the histogram which
correspond to different attractors in the system. Regardless
of the final attractor, the genome evolved via task A has sim-
ilar final density states, i.e. 0.15 -0.19.
Figure 9 shows snapshots of the fittest genome found in

task A with the two different initial densities. In both cases,
the Game of Life patterns become similar cloud-like shapes
after time passes.
Tasks B and C also inherit the tendency to increase and

decrease the state-1 density from the condition in which evo-
lution occurs.
When the initial density is small(< 0.1), the genome

evolved via task B shows a linear dependence on that ini-
tial density, while the genome evolved via task C shows
the inverse dependency. The genome from task B develops
a state-1 generator proportional to the increase in the ini-
tial Life-pattern density, but it saturates in higher densities.
Also, the evolved genome from task C has the capability to
suppress the density of the initial Life pattern if it is high.
However, such suppression is competing with the original
Game of Life and thus is only effective for lower initial den-
sity cases.

Figure 9: Snapshots of the Life dynamics of the fittest
genome in task A. The top columns show the results when
the initial density is zero, whereas in the bottom column the
initial density is 0.1. In both cases, clouded Life patterns
spread out from the genome area.

Concerning the histograms in Fig. 7, we notice that there
are two attractors induced by the second layer: one associ-
ated with very low-density states and the other associated
with states around a density of 0.15. In fig. 8, there are also
two attractors created by the genome activity: one near to
a density value of 0 and the other near to a density value
around 0.1.
How are these attractors chosen from the initial densities?

Figure 10 and 11 are snapshots of genomes evolved from
tasks B and C in the two initial density conditions. They re-
veal the appearance of the two attractors due to a subtle dif-
ference found in the starting configuration. For example, in
Fig. 10, the two snapshots at t=1 have only a few bits which
differ from each other, yet the higher-density initial pattern
only makes state-1 clouds, thus creating a high-density re-
sultant pattern.
This occurs because in the task B genome, the state-1 gen-

erator is only activated by few state-1 cells initially located
in the space. Without these cells, the genome does not ac-
tivate this generator and almost all the cells remain at state-
0. Higher initial densities increase the probability that these
cells become state-1. So the resultant densities are propor-
tional to the initial density.
Similarly, the task C genome has a state-1 generator

which is only activated when initial density is low. How-
ever, when only a few specific cells are state-1, the gener-
ator stops creating cloud-like patterns. Higher initial den-
sities increase the probability of this event. Consequently,
the resultant densities are inversely proportional to the ini-
tial density. When the initial density is higher than 0.1, the
genome makes another spontaneous generator derived from
the Game of Life, resulting in higher densities in a similar
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Figure 10: Snapshots of the Life dynamics of the fittest
genome in task B. The top columns show the results when
the initial density is zero, whereas in the bottom column the
initial density is 0.04. In the zero-density condition, the Life
pattern stays almost at zero activity. However, in the higher-
density condition, a clouded pattern of state-1 cells emerges
after t=10.

manner to task B.

Discussion
In this paper, we studied homeostasis and adaptability with
respect to cell states in the Game of Life as opposed to tem-
perature as in Daisy world. There are some lessons to be
learned here, both about homeostasis and the effect of noise.
The CA rule evolved in task A has the capability to gen-

erate a state-1 density regardless of the initial Life density.
The behavior of this rule can be compared to a “random gen-
erator” which randomly updates the cell states at a certain
probability. In task A, the evolved CA ruleset mimics a ran-
dom generator using a deterministic rule. In tasks B and C
there also have evolved generators of state-1 cells, but they
are more sensitive to the initial state density.
Since we do not have any external noise in this simulation,

it can be compared to deterministic chaos in continuous-
state dynamical systems. Comparing the upper and lower
figures in Fig. 10, we notice that almost identical initial
Life patterns lead to different attractors. Such sensitivity to
minute differences is also reminiscent of chaotic dynamics.
Now we will discuss the nature of those two attractors in
greater detail.
The initial Life states are evolved into either lower-density

or higher-density states. Those two types of attractors are
controlled by the evolved CA rules. We assume that the
evolved CA ruleset may have both activators and inhibitors.
Some CA rules tend to generate more state-1 Life patterns
than the others and increase the state-1 density as the re-
sult, which we call ”activator” rulesets. In contrast, some

Figure 11: Snapshots of the Life dynamics of the fittest
genome in task C. The top columns show the results when
the initial density is zero, whereas in the bottom column
the initial density is 0.1. In the zero-density condition, a
clouded Life pattern emerges, but in the 0.1 condition, the
initial state-1 cells eventually disappear.

Daisy World Our model
temperature state-1 density
black daisy activator CA
white daisy inhibitor CA
growth rate as a function generators as a function
of the temperature of LIFE pattern

Table 2: A comparative chart between Daisy world model
and the present LIFE game model

CA rules show the opposite behavior and lower the state-1
density, which we call ”inhibitor” rulesets.
These two opposite behaviors remind us of the black and

white daisies in Daisy World. Both these rulesets and those
daisies can cooperatively make homeostatic states. Because
black and white daisies have opposite responses to the sun-
light, they can self-regulate the temperature by tuning their
population size. If there are more black daisies, the temper-
ature goes up as the average albedo gets lower, whereas if
there are more white daisies, the temperature goes down due
to the higher albedo value.
This simple scenario is also realized in the present Life

game system. We simply take the activator rulesets as black
daisies and the inhibitor rulesets as white daisies. The cor-
respondence between Daisy world and this Game of Life
system is shown in Table 2.
In Daisy world, the growth rates of daisies are determined

by the local temperatures. The concept of temperature is
not implemented in our system explicitly. Instead, local Life
patterns determine the behavior of the CA rule sets. Note
that the equivalent of Daisy world’s local temperature in
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our system is not just a one-dimensional variable which ex-
plicitly specifies the growth rate of state-1, but is instead
a spatio-temporal pattern which drives responses from the
evolved CA rulesets. This dynamical property of the Daisy
World has also been discussed in our previous model of the
mobile daisy agent(Ikegami and Suzuki, 2008).
Ideally, task A should be achieved by coupling the

evolved CA rules in task B and C, however, we have not
completed that task in this paper. Detailed analysis of that
work will be reported in a follow-up to this research.
Instead of using chaos-like attractor in this study, it may

be interesting to use unique Game of Life creatures such
as oscillators, breeders and guns to generate homeostasis in
more complex ways. We might then expect to see alternative
homeodynamic mechanisms which are very different from
those seen in Daisy world.
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