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Abstract 
How can informational replicators (Zachar and Szathmáry 
2010) such as template replicators, arise from non-
informational autocatalysts (Szathmáry and Maynard Smith 
1997; Szathmary 2000)? Variants of an informational replicator 
have a high probability of being autocatalytic, thus allowing 
potentially unlimited heritable variants to be replicated, for 
example, mutants of a DNA sequence have this property. 
Variants of non-informational replicators such as 
glycolaldehyde in the Formose cycle are not in general 
autocatalytic; therefore, there is little capacity for hereditary 
variation (Szathmáry 2006). This paper asks; what are the 
necessary and sufficient conditions for an increase in the 
probability that a variant of an autocatalyst will itself be 
capable of autocatalysis? Given some well-defined 
assumptions, serial dilution in a rich generative chemistry such 
as that found in the Miller experiment should result in the 
emergence of informational replicators, i.e. autocatalysts whose 
variants have a high probability of themselves being capable of 
autocatalysis.   

Introduction 

A reactor such as that of Millar’s famous experiment (Miller 
1953) contains reactions that are simple autocatalytic cycles 
(and probably more complex kinds of autocatalytic structure, 
e.g. reflexive autocatalytic sets (Farmer, Kauffman et al. 
1986; Kauffman 1986)).  An example of a simple 
autocatalytic cycle is the Formose reaction (Fernando, Santos 
et al. 2005), see Figure 1. It is known that this autocatalytic 
cycle is notoriously subject to side-reactions, the reaction of 
molecules external to the cycle with the intermediates of the 
cycle to produce new molecules. Some of these new 
molecules will themselves be autocatalytic with some 
probability p that we assume is a property of the parental 
autocatalytic cycle. The same fate of side-reactions befalls 
these newly produced autocatalysts.  
 
Real chemistry is very complicated, but it is possible to get 
some idea of the dynamics of a growing chemical network of 
reactions by using simplified artificial chemistries. A typical 
abstraction is to use linear binary strings as molecules and 
allow ligation and cleavage reactions between these strings. 
This paper will use an even simpler artificial chemistry where 
a chemical is described by only two parameters. What is the 
motivation for this? In simulations carried out previously 
using a artificial chemistry (Fernando and Rowe 2007; 
Fernando and Rowe 2008) it was observed that the probability 

of an autocatalytic molecule producing another autocatalytic 
molecule in a side-reaction decreased with the size of the 
molecule. This is an inevitable consequence in a random 
chemistry of linear strings because longer strings are less 
likely to produce two copies of one reactant by chance, than 
are shorter strings, given random rearrangement of the 
monomers of in a bimolecular rearrangement reaction (the 
type used in the simulation). The reality for real organic 
molecules is of course much more complicated. Some classes 
of autocatalytic molecule will inevitably be more likely to 
produce autocatalysts than others (i.e. have different p values). 
The complexity of the chemical models that would be needed 
to determine these probabilities for various classes of 
molecule are bewildering and possibly beyond that which is 
currently feasible. Therefore, a model is presented that 
abstracts certain properties of this generative chemical 
process. The model assumes simply that an autocatalyst can 
be described by a small number of parameters. Firstly, a 
probability p that a side-reaction to the autocatalytic cycle 
produces an autocatalyst. Secondly, a structural parameter 

€ 

p  
that describes the mean of a lognormal distributed set of 
values from which is drawn the probability p’ that an 
autocatalyst produced by a side-reaction will be capable of 
itself producing autocatalysts, see Figure 1. Thirdly, for some 
variants of the model it is assumed that each autocatalyst has 
some observable property f. f is drawn randomly for each 
autocatalyst from a normal distribution with mean 0 and s.d. = 
1. In the models, there is no correlation between f of a parent 
and f of an offspring molecule. This f is intended to be some 
function that may contribute to fitness at a higher level.   
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Figure 1 (Top) The molecule glycolaldehyde is autocatalytic 
using Formaldehyde as food, and making copies of itself, and 
growing in concentration exponentially. (Bottom) The 
intermediates of the glycolaldehyde autocatalytic cycle can 
undergo side-reactions with other species (red) to produce 
autocatalysts with a low probability p. Let these new 
autocatalysts have a probability p’ of producing autocatalysts 
themselves by side-reactions. In the model, a structure 
parameter of the parental autocatalyst 

€ 

p  determines 
stochastically the actual value of p’ that an offspring 
autocatalyst will have.  

Methods 
A reactor is initialized with one core autocatalyst that has p 
drawn from a lognormal distribution with mean 

€ 

p  = e-10
 . This 

is a small value, e.g. 0.001. The production of novel 
autocatalysts is simulated using a discrete time simulation. At 
each time-step, each existing autocatalyst has a probability p 
of producing another autocatalyst. If it does produce an 
autocatalyst, then this new autocatalyst has its p’ value 
assigned by choosing a random number from the lognormal 
distribution defined by the 

€ 

p  value of the “parent” 
autocatalyst. The new autocatalyst then has its 

€ 

p ’ value 
defined based on the original 

€ 

p  value of its parent. The 
crucial question in any realistic chemistry is whether there is a 
correlation between the 

€ 

p  value of a parental autocatalyst and 
the 

€ 

p ’ value of the autocatalyst produced from it. In other 
words, is the probability of producing an autocatalyst in a 
side-reaction a heritable parameter; is 

€ 

p  heretable? It is 
clearly the case that there is no such simple correlation for all 
classes of molecule, although for some molecules there clearly 
is, for example, polymer template replicators. Such molecules 
have a very high probability that a variant will also be capable 
of replication. Several functions that relate the heretability 

€ 

p  
of parent and heritability 

€ 

p ’ of offspring are examined in this 
paper. The simplest function assumes correlated 

€ 

p  values 
where the 

€ 

p '= Norm(1,σ)p p , where Norm is a Gaussian 
random number with mean 1 and standard deviation

€ 

σ. An 
uncorrelated function is one in which 

€ 

p c = erand (−10,−9.5), where 
rand(-10,-9.5) is a uniform random number between -10 and -
9.5, the typical values evolved in the previous experiments 
when 

€ 

p  was an evolvable parameter.  

The reactor produces autocatalysts for a fixed time period T 
after which M random samples (containing autocatalysts) are 
taken from the reactor. Each autocatalyst has some probability 
q of being chosen for each sample, and let this value be fixed 
throughout a simulation. Let the chance of choosing an 
autocatalyst be low, e.g. 5%. In reality this probability q will 
depend on abundance, but here we have no model of chemical 
kinetics. Also, we do not allow the number of autocatalysts 
chosen to exceed some maximum C e.g. 50. The sample will 
also inevitably contain many non-autocatalytic molecular 
species that are not modeled here.  

One of the M samples are chosen based on maximizing the 
linear sum of f values of the autocatalyst species present in the 
reactor. Another valid option is just to choose a random 
sample. Both options are modeled here. The chosen sample 

then is used to reinitialize a new reactor. All autocatalysts not 
present in this sample are discarded. This is the serial dilution 
phase of the experiment.  

Results 

Correlated 

€ 

p  
 
Figure 2 shows the results obtained for a run in which 
selection is for highest summed f. The initial value of 

€ 

p  = e-10
, 

q = 0.05, C = 50, M = 10.  In the function 

€ 

p '= Norm(1,σ)p p , 

€ 

σ = 0.001, i.e. there are small correlated changes to the 
potential to produce autocatalysts (P1 in the diagram).  
 

      
Figure 2. 28 serial dilutions, with selection for highest f 
sample. (Top Left) Maximum p value obtained. (Top Right) 
Maximum 

€ 

p  value obtained. (Bottom) Total number of 
autocatalysts in the reactor.   
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Figure 3. 34 serial dilutions, with random selection of a 
compartment. (Top Left) Maximum p value obtained. (Top 
Right) Maximum 

€ 

p  value obtained. (Bottom) Number of 
autocatalysts. 
 
After 28 serial dilutions of the system, the maximum value of 

€ 

p  has increased significantly, and more autocatalysts are 
being produced in each round of network growth. Random 
compartment selection has a similar effect, see Figure 3. 
Selection for the compartment with the largest number of 
autocatalysts also has a similar effect (not shown). Next we 
consider the effect of making 

€ 

p  a non-heritable structural 
parameter.  

Uncorrelated 

€ 

p  
 
 

 
 
Figure 4. With uncorrelated 

€ 

p , there is no improvement in 
autocatalysts over many serial dilutions. Selection is for the 
compartment with the largest number of autocatalysts.  
 
Figure 4 shows the behaviour with an entirely uncorrelated 
potential for autocatalysis between successive autocatalysts 

€ 

p c = erand (−10,−9.5). The probability p no longer tends to higher 
values because whilst a parental catalyst may occasionally 
produce an offspring with high p, this offspring has no 
tendency to itself produce offspring with high p. There exist 
autocatalysts in the population that do have high values of 

€ 

p , 

but the mean value of 

€ 

p  does not increase, as can be seen in 
the plot of mean 

€ 

p  in Figure 4.  
These results suggest that if the structural variability 
parameter 

€ 

p  is not capable of being inherited, then there will 
be no tendency for the population of autocatalysts to tend 
towards becoming informational replicators.  

Conclusions 
 
The simple but fundamental principle demonstrated above is 
an example of the evolution of evolvability (Conrad 1990; 
Clune, Misevic et al. 2008; Parter, Kashtan et al. 2008), 
namely, that natural selection can act to select variants that are 
not of immediate benefit to the individual replicator, but 
confer improved variability properties, i.e. increase the chance 
that offspring will be fit. If there is variation (within 
generation differences) in variability (the capacity to produce 
variants during propogation) then there can be selection for 
variability properties that are beneficial to the lineage. This 
has been called lineage selection (Aboitiz 1991), and second 
order selection (Tenaillon, Taddei et al. 2001). Mark 
Toussaint has formalized the process of structuring 
phenotypic exploration distributions (Toussaint 2003) due to 
non-trivial neutrality, i.e. the capacity for the same phenotype 
p to be due to different genotypes 

€ 

p . If some genotypes 

€ 

p  
tend to produce better variations in the phenotype p then those 
genotypes can be selected for. In this model it is shown that 
the capacity for non-trivial heritable neutral variation of 

€ 

p  can 
allow increasing p.  
 
The question remains, in chemistry, is there ever a 
circumstance in which 

€ 

p  could be heritable within a lineage 
of autocatalysts? A conservative answer is sometimes yes, 
sometimes no. However, in this situation, the network 
dynamics would exhibit a tendency to select for that class of 
autocatalyst that did exhibit heredity of 

€ 

p .  
 
It is therefore proposed that experimentally it would be a 
matter of acute interest to take a rich generative chemistry 
such as that of Miller capable of producing a combinatorial 
explosion of polymers, and to take samples from the reactor 
once it had had a chance to generate this molecular diversity. 
These samples (selecting for the sample with the highest 
number of autocatalysts if possible) would be used to 
inoculate a new reactor. This cycle would be repeated for as 
many generations as possible. Each epoch should permit the 
generation of a new set of autocatalysts. This simple model 
predicts that such a protocol should be capable of generating 
informational replicators.  
 
There are several simplifying assumptions of this model that 
must be examined. First we have ignored the fact that mass is 
finite. This means that exploration of the autocatalytic 
network may become limited if the mass of the reactor is used 
up producing non-autocatalytic molecules. Secondly we have 
completely ignored the existence of cross-catalytic 
interactions which may produce reflexive autocatalytic 
structures that can act as informational units. However, 
reflexive structures are only an intermediate step in what must 
eventually be selection for heretable 

€ 

p  in the origin of 
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microevolution from macroevolution. An interesting addition 
to the model would be to allow species to be both 
autocatalytic and cross-catalytic with some probability. The 
interactions of the reactor would be described by a replication 
matrix. Adding a new species would involve producing a new 
row and column in this matrix. In addition to this matrix, each 
species would be described by structural parameters that 
determined the entries in the new row and column of the 
replication matrix for species that were produced in side 
reactions with it. Thirdly, the form of the structural parameter 

€ 

p  (acting as a mean of a lognormal distribution to produce p’) 
is somewhat arbitrary. A much more realistic method of 
describing the structural tendency for autocatalysis would be 
desirable.   
 
Recent work by Ben Davis’s group in Oxford has succeeded 
in enclosing a Formose cycle metabolism within lipid 
compartments. They are able to select for those compartments 
with certain chemical compositions (Gardner, Winzer et al. 
2009). This paper is of some significance to them. If they 
were to simply choose small samples of each compartment 
and continue to test each sample for distinct autocatalytics, we 
predict that over many generations, one should find a greater 
diversity of independent autocatalysts.  
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