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Abstract

Embodiment theory suggests that recurrent processes of sen-
sorimotor activity give rise to cognitive structures. In the
case of robots, internal sensorimotor activity generated with
physics simulators can be exploited to expand the histori-
cal domain of action, however pre-engineered simulations are
limited by the reality gap problem. Alternatively simulation
might be inferred and self-constructed out of data collected
during robot functioning. Fundamental to this line of research
is defining a distance function to asses the potential of candi-
date robot simulations to reproduce real world activity. In
this paper we study the characteristics of a distance function
based on behavioral fitness measurements. We show how this
function can be applied for the generation of behaviors us-
ing an algorithm that co-evolves a robot and its simulation.
The experiments show how the monotonicity of the function
increases with the number of behaviors being tested in real-
ity and with the genotypic diversity of corresponding robot
controllers. Moreover it allows for the accurate identification
of behavior-relevant parameters contained in the simulation.
The metric shows an advantage, when compared to other met-
rics, for assessing the quality of simulators over long time
scales of robot behavioral evaluation.

Introduction
The long-term motivation of this investigation is exploring
how real robots can generate more interesting (and practical)
behaviors during their ontogeny. The experience (Hornby
et al., 1999) shows that a large amount of time is required
for obtaining such behaviors as the result of interaction with
a real environment. The use of simulation has been explored
in order to expand the historical domain of action that a robot
undergoes (Ziemke, 2003; Jakobi, 1998). However, accor-
ding to the reality gap problem, controllers generated in si-
mulation fail to perform similarly once transferred to a real
environment. Alternatively we consider that robot simula-
tion must be grounded and self-constructed rather than as a
result of a pure engineering design process.
Following this line of thought, we have developed a
dynamic reconfigurable robot simulator (Zagal and Ruiz-
del-Solar, 2004), together with an algorithm (Zagal et al.,
2004; Zagal and Ruiz-del-Solar, 2007) that allows a robot

to continuously construct and validate its simulation by co-
evolving it with its controller. The method have shown the
highest learning performance1 when compared to other ma-
chine learning methods (Genetic Algorithms, Policy Gra-
dient Reinforcement Learning, Evolutionary Hill Climbing
With Line Search, Powell Direction Set) that have been ap-
plied to the task of gait generation with AIBO robots. It
was also successfully applied to the automatic generation of
unconstrained ball kick behaviors with AIBO robots (Zagal
et al., 2004; Zagal and Ruiz-del-Solar, 2007).
Similarly in (Philipona et al., 2004) the question of
whether there is an algorithm linked to an unknown body
that can infer by itself information about the body and the
world it is in was raised. According to experiments with a
simulated head they concluded that sensorimotor laws pos-
sess intrinsic properties related to the structure of the phy-
sical world in which an organism’s body is embedded. In
(Bongard and Lipson, 2004) the Estimation Exploration al-
gorithm is proposed as a way to co-evolve a robot and its
simulator. They later applied this algorithm to real robots
(Bongard et al., 2006). Converging approaches are presented
in (Vaughan and Zuluaga, 2006) where self-simulation is
proposed for robot planning, and (Ziemke et al., 2005)
where internal simulation of robot perception is explored.
Central to this work is defining a distance function to
asses the quality of candidate robot simulations. Different
functions have been applied; the rolling mean metric (Bon-
gard and Lipson, 2004) aims at comparing sensor time se-
ries resulting from a target robot and candidate robot simula-
tions. However, according to their proponents quantitatively
comparing sensor data from two highly coupled, highly non
linear machines,... is very difficult: slight differences be-
tween the two machines rapidly leads to uncorrelated sig-
nals. In (Lungarella et al., 2005) it is proposed that sen-
sorimotor activity can be characterized by looking at their
statistical regularities. From this idea in (Mirza et al., 2007)

1Learning performance defined as LP = IF×d
e , where IF =

fend−f0

fmax
is the normalized fitness (f ) improvement, d is the con-

troller dimensionality and e is the number of evaluations performed
in a real robot.
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the experience metric over a temporal window of sensori-
motor observation (statistical distance) was proposed, giv-
ing some insights on the relation of the horizon of experi-
ence and cycle time of interactions. Such statistically based
metrics have the potential of overcoming the limitations of a
time dependent comparison.
In this paper we explore a distance function based on
the average fitness discrepancies of a set of robot behavi-
ors tested in reality and in candidate robot simulations. The
function has already been shown to be useful at reducing
fitness discrepancies of real versus simulated robots during
co-evolutionary experiments (Zagal et al., 2004). The inten-
tion of this paper is to address some questions that remain to
be clarified:

1. We wonder if a minimization of this function does neces-
sarily imply a better identification of aspects from reality
such as structural robot variables contained in the simula-
tion, or alternatively if it generates bizarre representations
that are good just for reproducing behavior.

2. If the first is true we wonder if the function just allows for
good approximations or whether it might allow a perfect
match of measurable quantities to be achieved.

3. To aid genetic search over a space of candidate simula-
tions the function should be monotonic with respect to
the identification error, thus we wonder about how is this
monotonicity being affected by the number of behaviors.

4. Another question is about how this monotonicity is affec-
ted by the genotypic diversity of these behaviors.

Answering these questions is fundamental towards gene-
rating robots with self-modeling capabilities. Since the task
requires a reality that can be measurable at the hands of the
experimenter we use a simulated reality defined by parame-
ters that are to be uncovered by the methodology under in-
spection.
The remainder of this article is organized as follows: Defi-
nitions are presented in section II. The principle of operation
of the function under analysis is presented in section III. Ex-
perimental results are presented in section IV. Comparisons
with alternative metrics are presented in section V. Conclu-
sions and projection of this work are given in section VI.

Definitions
Simulation: A robot simulation is defined by a vector
s = {s1, . . . , sNs

} in the space S of possible simulations.
The dimensions of this space might be defined by morpho-
logical aspects such as the length, width, shape or weight
of robot components as well as their topological relation. It
might also include aspects such as the friction among dif-
ferent elements, gravitational forces, motor parameters such
as PID servo constants, etc. The experimenter defines the
S boundaries of each parameter si ∈ [mini,maxi] with

i = {1, . . . , Ns}. In the particular case in which reality is
defined as a point sr ∈ S we will refer to a simulation as
any point s "= sr in S.

Reality: Reality is the target operational environment of
the robot. We present experiments in which reality corre-
sponds to a particular realization of the simulation sr ∈ S.
As it will be described, sr is unknown for the robot and it
should be determined by the algorithm by relying on behav-
ioral comparisons.

Controller: A robot controller is defined by the vector
c = {c1, . . . , cNc

} in a spaceC of possible robot controllers.
The space C might include morphological descriptors of the
robot besides controller-related parameters. However, we
have not performed experiments for the evolution of robot
morphologies. The experimenter defines the C boundaries
of each parameter ci ∈ [mini,maxi] with i = {1, . . . , Nc}.

Behavior: It is the set of actions that a robot executes in
response to the environment E. The characterization and
qualification of a robot behavior necessarily depends on the
observer. From a single viewpoint we can model beha-
vior in discrete time tj = j · ∆t as a time series B =
{X0, . . . ,XNb−1} ofNb vector statesXj = {x1, . . . , xNd

},
each describing Nd dynamical parameters, such as position,
rotation and velocity, of bodies composing the robot or in-
teracting with it. If we assume a set of fixed initial condi-
tions, a fixed reference system and fixed evaluation period
Te = Nb · ∆t, we can establish that the robot behavior B is
a function of the robot controller c and the evaluation envi-
ronment E. Thus we have B = B(E, c). In this context E
might be either a simulation defined by a point s in S or the
reality itself. Clearly in the later case ′′E = reality′′ is just
an abstraction2 for the sake of consistency.

Fitness: It is the behavioral evaluation provided by the ex-
perimenter. From a set of M robot controllers we note the
fitness of robot controller ck, with k = {1, . . . ,M} that
elicit behavior B(E, ck) as fEk with E = r for reality and
E = s for simulation. For example, at the end of Te it might
be the distance traveled by the robot, the distance traveled by
a ball that the robot kicks, the amount of consumed energy,
etc.

Exploiting Behavioral Consistency
In this section we discuss the problem of how to construct
a robot sensorimotor simulation from data collected during
robot functioning. If the behavior elicited by robot c in si-
mulation s is similar to the behavior observed in reality we
write

2We intend to approximate relevant aspects of reality, but not to
represent it.
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B(s, c) ≈ B(r, c) (1)

more precisely this means that at any time step j we also
have

Xsj ≈ Xrj ∀j = {0, . . . , Nb − 1} (2)

where Xsj stands for the state vector of B(s, c) at time
step j, and Xrj is the state vector of B(r, c) at time step j.
In other words there should be a match along time of the
robot state in both simulation and reality.
If we somehow measure the degree in which this match is
obtained for each simulation s, we can derive a useful dis-
tance for adapting simulation to match behavior. Unfortu-
nately the stateXrj is generally unobservable3. On the other
hand, by definition of an Evolutionary Robotics problem the
behavioral fitness obtained in simulation fsk and reality frk

are always available. We can thus define in terms of these
measurements the behavioral fitness discrepancy elicited by
robot ck as

δk = |fsk − frk| (3)

If behavioral discrepancies, as expressed in (3), are re-
duced for various behaviors, then it is natural to expect that
simulation approximates reality better in those characteris-
tics that are relevant for the execution of these behaviors. We
note the average behavioral differences∆fitness as:

∆fitness =
1

m

m
∑

k=1

δk =
1

m

m
∑

k=1

|fsk − frk| (4)

Back-to-Reality algorithm
Using this distance we follow the Back-to-Reality (BTR) al-
gorithm steps in order to construct simulations during robot
ontogeny. Detailed descriptions of the algorithm are re-
ported in (Zagal et al., 2004) and (Zagal and Ruiz-del-Solar,
2007). At each iteration i the algorithm co-evolves robot
controllers with robot simulators by executing the following
steps:
Step 1, robot controller search under simulation: Us-
ing the best known simulation si−1 as environment, genetic
search is conducted over the controller solution space C. A
starting population of M controller individuals is obtained
by performing bit changes with probability pm over the so-
lution ci−1 which is given as a seed. For the first iteration
the population can be generated as random or biased by a
known starting solution c0.
The search is steered towards maximizing the fitness

f(B(si−1, ci)). The amount of generations during which
3In control theory a system is observable if, for any possible

sequence of state and control vectors, the current state can be de-
termined in finite time using only the outputs.

genetic search is conducted in this step should be small if
the problem present a high tendency for drift4.
Step 2, selection, transfer and test: A set of (m < M )
controllers are selected in order of descending fitness and
tested in reality. Corresponding fitness values frk, with
k = {1 . . . m} are stored. If it is not possible to findm trans-
ferable individuals from the last generation, they will have to
be taken, in descending order, from the previous generations
obtained in Step 1.
Step 3, simulation search: The best existing simulator so-
lution si−1 is used in order to bias a population of L simula-
tor individuals. In the case of the first iteration this popula-
tion is generated as random or as biased by a known starting
simulator solution s0. A simulation si is obtained by steer-
ing the evolution towards minimizing∆fitness.
The algorithm continues by taking the simulation ob-
tained in step 3 as a new environment for step 1 in the next
iteration. There is a genotypic similarity among the m con-
trollers that triggers a phenotypic similarity among corre-
sponding behaviors. A probability pm per bit controls the
rate of mutation for a population constructed from a given
controller ci.

Results
Experimental settings
A dynamic simulation of an ant-like robot (hexapod) was
implemented using the UCHILSIM simulator (Zagal and
Ruiz-del-Solar, 2004). Figure 1 (a) shows the configura-
tion of the 15 rigid robot bodies. The alitrunk, petiole
and gaster are represented by bodies b0, b1 and b2. Bod-
ies {b3, . . . , b8} correspond to the femur and {b9, . . . , b14}
are the tibia and tarsus of each leg. The joint j0 connect
body b0 and b1, similarly the joint j1 connect body b1 with
b2. The joints {j2, . . . , j7} connect each femur with a corre-
sponding alitrunk having vertical and frontal axis of motion
as depicted on the figure. The joints {j8, . . . , j13} connect
each femur and tibia with a frontal axis of motion. Each
independent axis of motion i (a total of 18) is motorized
and torque is applied according to the output of PID dy-
namic compensators that follow a motion reference signal
ri = θi + aisin(wt + φi), where θi is a pre-defined central
angle of oscillation for each motor i. Equal uniform mass
density is given to all bodies.
The default robot posture (when ri = θi ∀i) is presented

in Figure 1 (b). The behavior evaluation time Te is set to 1.7
seconds. A physics integration step takes ∆t = 5 × 10−4

seconds, therefore the state vector X{s/r}j is computed
Nb = 3400 times along a behavior evaluation. The fre-
quency is selected to be w = 60Hz. The amplitude ai and
motion phase φi are defined by the robot controller vector

4A pathology of co-evolving systems in which the selection
pressure of one population has no influence in the co-evolving pop-
ulation.
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(a)

(b)

(c) (d)

(e) (f)

Figure 1: In (a) configuration of the 15 rigid bodies of the robot;
motorized joints are connecting bodies {3, . . . , 8} with body 1
in two orthogonal axis of motion. Bodies {9, . . . , 14} are con-
nected to the previous set constrained to one axis of motion. In
(b) the robot under its default posture. In (c,d) reality defined
such that body 14 length is blmax = 1.6. In (e,f) example of
other realization of the simulator for which body 14 length is
blmin = 0.4. Remaining body lengths are {bl3, . . . , bl8} = 0.64
and {bl9, . . . , bl13} = 1.36 in both cases.

under search, c = {a1,φ1, . . . , a18,φ18} of 36 elements.
These parameters are in the range ai ∈ {amin, amax} and
φi ∈ {φmin,φmax} for each joint. The robot simulator is
defined as a vector s representing the actual lengths of the
ant limbs s = {bl3, . . . , bl14} of 12 elements in the range
bli ∈ {blmin, blmax}.
We have selected the following parameter range: amin =

0.12989, amax = 0.314, φmin = 0, φmax = 3.1416,
blmin = 0.4, blmax = 1.6. It is important to notice that the
selected parametrization might bring about radically differ-
ent behaviors since no symmetry simplifications have been
made for the leg motion pattern and the parameter range is
sufficiently large to produce a variety of different behaviors
(falling upside-down, walking in circles, backwards, side-
ways, forward, jumping, etc).

Fitness discrepancy and morphology
As result of applying BTR step 1 using a starting simulator
s0 and and robot controller c0 we obtained a population of
m = 15 robot controllers. Corresponding fitness was mea-
sured in reality according to BTR step 2, stored and ranked.
Figure 2 (a) shows corresponding evolution of controller fit-
ness. The best transferable controller c1 achieved 11m/s in
simulation.
Using this population of controllers we scanned∆fitness

as function of morphological variations (of simulated versus
real robot). In this case simulation is defined by a vector s
that differs only in one parameter with respect to reality sr,
and then we evaluate ∆fitness while varying this parameter
along its whole range. As a first test, let us define reality sr

in S such that the length of body 14 takes the value bl14 =
blmax = 1.6 while the remaining body lengths are set to
{bl3, . . . , bl8} = 0.64 and {bl9, . . . , bl13} = 1.36 as shown
in Figure 1 (c,d). In order to illustrate the range of search a
point s0 different from reality is shown in Figure 1 (e,f) such
that bl14 = blmin = 0.4.
Figure 2 (b) shows results of scanning ∆fitness along
the complete parameter range of bl14. The partial com-
ponents δk = |frk − fsk| used for computing ∆fitness

are presented for all behaviors k = {1, . . . , 15} as func-
tions of bl14. Figure 2 (c) presents results from a sec-
ond test in which the length of body 5, bl5, is chosen as
the varying parameter. In this case reality is such that the
length of this body is bl5 = 0.88, while the remaining body
lengths are {bl3, . . . , bl4} = 0.64, {bl6, . . . , bl8} = 0.64
and {bl9, . . . , bl14} = 1.36. Similarly as beforem = 15 in-
dividuals are selected from a population of robot controllers.
In order to understand the influence of m on the mono-
tonicity of ∆fitness we generated M = 45 controllers by
modifying c1 genotype bits with a probability pm = 0.02
per bit. Figure 3 (a) shows scans of δk computed separately
around body bl5 = 0.88, and in (b) scans of ∆fitness com-
puted as a function of different amountsm of behaviors. The
same figure shows in two subplots corresponding fitness val-
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(a)

(b)

(c)

Figure 2: In (a) evolution of controller fitness. In (b,c): ∆fitness

together with itsm = 15 behavioral components δk = |frk − fsk|
resulting from scanning body 14 (b) and body 5 (c) lengths along
the full parameter stroke bl14,5 = [0.4, . . . , 1.6]. It is particu-
larly interesting to observe the decreasing monotonic behavior of
∆fitness when approximating the real value of 1.6 (a) and 0.88 (b).
Further observations are described in the main text.

ues resulting from each one of the 45 behaviors when mea-
sured in reality (left) and for the starting simulation (right).
Figure 3 (c) shows 16 ∆fitness curves computed for a fixed
number of behaviors (15) but increasing the diversity para-
meter pm with the darkness of curves.
Finally, following BTR step 3,∆fitness is used to identify
a hidden simulation point defined by bl5 = 0.54, bl6 = 0.74,
bl3 = 0.54, bl8 = 0.74. Figure 4 (a) shows the minimization
of∆fitness along 100 generations. In (b) the resulting para-
metric convergence is shown. We have made the following
observations from these experiments:

1. A first observation is that when simulation equals reality,
this is when the varying parameters match corresponding
real values (bl14 = blmax = 1.6 in the first test and bl5 =
0.88 in the second test) with the remaining parameters left
equal, we verify for the k = {1, . . . ,m} partial behavioral
discrepancies that δk = 0 ∀k. This is an experimental
support for the following theorem:

Theorem 1 s = sr ⇒ δk = 0, ∀k /k = {1, . . . ,m}.

This theorem is trivial since we have assumed a set of
conditions in order to guarantee that if s = sr we can re-
produce behaviors and thus obtain the same fitness values.

2. Similarly we verify that when simulation equals reality
∆fitness = 0. This result is an experimental support of
the following theorem:

Theorem 2 s = sr ⇒ ∆fitness = 0.

This theorem is also trivial (but useful as well), from pre-
vious theorem and equation (4) we have

∆fitness =
1

m

m
∑

k=1

δk =
1

m

m
∑

k=1

0 = 0 (5)

3. We also observe that ∆fitness ≥ 0 ∀s / s "= sr and that
∆fitness = 0 ⇔ s = sr for the observed range of s.
This suggests the following two hypotheses:

Hypothesis 1 ∆fitness = 0 ⇒ a subset of parameters in
S that are relevant for the execution of m behaviors has
been correctly identified by s from sr.

Hypothesis 2 ∆fitness = 0 ⇒ s = sr if and only if S
contains only parameters which are relevant for the exe-
cution ofm behaviors, withm → ∞.

4. Even though we observe that ∆fitness = 0 ⇔ s = sr,
the partial behavioral discrepancies δk might become zero
at points such that s "= sr. In fact there is a likelihood that
the fitness of a particular behavior is the same in reality
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(a)

(b)

(c)
Figure 3: In (a) 45 δk curves computed for variations of bl5 around
s = sr . In (b) 45 ∆fitness curves computed for different number
of behaviors. Darkness increases with the number of behaviors, the
subplots shows fitness values for each one of the 45 controllers in
reality (left) and the starting simulation (right). In (c) 16 ∆fitness

curves computed for a fixed number of behaviors (15) but increas-
ing the parameter pm which is depicted in the sub-plot. Curve
darkness increases with Pm.

and simulation even for s "= sr, but the key point is that
it is extremely unlikely that the coincidence happens at
the same point s with another behavior. This is a great
illustration of the reason several behavioral comparisons
are averaged in order to achieve useful measurement.

5. It is possible to recognize a plateau on∆fitness for values
bl14 ≤ 1.1 in Figure 2 (b). This can be clearly understood
when looking at Figure 1 (c,d), what happens is that for
such values the corresponding leg does not actually touch
the ground and therefore, as can be observed, it does not
have an impact in behavior until it reaches values above
1.1. A similar observation can be made in Figure 2 (c),
when bl5 ≥ 1.3 the whole extremity is lifted away from
the ground and therefore the parameter changes beyond
that value are not affecting behavior.

6. We can observe as well that ∆fitness monotonically in-
creases with the identification error, i.e. when s moves
away from the real value sr. The Figure 2 (a,b) shows
a strong increasing monotonic behavior of ∆fitness with
the superposition of small fluctuations. On the other hand,
the characteristic of a single behavioral discrepancy δk is
not monotonic with the identification error. From Figure 3
(b) we observe how the smoothness of∆fitness increases
with m. From these observations we make the following
hypothesis

Hypothesis 3 The smoothness of ∆fitness as the func-
tion of a parameter of S increases withm over the range
of behavioral influence of the parameter.

7. We observe from Figure 3 (c) an increase of the smooth-
ness and linearity of ∆fitness when increasing the diver-
sity factor pm. Thus we make another hypothesis

Hypothesis 4 The smoothness of ∆fitness as the func-
tion of a parameter of S increases with pm over the range
of behavioral influence of the parameter.

Comparisons With Other Metrics
Results from applying sensor based metrics such as the
rolling mean metric (Bongard and Lipson, 2004) and the Eu-
clidean difference of sensor time series of real versus can-
didate simulations over the described range of bl5 are pre-
sented in figure 5. A central parameter of the rolling mean
metric is the header length h which indicates how much of
the starting sensor time series are going to be compared.
Corresponding metric is computed for different values of
this parameter, ranging from 1.25% up to 100% of the to-
tal evaluation time. As can be seen, comparing a very short
starting period (1.25%) leads to an almost perfectly linear
behavior of the metric, however when increasing the length
of sensor data under comparison the monotonicity of the
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(a)

(b)

Figure 4: In (a) minimization of ∆fitness carried along 100 gen-
erations. In (b) corresponding convergence to parameters defining
reality is shown. Black lines represent parameters encoded by the
individuals having minimum ∆fitness. Similarly the remaining
individuals are represented by gray lines, where the darkness of
curves is proportional to∆fitness.

curve decreases reaching a non monotonic behavior. The
metric behaves similarly as the Euclidean difference of cor-
responding time series when h is equal to the whole evalua-
tion period; this is depicted with dashed line. Such behavior
can be clearly understood since the decorrelation of sensor
time series increases with time for slight differences of si-
mulation and reality.

Figure 5: Rolling mean and Euclidean metrics. The rolling mean
metric is computed for different values of the starting time header
h, ranging from 1.25% up to 100% of the total evaluation time.
In dashed line the Euclidean metric is presented considering the
whole evaluation time. The figure illustrates how the monotonicity
of the rolling mean metric is affected by the parameter h, behaving
similar to the Euclidean metric when the whole time window is
considered.

Conclusions
We have investigated the behavior of a distance function that
can be used for comparing candidate simulators by measur-
ing the average fitness of small variations of behavior. Be-
fore drawing conclusions we should remember that in the
presented experiments realitywas also simulated, having the
same physical laws as the candidate simulations, but varying
morphological aspects of the robots. In principle a negative
effect of fitness measurement noise should be reduced with
m given the linear construction of ∆fitness. However, per-
forming several behavioral evaluations in a real environment
is expensive.
Having this into account we can give the following an-
swers to the main questions that motivated this work:

1. Indeed a minimization of ∆fitness necessarily implies a
better identification of aspects of reality. However these
aspects must be related to the execution of behaviors con-
sidered under ∆fitness. Thus the methodology under
analysis allows a robot to generate a self model of the
behavior-relevant components of its interaction with the
world. However the methodology would leave undeter-
mined the value of parameters that are not relevant for the
execution of behavior (like the color of the head!).

2. We have observed that the function allows a perfect match
of those parameters that are relevant for the execution of
behaviors to be achieved.

3. The monotonicity of ∆fitness increases with the number
m of behaviors that are tested in reality.
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4. The monotonicity of∆fitness increases with the diversity
of the controllers and it can be controlled with the para-
meter pm.

We conclude that the latter two factors should be care-
fully considered when designing experiments on a fitness
based identification of robot structures since the monotonic-
ity of the distance function is a critical factor towards in-
creasing the dimensionality and complexity of simulation
search spaces.
Out from these experiments we observe that there is an
advantage of using a sensor based time series metric (such
as the rolling mean metric) when comparing small time
portions of data collected during robot functioning. More-
over, since this apporach involves the collection of a higher
amount of data (sensor time series versus fitness), it appears
as the right move to experiments in reality given the reduc-
tion in hardware trials. However, when time increases, the
sensor time series become highly decorrelated if simulation
is dissimilar to reality. A fitness based comparison such as
∆fitness allows us to assess the quality of candidate robot
simulation over extended evaluation periods.
Simulation should allow us to reproduce real robot opera-
tion over all behavior-relevant time scales. We consider that
comparisons cannot be restricted to the first instants of robot
operation but must be extended until the outcome of beha-
vior is obtained. An account of multi time scale behavioral
comparisons is required.
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