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Abstract
We extend coarse graining of cellular automata to investi-
gate aspects of emergence. From the total coarse grain-
ing approach introduced by Israeli and Goldenfeld, Coarse-
graining of cellular automata, emergence, and the pre-
dictability of complex systems, Phys. Rev. E, 2006, we devise
partial coarse graining, and show qualitative differences in
the results of total and partial coarse graining. Mutual infor-
mation is used to show objectively how coarse grainings are
related to the identification of emergent structure. We show
that some valid coarse grainings have high mutual informa-
tion, and are thus good at identifying and predicting emer-
gent structures. We also show that the mapping from lower to
emergent levels crucially affects the quality emergence.

Introduction
We are interested in observing and modelling complex emer-
gent systems, with the goal of understanding how we could
begin to specify and implement engineered emergent sys-
tems. Emergence is variously characterised; we start from
Ronald et al’s definition of emergence: “The language of
design L1 and the language of observation L2 are distinct,
and the causal link between the elementary interactions pro-
grammed in L1 and the behaviors observed in L2 is non-
obvious to the observer...” (Ronald et al., 1999). Here, we
refer to the local level, of the implementation substrate, as L.
The language of observation represents a global, or coarse-
grain, level where emergent behaviour is observable that we
refer to as the specification, S. After Shalizi (2001), we de-
fine emergence in information-theoretic terms, as the greater
predictive efficiency of descriptions in S over those in L.

In natural complex systems, it is hard to define languages
L and S, and to determine accurate mappings between them.
Here, the complex emergent systems are elementary cellular
automata (ECAs); their language is simple and well-defined,
and thus mappings can be identified and analysed.

One perception of an emergent system is that its high level
behaviour is independent of the low level behaviour. How-
ever, the emergent properties are actually a carefully chosen
extract of the low-level behaviour. The observational dis-
continuity allows us to identify emergent behaviour. Else-
where (Weeks et al., 2007), we show that coarse graining is
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Figure 1: Rules and mappings. Shaded cells represent value
1. R shows how the “name” of an ECA rule is derived:
each of the 8 possible ECA initial state is shown in bigen-
dian order; below it, the next state of the central cell is
shown; the rule is “named” by reading off the values of the
next state. Here, R is the transition table for ECA rule 150
(100101102). M represents the coarse grain mapping 0110,
with grain g = 2.

a simple form of emergence. If we can state coarse-grained
rules, then we can use the coarse level to predict behaviour.
Because information is lost in the higher level we cannot
predict behaviour correctly in all cases, but the rules should
be able to predict some common futures. Here, we explore
emergence through coarse graining ECAs and measurement
of mutual information between levels.

Coarse Graining ECAs
An ECA is a one-dimensional cellular automaton, with two
states and a neighbourhood of three. There are 256 ECA
rules, of which 88 are distinct (not just spatial reflections or
0-1 inversions). Rule sets are named by taking the decimal
representation of the binary string that represents the outputs
of the transition rules from all neighbourhood states taken in
bigendian order (figure 1).

The coarse graining of ECAs was investigated by Israeli
and Goldenfeld (2006). In a coarse graining at grain g, the
values of a contiguous block of g cells at the fine level are
projected, or mapped, to the value of a single cell at a coarse
level (figure 1).

Israeli and Goldenfeld (2006) require their coarse grain-
ings to be total, that is, to satisfy the commutativity con-
dition that running the fine ECA for n × g time-steps then
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Figure 2: Space-time plot of 75 time-steps of rule 146, and
its total coarse graining to rule 128, with grain 3, from Israeli
and Goldenfeld (2006).

performing the mapping, gives the same result as performing
the mapping, then running the coarse ECA for n time-steps.
We relax this condition, to discover partial coarse grainings
that, while not ‘correct’ in this commutative sense, neverthe-
less have good predictive properties (high mutual informa-
tion). We do not consider ‘trivial’, and thus uninteresting,
mappings, that map either to all zeros or to all ones.

Essentially, the coarse graining represents a system speci-
fication (language S) for the ECA at the fine level (language
L). In one sense, the languages S and L differ only in the
grain of the representation – both languages are the language
of rules of ECAs. However, we could also take the language
to be the specific ECA rule. In either case, ECA coarse
graining reduces the language mapping to a tractable prob-
lem, and provides a starting point for exploring emergent
behaviour.

Israeli and Goldenfeld (2006) show that almost all ECA
rules can be coarse grained: their behaviour is mimicked
exactly at a coarser grain by other ECA rules (figure 2). Note
that the mapping is applied only in the initial state, to set
up a correspondence between the fine and coarse grained
initial state. Subsequently each ECA runs independently:
the validity of the coarse graining ensures that the mapping
always holds from then on.

Because of the exact mapping between the fine and coarse
grained ECAs, the coarse grained ECA consistently predicts
aspects of the state of the fine-grained ECA for any point in
the future (since information is lost in the coarse graining,
the prediction is not absolute, but it is consistent). For g = 2,
running the coarse grained ECA requires only 25% of the
calculations of the associated fine-grained ECA (assuming
we calculate the next states naı̈vely).

As with any emergent system, one aim of coarse graining
is to end up with a compact representation of the high-level
behaviour of the underlying system (or some aspect of it).
In the case of coarse graining, that compact representation
takes the form of another ECA rule (but one that operates at
a coarser grain). Clearly the high level model will predict
only certain aspects of the system.
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M

Figure 3: Steps in discovering a coarse graining, g = 2, il-
lustrated for a 6-cell initial string. As in Israeli and Golden-
feld (2006), each non-overlapping block of g cells in a fine
F state is mapped to one cell in the coarse C state. ECA
rule Rf evolves through the three steps on the left, F0 to Fg .
State F0 is mapped to state C0 using the mapping 0110. The
same mapping is used to produce Cg from Fg . When these
steps are followed for a complete initial state (384 cells, see
step 1), the candidate coarse grain rule, Rc can be read off,
as in step 5, below.

Finding a Total Coarse Graining
Finding coarse grainings is a systematic process. Candidate
mappings are successively proposed and applied; the result
of each mapping is checked to determine whether the map-
ping generates a consistent coarse rule. We describe an al-
gorithm that can be used to find all the total coarse grain-
ings of an ECA rule Rf at grain g with non-trivial mapping
M . Like Israeli and Goldenfeld (2006), we use the same
grain g for the cells (spatial) and the time-steps (temporal).
This maintains the speed of information propagation – for
instance, if the spatial grain is less than the temporal grain,
then information propagates too fast for ECA rule capture.

The application of steps 1 to 5 of the total coarse graining
algorithm is illustrated in figure 3.

1. Construct the initial state for the fine-grained ECA, F0.
For a total coarse graining, we must guarantee that the
coarse grained version of the initial state contains all eight
(000, 001 . . . 111) neighbourhood states. This will allow
the coarse ECA rule to be read off in step 5. It is sufficient
to include all possible states of 3× g cells (where 3 is the
neighbourhood size of an ECA) in the fine-grained initial
state, giving a string of length 26 × 6 = 384 for g = 2.

2. Run the fine-grained ECA for the equivalent of one coarse
time step: g time-steps at the fine grain, resulting in fine-
grained state Fg . We now have the underlying fine states
for two successive time steps of the coarse CA.

3. Apply the mapping M to the initial state of the fine-
grained ECA, F0, to produce the initial state of a candi-
date coarse-grained ECA, C0. Apply M to the final state,
Fg , to produce the next state of a candidate coarse-grained
ECA, C1.

4. C0 and C1 are not necessarily related by an ECA rule.
For each of the eight possible neighbourhood states σi,
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check that every instance of σi in C0 maps to the same
value in C1. (It is sufficient to consider only distinct
triplets of cells in C0: if these give consistent states in
C1, then all the overlapping neighbourhoods do so too,
by construction of the initial state in step 1.)

5. If the coarse states C0 and C1 are consistent with succes-
sive states under some ECA rule, then ‘read off’ that rule
Rc, by locating the eight neighbourhood states (111, 110
. . . 000) in C0, and recording the values they map to in
C1 (as shown for R in figure 1). (Because of the consis-
tency check, these values are unambiguous. Because of
the construction of F0 and the non-triviality of M , it is
always possible to locate at least one instance of each of
the eight neighbourhood states in C0, so the rule is totally
defined.)

The number of non-trivial mappings M is 22g − 2, which
is low for small g (14 for g = 2), so an exhaustive search
over mappings is efficient. (Even so, it is not guaranteed
that a coarse graining of a rule at a particular granularity
exists with any mapping.) At higher g, other factors render
the discovery of coarse graining intractable, before the effect
of the number of mappings becomes intractable.

It would also be possible to perform a coarse graining by
stating the fine and coarse ECA rules and calculating a map-
ping, but this is a less efficient approach, with more consis-
tency checks to perform.

For the 256 ECA rules, there are 182 non-trivial total
coarse graining relationships at g = 2. For the 88 unique and
non-trivial ECA rules, there are 35 non-trivial total coarse
grainings.

Extending Coarse Graining to Partial
Mappings

Information must be lost when coarse graining. Sometimes
the fine detail of the original rule disappears: Israeli and
Goldenfeld (2006) refer to this as a loss of irrelevant de-
grees of freedom (DOF). In other cases relevant DOF (Is-
raeli and Goldenfeld, 2006) are lost, meaning that the infor-
mation that is propagated by the fine CA cannot be modelled
in all cases by its coarse counterpart. A total coarse grain-
ing precisely captures the relevant aspects of the underlying
dynamics, losing only detail that is irrelevant at the coarse
level. (Also, where detail that is relevant to propagation at
the fine level is lost, it is unimportant, because propagation
to the coarse state is unaffected.) In this sense, total coarse
grainings are simply compressions of the fine ECA rule.

Israeli and Goldenfeld (2006)’s approach requires coarse
grainings to be total; that is, enough information must be
available in state C0 for the coarse rule Rc to be read off un-
ambiguously, with the consequence that the fine and coarse
ECAs evolve consistently. If we relax the totality require-
ment, we can provide an initial fine-grained state that does

F0*

Fg*

C0*

C1*

Rf g Rc

M ~

M

Figure 4: The extra steps involved in discovering a partial
coarse graining (see text for details).

not cover all possible input conditions, and deduce a set of
partial coarse grainings. A partial coarse graining results in
a coarse rule Rc that does not necessarily reflect the under-
lying rule Rf in all cases. Even so, this relaxation can allow
the coarse grained rule to approximate more of the underly-
ing behaviour than would otherwise be possible. An ideal
partial coarse graining is one for which the initial conditions
admit a broad range of the fine rule’s behaviours, reflecting
the features of most interest. An analogy can be drawn with
physical emergent systems, where the emergent properties
occur over a restricted set of all possible low-level states,
such as a certain temperature range.

It may be thought that total coarse grainings are ideal, and
we should aim to get partial coarse grainings as close to that
as possible. While broadly true, being total is neither neces-
sary nor sufficient for a good coarse graining – for the dis-
covery of a coarse ECA rule that models the desired high
level behaviour (we elaborate measures of goodness below).
It is easy to see that some total coarse grainings capture un-
interesting aspects of the underlying fine-grained rule; for
example, even with non-trivial mappings, many rules coarse
grain to rule 0 or rule 255; these are valid coarse grainings
that convey no information about the underlying behaviour.
In applying partial coarse grainings, we seek to find coarse
rules that capture the maximum of useful (predictive) be-
haviours from the underlying rules, at the expense of allow-
ing the coarse graining to make occasional mistakes.

Finding a Partial Coarse Graining
The approach for partial coarse graining follows almost the
same steps is as the total coarse graining. However, when
F0 is constructed in step 1, it does not include all possible
states of 3× g cells, and thus the initial state can be smaller
than for total coarse graining. Consequently, to extract as
much information as possible, steps 4 and 5 consider every
(overlapping) combination of three cells in C0.

Because the constraint on F0 has been relaxed, C0 may
not include every possible rule case, meaning that the coarse
rule cannot be read off unambiguously in step 5. To com-
plete the rule set, we can add any rule case that gives a con-
sistent result in the coarse graining. This can be derived as
follows (see also figure 4):

5a. Create a coarse state C∗
0 , comprising the neighbourhood
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states missing from the coarse state C0,

5b. Use the mapping in reverse, M∼, on C∗
0 to create a cor-

responding F ∗
0 . This reverse mapping is a relation; any of

its restrictions to a function can be used to create F ∗
0 .

5c. From F ∗
0 , run the fine ECA rule for g time-steps to create

F ∗
g .

5d. Apply M to F ∗
g to produce C∗

1 .

5e. Apply step 5 to C∗
0 and C∗

1 , thus reading off rule cases to
total the coarse ECA rule set.

We have investigated various approaches to selecting an
inverse mapping (step 5b). The most conservative results
come from constructing all the inverse mappings, but ac-
cepting only those that are totally consistent. Since partial
coarse graining is based on a proper subset of possible map-
ping relations, completions of the coarse rule set result in
more valid coarse grainings of each rule than total coarse
grainings. For the conservative approach to completion, and
a grain g = 2, it is not unusual to get 50% more partial
coarse grainings than total coarse grainings.

Exploring Partial Coarse Grainings
To assess the parameters of partial coarse graining more
fully, we conduct a variety of experiments on ECA coarse
grainings. For g = 2, we select different initial states, and
find partial coarse grainings, using the conservative comple-
tion above. As the length of the initial state is increased,
and the number of cases that it covers increases, there is a
fall in the number of coarse grainings to valid ECA rules.
In our experiments, a 6-bit input string (1.5% the length of
the complete initial state used for total coarse graining) pro-
duced 57% more (322 : 182) coarse grainings than the total
coarse graining under the same mappings. This is to be ex-
pected, since a short initial state is created by concatenation
of only a small proportion of all possible states, so there
are potentially many missing cases in the candidate coarse
rule, with the potential for several different coarse rules to
be derived from different completions of the rule set. How-
ever, the partial coarse grainings of a rule include all the
rules to which there are total coarse grainings in each map-
ping, thus we can say that very short initial strings (and thus
reduced calculation load) produce results that are consistent
with those from the much longer initial state of a total coarse
grainings.

There is a limit to the shortness of an initial state string.
Here, this is set by features of the algorithm used for coarse
graining. An initial state of fewer than 6 bits is not efficient,
as it results in interference due to the wrapping of the state
(periodic boundary conditions).

Our experiments also show that the form of a short initial
state string appears to have a marked effect on the quality
of partial coarse grainings obtained. The initial state string

Figure 5: Space-time plot of 50 time-steps of rule 186, and
its partial coarse graining to rule 170, with g = 2

101010, for instance, produces fewer partial coarse grain-
ings to valid rules at g = 2 than the string 101101, but the
partial coarse grainings from the string 101010 are judged
to be of better quality as predictors of structure than those
from string 101101. We cannot yet generalise from these
results, not least because, at g = 3, these two initial strings
produce very similar results. Furthermore, the initial state
string 101010101101, made up of both these elements, pro-
duces good quality results at both g = 2 and g = 3. We
are still investigating ways to determine what makes a good
short initial state, and to determine how the quality of coarse
grainings (or proportion of good coarse grainings) might re-
late to initial state.

We conclude that, although partial coarse grainings do not
provide total accuracy in their predictions of fine grained be-
haviour, they can still provide ‘good’ descriptions. Figure 5
gives such an example: a partial coarse graining of rule 186
to rule 170. The coarse graining captures the significant, and
persistent, “diagonal” structure of the fine rule. Note that un-
der total coarse graining at g = 2, rule 186 coarse grains to
rule 128, capturing only the transient “triangular” structure
of the fine rule.

Intuitively, we can see that the capture of persistent struc-
ture by the partial coarse graining is more significant than
the capture of the initial transient behaviour by the total
coarse graining, but we would like an objective measure of
this ‘goodness’. In the next section, we show how to quan-
tify what we mean by ‘good’ in information theoretic terms.

Quantifying Emergence
A challenge of emergent systems engineering is to be able
to determine which low-level system gives a good emer-
gent behaviour. In studying coarse graining, we want to be
able to distinguish, as objectively as possible, good coarse
grainings (that capture interesting properties of fine-grained
ECAs) from other legitimate coarse grainings. Here, we use
an information theoretic measure of mutual information.

Information theoretic measures of emergence have been
proposed by Crutchfield (1994), and more recently by Shal-
izi (2001), Prokopenko et al. (2007), and others. It has been
shown that the mutual information I between the implemen-

Artificial Life XI 2008  689 



tation level L and the observational level S of a system is a
measure of emergence. The intuition is that I measures the
amount of information in a low level model (in a language
L) that can be predicted by a higher level model (in lan-
guage S). Modelling, or incremental system development,
can be viewed as increasing the shared information between
the specification and implementation. In the case of coarse
graining, a good mapping can be thought of as a mapping
that results in a high I between the fine-grained ECA (L)
and the coarse ECA (S).

Mutual information can be calculated using a suitable en-
tropy measure H of the systems, and can be expressed ei-
ther in terms of the joint entropy H(S, L) or, equivalently,
in terms of the conditional entropy H(S | L), or H(L | S)
of the systems.

I(S;L) = H(S) + H(L)−H(S, L) (1)
= H(S)−H(S | L) ≡ H(L)−H(L | S)

Intuitively, I(S;L) is the correlation between the speci-
fied system (the coarse-grained ECA) and its implementa-
tion (the fine-grained ECA). In terms of conditional entropy,
H(S | L) is the information in the system specification that
is not captured by its implementation, whilst H(L | S) rep-
resents properties of L that do not explain, in information
theoretic terms, the observed properties of S.

Calculating Mutual Information for ECAs
Mutual information requires a suitable entropy measure. We
need an efficient entropy measure for ECAs, and, for calcu-
lating the I , we need to take account of the different spatial
and temporal scales at the fine and coarse levels. Other re-
search (for instance, (Zhao and Billings, 2006; Mori et al.,
1998)) has used I in relation to ECAs, but with different pur-
poses; their measures, though similar, do not directly adapt
to our requirements in relation to spatial and temporal scales.

The key to a meaningful entropy measure is to measure
over an appropriate scale, so that it identifies the structures
that are important at that scale, without too much influence
from order at other scales. This can be seen if we consider
the entropy of a system such as a flocking simulation. We
could measure the entropy at the level of each individual,
in which case the entropy rises as individuals form flocks,
because it is harder to characterise the behaviour of an in-
dividual in a flock (velocity, position, flock influences) than
it is to characterise the behaviour of an isolated individual
(velocity, position). Alternatively, we can attempt to mea-
sure the entropy of groups of individuals, in which case the
entropy of a group that forms a flock is lower than that of a
group that is incoherent, because it is easier to describe the
flock’s behaviour than that of an incoherent group of indi-
viduals.

Turning to ECAs, the rate of information transfer is lim-
ited by the neighbourhood, and a neighbourhood value rep-

resents one input in the initial state of an ECA; thus it seems
reasonable to consider entropy in relation to the neighbour-
hood. Entropy is calculated from the probabilities of oc-
currence of each possible neighbourhood chunk value (000,
001, 010 ...), measured over many runs of each ECA. As we
need to calculate I between two ECAs, we use the coarse
grain for chunking, so entropy is measured over fixed chunks
of three coarse cells. Therefore, the fine grain entropy, at
g = 2, is calculated over chunks of six fine cells. Note that
this means that fine-grained ECAs have a higher maximum
entropy than coarse ECAs.

Accounting for the temporal difference between the
coarse and fine grains requires identification of the gener-
ations of each ECA to be measured. After analysis of the
practicalities of calculation and a number of experimental
investigations, we determined that every coarse grained gen-
eration (row) should be measured, but only the correspond-
ing fine-grained generation – for g = 2, that means every
alternate fine-grained row. This means that the entropy of
the fine grained rule overlooks some of the behaviour of the
fine ECA, notably that over short time-scales. This would
be a problem if we were interested only in entropy as a mea-
sure of complexity; the effects of the contraction are still
being considered in our analyses.

The algorithm that we use to calculate entropy starts with
the selection of a set of initial state strings on which to base
the calculations. We calculate I for each coarse graining
pair of ECA rules, and for each mapping that defines this
coarse graining. Firstly, for one rule pair and one mapping,
each test string is used as the initial state for the fine-grained
ECA; the mapping is used to derive the equivalent coarse
grained initial state, and the two ECAs are then run. We
then select the rows representing the generations of interest,
all coarse grained rows and the equivalent (gth) fine grained
row, and apply the chunking equivalently to each pair of
rows. We can then identify the number of times that each
chunk occurs in each row.

These measurements are done for all the chosen initial
state strings, and are then used to calculate the probabil-
ities of the different chunks; the probabilities are used in
the usual Shannon entropy calculations, yielding entropies
H(L) (from the fine grain), H(S) (from the coarse grain)
and H(S, L). From these, I is calculated (equation 1).

We have completed these calculations for all g = 2 par-
tial and total coarse grainings, and for a selection of coarse
grainings at other granularities. We have also looked at
I calculations based on different chunkings and time divi-
sions, and, to date, this approach gives the most useful and
cost-effective I measures.

Mutual Information and Coarse Grained ECAs
Mutual information can be a useful guide to the goodness of
an emergent solution, and, here, an indicator of the quality
of a coarse graining. A good mapping results in a high I
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Figure 6: Representation of three different coarse grain-
ings. The ovals indicate the amount of entropy: the large
ovals represent the entropy in some fine grained ECA, F;
the smaller ovals the entropy in the corresponding coarse
grained ECA, C; the overlap represents the mutual informa-
tion. The left figure shows a total coarse graining with high
I; the middle a total coarse graining with low I; the right a
partial coarse graining with high I .

between the ECAs. Here, we consider factors that influence
I of mappings between ECA rules in coarse grainings.

I is high if the ECAs’ behaviour is non-trivial (complex
or chaotic rules) and tightly coupled (they mirror each other
closely). The ECAs in a total coarse graining must always
mirror each other’s behaviour, so I is always maximal: the
mutual information is exactly the entropy of the coarse ECA
rule. However, if the behaviour of the ECA rules is trivial,
and thus entropy is low, the maximal I for that coarse grain-
ing is lower than it is for “interesting” ECA rules. Further-
more, a non-trivial fine ECA rule (with high entropy) could
be coarse grained to a simple rule (with low entropy), and
the maximal I for the total coarse graining must then be low
for that mapping. This is illustrated in figure 6. Total coarse
grainings are accurate, but they are not necessarily good.

We have measured the I of total and partially coarse
grained ECAs. As expected, many coarse grainings (both
total and partial) have low mutual information – the coarse
graining is not highlighting any significant structure from
the fine grained ECA. This can occur even when the fine
grained ECA rule produces non-trivial structure, with the
extreme case being coarse grainings from a complex fine
grained rule to a vacuous coarse grained rule such as rule 0
or rule 255. Furthermore, the additional coarse grainings
that are valid under partial coarse graining include many
vacuous cases with low I .

However, one result in particular is exciting in terms of the
potential for using coarse graining to predict emergent struc-
ture – that high-I partial coarse grainings seem to predict
high-I total coarse grainings at the current and higher grains.
If we study all the total coarse grainings at a particular value
of g, we find that some rules are coarse grained by many
rules, and that the coarse grainings have notably high I –
intuitively, this would suggest that there are structures in the
fine-grained rule that are (a) non-trivial and (b) common to
many rules at the coarse grain. When we consider the same
results for partial coarse graining, firstly we observe that all
the total coarse grainings are found by the partial approach,
and that partial coarse grainings from rules that are associ-

ated with high-I total coarse grainings usually have higher
I than the total coarse grainings – partial coarse grainings
tend to predict more of the fine-grained structure than total
coarse grainings. Next, we observe that the additional par-
tial coarse grainings that have high I tend to be those that
link rules with many total coarse grainings. It is also the
case that these partial coarse grainings have higher I than
partial coarse grainings that do not form links among rules
with good total coarse grainings. Intuitively, where there is
structure to exploit, the partial coarse grainings exploit more
of the structure of the fine rule than the total coarse grain-
ings, and do so preferentially where there are already good
total coarse grainings.

Furthermore, where we observe high-I partial coarse
grainings, these are good predictors of total coarse grainings
at higher granularities, and in particular of non-trivial total
coarse grainings (good partial coarse grainings at g = 2 pre-
dict total coarse grainings at higher g).

We note that we have measured I both very accurately
and approximately. Tests with sufficient data to give good
statistics (computationally rather expensive) were taken by
averaging over 50 runs with different random initial states of
1000 characters and equal probabilities of the two cell val-
ues. An example of an approximate measurement is a single
running of a 384-character initial state, with equal probabil-
ities (for g = 2 this is the smallest complete state). For all
mappings and all rules, the approximate I results are close
to the results of the same extensive tests. Thus, we get good
estimates of I , and hence of the ‘goodness’ of the coarse
graining, more cheaply.

The Importance of the Mapping and Timing
We have noted elsewhere (Polack et al., 2005) that the map-
ping between the implementation and the observed system is
essential to the construction of an emergent system. Without
a good mapping it would be impossible to use a high level
model (even an otherwise valuable one) to predict system
behaviour. The work on ECA coarse grainings shows that,
even where languages are essentially the same at two levels,
a good mapping is hard to systematically derive, and is not
always natural or obvious.

In fact, it is often the case that a fine rule Rf can be coarse
grained to the same coarse rule Rc by different mappings M
and M ′. Figure 7 shows coarse grainings of fine rule 160
(the top row – the two columns represent two different ini-
tial states) to coarse rule 128 with two different mappings
(second and third rows). Furthermore, some rules coarse
grain to themselves with different mappings: for g = 2, rule
150 partially-coarse-grains to itself with 14 different map-
pings, of which six mappings (those with equal numbers of
0s and 1s) are also total coarse grainings. In general, mutual
total coarse grainings with different mappings have similar
Is, whilst for partial coarse grainings, some of the mappings
have significantly lower Is than others; again rule 150 is
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Figure 7: Space-time plots of coarse grainings of rule 160
to rule 128. The top diagrams are rule 160 with two dif-
ferent starting states. The next two diagrams are the results
of coarse graining to rule 128 with the mapping 0001. The
last two diagrams are the results of coarse graining to rule
128 with the mapping 0101. All figures represent 50 fine
time-steps with g = 2

an extreme case, with total mappings to itself having rea-
sonable predictive power (I values of about 3), whilst the
partial coarse grainings have low predictive power (Is are
around 0.6).

One important factor in prediction, that has a marked
effect on measures of mutual information, is detection of
transient or longer-term features of the ECA. In figure 7,
we see that these ECAs become quiescent after about 20
fine time-steps; in the first coarse graining, quiescence is
reached much sooner. Mutual information would be differ-
ent if measured whilst transient behaviour dominates, com-
pared to post-transient. The same is true for rules that have
steady-state behaviours after transients die out, such as rules
186 and 170 (figure 5). Table 1 gives an example of mu-
tual information and entropy measures for two partial coarse
grainings of rule 162, measured at 4 and 10 coarse time-
steps. Coarse graining to rule 128 (mapping 0001) has a
similar short-term transient behaviour to that shown in figure
7, whereas the coarse graining to rule 170 (mapping 0111)

C t H(162) H(C) I(C; 162)
170 4 4.354 2.386 1.879

10 4.293 2.405 1.825
128 4 4.354 0.276 0.276

10 4.293 0.093 0.093

Table 1: The effect of time-step on mutual information of
coarse grainings of ECA rule 162, at g = 2. The start state
has 1000 cells, and entropy is calculated over 50 runs.

picks up persistent diagonal features.

Coarse rule 170 shows only a slight (non-significant)
change in mutual information between time-steps, which
shows that rule 170 captures some persistent behaviour in
rule 162. For coarse rule 128, however, there is a signifi-
cant change in mutual information between time-steps 4 and
10. In most of the 50 runs, rule 128 reaches quiescence by
coarse step 10 (no information, so no mutual information).
Note that the mutual information data show that the partial
coarse graining to rule 128 is also a total coarse graining
– the mutual information is the same as the entropy of the
coarse rule.

In most work on emergence, the focus is on the be-
haviours and languages at the high and low levels. The se-
lection of mappings, and of total or partial coarse graining,
is the subject of ongoing research; however, our work shows
that the mapping between high and low levels is an impor-
tant component of the emergence. This can be interpreted as
the way the low level system is viewed through the mapping
to form the high level (emergent) description.

Discussion
Total coarse graining of an ECA at g = 2 is efficient and
fast. However, because of the number of calculations and
checks to be performed, g = 3 is exponentially slower,
and we found that g = 5 is beyond the limit of capability
of a desktop computer. Partial coarse graining provides a
tractable alternative, because high-I mappings can be deter-
mined from a small initial state. Furthermore, because the
low-g partial coarse grainings are good predictors of higher-
grain total coarse grainings, higher granularity searches can
be focused rather than exhaustive.

One feature common in partial-only coarse grainings is
the ability to predict beyond the transient behaviour of the
rules. A total coarse graining often predicts early behaviour
accurately but then dies out to quiescence – the total map-
ping over-constrains the ability to predict the long-term be-
haviour (as in figure 2). However, a partial coarse graining
is less constrained, and is free to mismatch some early be-
haviour; thus it may be able to predict long-term behaviour
(as in figure 5).

Despite the implication of the name “emergence”, in in-
formation terms, emergence does not add anything; it re-
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moves (or hides) aspects of the underlying system, to em-
phasise an apparently coherent core behaviour which we
identify as a higher level phenomenon of interest. In effect,
our high level view (constrained by language, time, etc.)
blurs the underlying system so that only certain aspects of
its behaviour are apparent. This is precisely equivalent to
the DOF lost when coarse-graining an ECA.

Our work uses an information theoretic measure to com-
pare the emergent quality of coarse grainings, but it does
not explain how the measure can be maximised by selec-
tion of a good mapping rule, nor does it tell us how to relate
information-theoretic measures to subjective qualities of de-
sired (or deprecated) emergence.

Information theoretic approaches, such as comparison of
I used here, have the potential to help determine a good so-
lution, so long as we can map the desirable properties to
information theoretic features. We have also found that a
limited (and quick) I test approximates closely the results
of an equivalent extensive (statistically valid) I test. This
is important – if we consider that any valid coarse graining
is identifying something emergent, then we have shown that
finding emergence is easy; however it is the analysis of I
that distinguishes useful (structure-finding) emergence from
vacuous or trivial emergence.

We have found that a surprisingly small initial state string
predicts results almost as well as using a complete initial
state string, and moreover that the extra rules mapped by
such a partial coarse graining are themselves useful indica-
tors of interesting properties at coarse grains. If we think
of the granularity as the scale of the emergent property, this
is hinting at relationships across several scales, and hence
across several levels of emergence.

We have demonstrated the importance of the mapping be-
tween the levels. Correctness is not necessarily an indication
of goodness: having a mapping and a rule that works is not
always enough. Indeed, it is often not enough (the result can
have low I). Finding a valid coarse graining is much easier
than finding a good one. It is, however, the extra ‘goodness’
properties that can be exploited to get robust implementa-
tions of S.

Our immediate future work is to investigate the relation-
ship between partial fine state string and goodness of results
(why do such short strings work so well here, and do they al-
ways?), and establish the relationship between ‘good’ coarse
grainings at grain g and total coarse grainings at higher g. It
is clear that different mappings and grainings focus attention
on both different qualities of behaviour and different dura-
tions (transient, persistent) in the fine rule. It may ultimately
be possible to tailor the selection according to what is of in-
terest at the time.

Whilst coarse graining has a number of interesting prop-
erties, our main aim in this work is to gain understandings of
these simple emergent systems that will allow us to progress
two larger research goals: to understand and engineer emer-

gence, and to find efficient solutions to difficult problems.
Coarse graining is an efficient way to detect concealed struc-
tures, and thus might be applicable to guided search tech-
niques. More importantly, our work shows that finding and
exploiting mappings is likely to yield further progress, in
guiding search for solutions.
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