Learning Games using a Single Developmental Neuron

Gul Muhammad Khan! and Julian F. Miller?

INWFP UET Peshawar, Pakistan, gk502 @nwfpuet.edu.pk
2University of York, UK
jfm7 @ohm.york.ac.uk

Abstract

An agent controlled by a single developmental neuron is
trained to play arcade game. Genetic programming is used
to find the DNA of neuron such that it can learn and store the
learned information in the form of development in its archi-
tecture and updates in chemical concentration. The develop-
mental neuron consists of dendrites, axons, and synapses that
can grow, change and die. The structure of this neuron com-
plexify itself at runtime as a result of game scenarios. The
network is tested in arcade game environment of checkers.
The agent has to recognize the patterns of the board and use
this information to learn how to play the game better. The
network is evolved against a professional checker program
for its capability to learn. Input from the board is provided
using sensory neuron through synapses. The developmen-
tal neuron process these signals and send output to the mo-
tor neurons to make a move. The structure of the neuron is
also modified during signal processing. The developmental
neuron successfully defeated the professional minimax based
checker program during evolution by a large margin. We also
tested the agent against some other opponents (not seen dur-
ing evolution) of various levels for its generality and it proves
to outperform them.

Introduction

In this paper we present the idea of developmental neuron
capable of learning and adaptation. We have adopted the
view that the intelligent behaviour of human being is the
consequence of the special DNA. It is the DNA that is re-
sponsible for development of human body and brain. DNA
of humans are different from other organisms that is why hu-
man can interact with each others. We beleive if we some-
how manage to identify the functionality of human DNA and
provide it with a neuron like structure we will be able to pro-
duce intelligent behaviour. Learning in brain is the conse-
quence of biological development thus if we somehow man-
age to identify the rules for development we would be able
to produce a learning system. DNA does not in itself encode
learned information. Recent results demonstrated that even a
single neuron has the capability of learning and adaptation as
evident from the experimental results on snail aplysia (Kan-
del et al. (2000)). We have used Cartesian Genetic Program-
ming (CGP) to develop a neuron having branching structure

(Miller and Thomson (2000)). CGP represent the genotype
(DNA) inside neuron responsible for development and sig-
nal processing. We evolved genotypes that encode programs
that when executed gives rise to a neuron with developmen-
tal structure that can play checkers at higher level. The de-
velopmental and signalling functions are distributed at var-
ious segments (soma, axon, dendrite) inside neuron similar
to biology (Zubler and Douglas (2009)).

We have produced an artificial agent that used this de-
velopmental neuron as its computational system. The agent
receive information from checkers board using sensory neu-
rons. Sensory neuron has a number of axonal branches that
are distributed in the vicinity of CGP neuron and provide
signal to them by making synapse. Synaptic transformation
of signal is done using a CGP program similar to the one in-
side DNA of CGP neuron. CGP neuron recieves the external
information in the form of its dendrite branches potential up-
dates. This signal is then processed by CGP neuron using its
DNA and a decision signal is transferred in forward direction
to the motor neuron having dendrite branches distributed in
the vicinity of CGP neuron.

The genotype inside CGP developmental neuron is a set
of computational functions that are inspired by various as-
pects of biological neurons. Each agent (player) has a geno-
type that grows a computational neural structure (pheno-
type). The initial genotype that gives rise to the dynamic
neural structure is obtained through evolution. As the num-
ber of evolutionary generations increases the genotypes de-
velop structure that allow the players to play checkers in-
creasingly well.

We have used an indirect encoding scheme in which the
rules of network (CGP Neuron) are evolved instead the net-
work directly. When we run these evolved programs they
can adjust the network indefinitely. This allows our network
to learn while it develops during its lifetime. The network
begins as small randomly defined structure of neuron with
dendrites and axosynapses. The job of evolution is to come
up with genotypes that encode programs that when executed
develop into mature neural structures that learn through en-
vironmental interaction and continued development. So the

Proc. of the Alife XII Conference, Odense, Denmark, 2010

634

complexity of the evolved programs is independant of the
complexity of the task. The network continue to develop and
complexify itself based on the environmental conditions.

A number of indirect methods are used in ANNs that
evolve the rules for development of the network. ANN al-
though inspired by biological nervous system has only few
notions of biological brain. Here we have extended the
view and identified a number of other important features
that need to be added to individual neuron structure. These
features prove to be extremly important for learning and
memory. Memory and learning in brain is caused by many
other mechanisms. Synaptic weights are only responsible
for extremely short term memory (Kleim et al. (1998)), long
term memory is stored in the structure of the neuron (Terje
(2003)). The network presented here is an inspiration of bi-
ology, not the implementation of biology.

We have evolved the genetic programs inside CGP neuron
that develop during the course of the game playing against
a fixed level minimax program that plays checkers. At the
start, the genes of neuron were random so the neuron be-
haviour was not that good during the course of game. As
evolution progresses, the genes started to develop the neuron
from an initial random structure such that it can understand
the pattern of the board and use this information to make
various intelligent moves such that it can beat a human intel-
ligent based computer program. The opponent make moves
based on the intelligence of humans who developed the pro-
gram whereas the CGP developmental neuron evolved the
inteligent genes that can cause a developmental neural struc-
ture that is capable of understanding the pattern of the board
and play a move. The agent with a single neuron make a
number of intelligent moves before it beat the opponent.
These results prove that it is possible to evolve the genes
that can produce networks capable of learning and intelli-
gent decision making. To date, not a single developmental
system proved to be capable of learning behaviour. This is
the first time in the history of computational evolution that
learning genes are evolved. The neuron structure continue to
develop and change during the game. The results presented
in paper clearly demonstrate that the learning capability of
the agents improves over the course of evolution.

Cartesian Genetic Programming (CGP)

CGP is a well established and effective form of Genetic Pro-
gramming. It represents programs by directed acyclic graphs
(Miller and Thomson (2000)). The genotype is a fixed length
list of integers, which encode the function of nodes and the
connections of a directed graph. Nodes can take their in-
puts from either the output of any previous node or from a
program input (terminal). The phenotype is obtained by fol-
lowing the connected nodes from the program outputs to the
inputs. We have used function nodes that are variants of bi-
nary if-statements known as 2 to 1 multiplexers (Miller and
Thomson (2000)). Multiplexers can be considered as atomic

in nature as they can be used to represent any logic function
(Miller and Thomson (2000)).

In CGP an evolutionary strategy of the form 1 + A, with A
set to 4 is often used (Miller and Thomson (2000)). The par-
ent, or elite, is preserved unaltered, whilst the offspring are
generated by mutation of the parent. If two or more chromo-
somes achieve the highest fitness then newest (genetically)
is always chosen.

Developmental Models of Neural Networks

A number of developmental techniques are introduced to
capture the learning capabilities by having time dependent
morphologies. Nolfi et al presented a model in which the
genotype-phenotype mapping (i.e. ontogeny) takes place
during the individual’s lifetime and is influenced both by
the genotype and by the external environment (Nolfi et al.
(1994)).

Cangelosi proposed a related neural development model,
which starts with a single cell undergoing a process of cell
division and migration until a neural network is developed
(Cangelosi et al. (1994)). The rules for cell division and
migration is specified in genotype, for a related approach
see (Gruau (1994)).

Rust and Adams devised a developmental model coupled
with a genetic algorithm to evolve parameters that grow into
artificial neurons with biologically-realistic morphologies.
They also investigated activity dependent mechanisms so
that neural activity would influence growing morphologies
(Rust et al. (1997)).

Federici presented an indirect encoding scheme for de-
velopment of a neuro-controller (Federici (2005)). The
adaptive rules used were based on the correlation between
post-synaptic electric activity and the local concentration of
synaptic activity and refractory chemicals.

Roggen et al. devised a hardware cellular model of devel-
opmental spiking ANNs (Roggen et al. (2007)). Each cell
can hold one of two types of fixed input weight neurons, ex-
citatory or inhibitory each with one of 5 fixed possible con-
nection arrangements to neighbouring neurons. In addition
each neuron has a fixed weight external connection. The
neuron integrates the weighted input signals and when it ex-
ceeds a certain membrane threshold it fires. This is followed
by a short refractory period. They have a leakage which
decrements membrane potentials over time.

In almost all previous work the internal functions of neu-
rons were either fixed or only parameters were evolved.
Connections between neurons are simple wires instead of
complicated synaptic process. The model we propose is in-
spired by the characteristics of real neurons.

Key features and biological basis for the model

Features of biological neural systems that we think are im-
portant to include in our model(Cartesian Genetic Program-
ming Developmental Neuron (CGPDN)) are synaptic trans-

Proc. of the Alife XII Conference, Odense, Denmark, 2010

635

mission, and synaptic and developmental plasticity. Sig-
nalling between biological neurons happens largely through
synaptic transmission, where an action potential in the pre-
synaptic neuron triggers a short lasting response in the post-
synaptic neuron (Shepherd (1990)). In our model signals
received by a neuron through its dendrites are processed and
a decision is taken whether to fire an action potential or not.

Neurons in biological systems are in constant state of
change, their internal processes and morphology change all
the time based on the environmental signals. The develop-
ment process of the brain is strongly affected by external
environmental signals. This phenomenon is called Develop-
mental Plasticity. Developmental plasticity usually occurs in
the form of synaptic pruning (Van Ooyen and Pelt (1994)).
This process eliminates weaker synaptic contacts, but pre-
serves and strengthens stronger connections. More common
experiences, which generate similar sensory inputs, deter-
mine which connections to keep and which to prune. More
frequently activated connections are preserved. Neuronal
death occurs through the process of apoptosis, in which in-
active neurons become damaged and die. This plasticity en-
ables the brain to adapt to its environment.

A form of developmental plasticity is incorporated in our
model, branches can be pruned, and new branches can be
formed. This process is under the control of a ‘life cy-
cle’ chromosome (described in detail in section 6) which
determines whether new branches should be produced or
branches need to be pruned. Every time a branch is active,
a life cycle program is run to establish whether the branch
should be removed or should continue to take part in pro-
cessing, or whether a new daughter branch should be intro-
duced into the network.

Starting from a randomly connected network, we allow
branches to navigate (Move from one grid square to other,
make new connections) in the environment, according to the
evolutionary rules. An initial random connectivity pattern is
used to avoid evolution spending extra time in finding con-
nections in the early phase of neural development.

Changes in the dendrite branch weight are analogous to
the amplifications of a signal along the dendrite branch,
whereas changes in the axon branch (or axo-synaptic)
weight are analogous to changes at the pre-synaptic level
and post-synaptic level (at synapse). Inclusion of a soma
weight is justified by the observation that a fixed stimulus
generates different responses in different neurones.

Through the introduction of a ’life cycle’ chromosome,
we have also incorporated developmental plasticity in our
model. The branches can self-prune and can produce new
branches to evolve an optimized network that depends on
the complexity of the problem (Van Ooyen and Pelt (1994)).

The CGP Neuron

This section describes in detail the structure and processing
inside the CGP Neuron and the way inputs and outputs are

interfaced with it.

The CGP Neuron is placed at a random location in a two
dimensional spatial grid (as shown in figure 1). It is initially
allocated a random number of dendrites, dendrite branches,
one axon and a random number of axon branches. Neurons
receive information through dendrite branches, and transfer
information through axon branches to neighbouring dendrite
branches. The branches may grow or shrink and move from
one grid point to another. They can produce new branches
and can disappear. Axon branches transfer information only
to dendrite branches in their proximity. Electrical potential
is used for internal processing of neurons and communica-
tion between neuron and is represented by an integer.

Health, Resistance, Weight and Statefactor

Four variables are incorporated into the CGP Neuron, repre-
senting either fundamental properties of the neuron (health,
resistance, weight) or as an aid to computational efficiency
(statefactor). The values of these variables are adjusted by
the CGP programs. The health variable is used to govern
replication and/or death of dendritic and axonal connections.
The resistance variable controls growth and/or shrinkage of
dendrites and axons. The weight is used in calculating the
potentials in the network. Each soma has only two vari-
ables: health and weight. The statefactor is used as a pa-
rameter to reduce computational burden, by keeping neuron
and branches inactive for a number of cycles. Only when
the statefactor is zero are the neuron and branches are con-
sidered to be active and their corresponding program is run.
Statefactor is affected indirectly by CGP programs.

Inputs, Outputs and Information Processing

The signal is transferred to and taken from this neuron us-
ing virtual axon and dendrite branches by making synaptic
connections.

The signal from the environment is applied to CGP neu-
ron using virtual input axo-synaptic connections. There are
also virtual output dendrite branches used as the output of
the system. The virtual axo-synaptic branches are allowed
to not only transfer signals to the dendrite branches of pro-
cessing neuron (CGP Neuron) but also to the output virtual
dendrite branches which is the output of the system. The
CGP Neuron transfers signals to the virtual output dendrite
branches using the program encoded in the axo-synaptic
chromosome.

Information processing in the CGP Neuron starts by se-
lecting the list of dendrites and running the electrical den-
drite branch program. The updated signals from dendrites
are averaged and applied to the soma program along with
the soma potential. The soma program is executed to get
the final value of soma potential, which decides whether a
neuron should fire an action potential or not. If soma fires,
an action potential is transferred in forward direction using
axo-synaptic branch programs.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

636

axon branch
from other
neuron

® " dendrite branch
from other
neuron

.
o .
o %o,
.
. o %
§ n e
. . .
.
. \ |
.
External Input
External output

Figure 1: On the top left a grid is shown containing a single
neuron. The rest of the figure is an exploded view of the
neuron is given. Electrical processing parts containing den-
drite (D), soma (S) and axo-synapse branch (AS) is shown
as part of neuron. Developmental programs responsible for
the ’life-cycle’ of neural components (shown in grey) are
also shown. They are dendrite branches (DBL), soma (SL)
and axo-synaptic branches (ASL). The weight processing
(WP) block shown is used to adjusts synaptic and dendritic
weights.

Functionality of CGP Neuron

Neural functionality is divided into three major categories:
electrical processing, life cycle and weight processing.
These categories are described in detail below.

Electrical Processing

The electrical processing part is responsible for signal
processing inside neuron and communication between neu-
rons. It consists of dendrite branch, soma, and axo-synaptic
branch electrical chromosomes.

The dendrite program D, handles the interaction of den-
drite branches belonging to a dendrite. It take active dendrite
branch potentials and soma potential as input and updates
their values. The Statefactor is decreased if the update in
potential is large and vice versa. If any of the branches are
active (has its statefactor equal to zero), their life cycle pro-
gram (DBL) is run, otherwise D continues processing the
other dendrites.

The soma program S, determines the final value of soma
potential after receiving signals from all the dendrites. The
processed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If it fires, it is kept
inactive (refractory period) for a few cycles by changing its
statefactor, the soma life cycle chromosome (SL) is run, and
the firing potential is sent to the other neurons by running the
AS programs in axon branches. AS updates neighbouring
dendrite branch potentials and the axo-synaptic potential.
The statefactor of the axosynaptic branch is also updated.
If the axo-synaptic branch is active its life cycle program
(ASL) is executed.

After this the weight processing program (WP) is run
which updates the Weights of neighbouring (branches shar-
ing same grid square) branches.

Life Cycle of Neuron

This part is responsible for replication, death, growth and
migration of neurite branches. It consists of three life cy-
cle chromosomes responsible for the neurites development.
The two branch chromosomes update Resistance and Health
of the branch. Change in Resistance of a neurite branch is
used to decide whether it will grow, shrink, or stay at its cur-
rent location. The updated value of neurite branch Health
decides whether to produce offspring, to die, or remain as it
was with an updated Health value. If the updated Health is
above a certain threshold it is allowed to produce offspring
and if below certain threshold, it is removed from the neu-
rite. Producing offspring results in a new branch at the same
grid square connected to the same neurite (axon or dendrite).
The soma life cycle chromosome produces updated values of
Health and Weight of the soma as output.

The Game of Checkers

Throughout the history of Al research, building computer
programs that play games has been considered a worthwhile
objective. Shannon developed the idea of using a game tree
of a certain depth and advocated using a board evaluation
function (Shannon (1950)) that allocates a numerical score
according to how good a board position is for a player. The
method for determining the best moves from these is called
minimax (Dimand and Dimand (1996)). Samuel used this
in his seminal paper on computer checkers (Samuel (1959))
in which he refined a board evaluation function. The cur-
rent world champion at checkers is a computer program
called Chinook (Schaeffer (1996)), which uses deep mini-
max search, a huge database of end game positions and a
handcrafted board evaluation function based on human ex-
pertise.

More recently, board evaluations functions for various
games including Checkers have been obtained through Arti-
ficial Neural Networks (ANNs) and often evolutionary tech-
niques have been used to adjust the weights (Chellapilla and
Fogel (2001)).

Although the history of research in computers playing
games is full of highly effective methods (e.g. minimax,
board evaluation function), it is highly arguable that human
beings use such methods. Typically they consider relatively
few potential board positions and evaluate the favourability
of these boards in a highly intuitive and heuristic manner.
They usually learn during a game, indeed this is how, gener-
ally, humans learn to be good at any game. So the question
arises: How is this possible? In our work we are interested in
how an ability to learn can arise and be encoded in a geno-
type that when executed gives rise to a neural structure that
can play a game well.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

637

Experimental Setup

The experiment is organized such that an agent is provided
with CGPDN as its computational network. It is allowed to
play against a minimax based checker program (MCP). The
initial population of five agents, each starting with a small
randomly generated initial network and randomly generated
genotypes. The genotype corresponding to the agent with
the highest fitness at the end of the game is selected as the
parent for the new population. Four offspring formed by mu-
tating the parent are created. Any learning behaviour that is
acquired by an agent is obtained through the interaction and
repeated running of program encoded by the seven chromo-
somes within the game scenario.

The MCP always plays the first move. The updated board
is then applied to an agent’s CGPDN. The potentials repre-
senting the state of the board are applied to CGPDN using
the axo-synapse(AS) chromosome. The agent CGPDN is
run which decide about its move. The game continues until
it is stopped. It is stopped if all its or opponent players are
taken, or if the agent or its opponent can not move anymore,
or if the allotted number of moves allowed for the game have
been taken.

Inputs and outputs of the System

Input is in the form of board values, which is an array of 32
elements, with each representing a playable board square.
Each of the 32 inputs represents one of the following five
different values depending on what is on the square of the
board (represented by I). Zero means empty square. [=
M = 232 — 1 means a king, (3/4)M means a piece, (1/2)M
an opposing piece and (1/4)M an opposing king.

The board inputs are applied in pairs to all the sixteen lo-
cations in the 4x4 CGPDN grid (i.e. two input axo-synapse
branches in every grid square, one axo-synapse branch for
each playable position) as the number of playable board po-
sitions are 32 as shown in figure 2. Figure 2 shows how
the CGPDN is interfaced with the game board, input axo-
synapse branches are allocated for each playable board posi-
tion. These inputs run programs encoded in the axo-synapse
electrical chromosome to provide input into CGPDN (i.e.
the axo-synapse CGP updates the potential of neighbouring
dendrite branches).

Input potentials of the two board positions and the neigh-
bouring dendrite branches are applied to the axo-synapse
chromosome. This chromosome produces the updated val-
ues of the dendrite branches in that particular CGPDN grid
square. In each CGPDN grid square there are two branches
for two board positions. The axo-synapse chromosome is
run for each square one by one, starting from square one
and finishing at sixteenth.

Output is in two forms, one of the outputs is used to select
the piece to move, and second is used to decide where that
piece should move. Each piece on the board has an output
dendrite branch in the CGPDN grid. All pieces are assigned

Key:
Dendnite —

Dendrite branch

Soma @
Axon —

CaN

Axo-synaptic branch

Luput age-synaptic branch ~ —

AS AS

\\\ \ Axo-synapse Electrical CGP @

Figure 2: Interfacing CGPDN with Checker board. Four

board positions are interfaced with the CGPDN such that
board positions are applied in pair per square of CGPDN.

a unique ID, representing the CGPDN grid square where its
branch is located. So the twelve pieces of each player are
located at the first twelve grid squares. The player can only
see its pieces, while processing a move and vice versa. Also
the location of output dendrite branch does not change when
a piece is moved, the ID of the piece represent the branch
location not the piece location. Each of these branches has a
potential, which is updated during CGPDN processing. The
values of potentials determine the possibility of a piece to
move, the piece that has the highest potential will be the one
that is moved, however if any pieces are in a position to jump
then the piece with the highest potential of those will move.
In addition, there are also five output dendrite branches dis-
tributed at random locations in the CGPDN grid. The aver-
age value of these branch potentials determine the direction
of movement for the piece. Whenever a piece is removed its
dendrite branch is removed from the CGPDN grid.

CGP Developmental Neuron (CGPDN) Setup

The experiment parameters are arranged as follows. Each
player CGPDN has a neuron with branches located in a 4x4
grid. Maximum number of dendrites is 5. Maximum num-
ber of dendrite are 200 and axon branches is 50. Maximum
branch statefactor is 7. Maximum soma statefactor is 3.
Mutation rate is 2%. Maximum number of nodes per chro-
mosome is 200. Maximum number of moves is 20 for each
player.

Fitness Calculation

The fitness of each agent is calculated at the end of the game
using the following equation:
Fitness = A + QOO(KP — Ko) + IOO(MP — Mo) + Ny,
Where K p represents the number of kings, and Mp rep-
resents number of men (normal pieces) of the player. Ko
and Mo represent the number of kings and men of the op-
posing player. Nj; represents the total number of moves

Proc. of the Alife XII Conference, Odense, Denmark, 2010

638

400}
300
200

o 200 400 600 800 1000 1200 1400 1600

Number of Generations

Figure 3: Fitness of CGPDN based player against MCP

played. A is 1000 for a win, and zero for a draw. To avoid
spending much computational time assessing the abilities of
poor game playing agents we have chosen a maximum num-
ber of moves. If this number of moves is reached before
either of the agents win the game, then A =0, and the num-
ber of pieces and type of pieces decide the fitness value of
the agent.

Results and Analysis

We have evolved agents against MCP in a number of evo-
lutionary runs for 1500 generations and plotted it in figure
3. From the fitness graph, it is evident that the agent plays
poorly at the early stage of evolution, but as the evolution
progresses, the agent starts playing increasingly better and
after 1250 generations, it begins to beat the opponent by
three and four pieces margin. MCP is using minimax at ply
level of 5. Agent plays with different strategy every time and
finally manages to beat the opponent. It is worth mentioning
here that the agent does not have any clue of what it is doing.
It just receives signals from the board and produce moves
accordingly, but as evolution progresses, the agent begins to
understand the board and plays better. This is evident from
the fitness graph shown in figure 3. Keeping in view that
the agent is using a single neuron as a computational sys-
tem and still manages to beat a program based on human
(having trillion of neurons) intelligence is a big achievement
demonstrated by any learning developmental system to date.
Table 1 shows a game played between the well evolved agent
and MCP. This is presented to demonstrate the level of play
that the two players play. Figure 5 shows various stages of
the game along with the corresponding neuron structure up-
dated as a result of game scenario. Figure 4 shows the vari-
ation in the number of axon and dendrite branches of the
CGP neuron during the game. Table 1 and figure 5 shows
the complete game, the game start with black (MCP) mak-

Black Move | White Move
B112-15 W221-17
B310-13 W417-10
B55-14 W6 23 -20
B71-5 W8 25-21
B914-19 | W1029-25
B115-10 | W1220-16
B1310-13 | W14 28-23
B1519-28 | W1632-23
B1713-17 | W1816-12
B197-16 | W2023-19
B2115-20 | W2224-15
B2311-20 | W24 22-18
B258-12 | W2626-22
B2717-26 | W28 30 -21
B299-13 W3018-9
B312-5 W329-2
W332-11
B3420-23 | W3527-20
B3616-23 | W3722-18
B3812-16 | W3911-14
B4016-20 | W41 19-15

Table 1: The first 41 moves of a game between a high
evolved player (white) against MCP(black)

ing the first move by forwarding its piece from square 12 to
15. The updated board is applied as input to the CGPDN
causing white(CGPDN) to forward a piece from square 21
to 17 as a result of signal received from CGPDN to motor
neuron. Motor neuron receive signal using virtual dendrite
branches distributed in the CGPDN Grid. Initially neuron
has a small branching structure as evident from the first neu-
ron image in figure 5 (Row-2, Column-1). Mutual exchange
of pieces occur at various stages of the game and the neu-
ral branching structure continue to develop. The important
break through occurs when black make a blunder at move-
31 causing white to not only take two black pieces in one
move but also becoming a king so that it can move both in
forward and backward direction. Figure 5 show the move on
the third row and last column. At this stage the CGPDN has
the maximum dendrite branching structure so it can sense
the signal from the board through its branches and act ac-
cordingly as evident from figure 5 and figure 4. The game
continue until the aloted number of moves (40) are taken
with white (CGPDN) having one king and a piece advan-
tage over black(MCP).

Generality

In order to test the generalization property of the agent, we
have conducted a number of experiments by allowing the
agent to play against five different opponents with various

Proc. of the Alife XII Conference, Odense, Denmark, 2010

639

HEEERE g T

EE AR
AR RRRR RN

RN
AR RRRR AR R

Figure 5: Various move played by CGP Neuron based agent and MCP with Agent playing white and MCP Black. Figure also
shows the variation in neural structure during the game at various stages

playing levels. The neuron inside the agent starts with a ran-
dom branching structure with the evolved genotype and con-
tinues to develop during the game. The agent was playing

Game Winning Margin Level of Number of against completely new opponents that he has never played
Number | of CGPDN Agent | opponent | Moves to win before during the course of evolution. Opponent’s level of
1 2 MEN and 1 King 50 76 play is evident by the number of generations for which it

2 2 MAN and 1 King 100 83 is evolved. It beats the 50th generation agent by one King

3 1 King 1000 111 and two Men(normal peices) within 76 moves. An agent

4 1 MAN and 1 King 1200 120 evolved for 100 generations also by one King and two Men

5 lost by 1King 1300 359 but in 83 moves, the 1000th generation agent by one King
and 4Men in 111 moves and finally the 1200th generation by one Man

Table 2: Results of Evolved agent against various opponents
not seen during evolution

and a King in 120 moves. In final case, the agent lost the
game to a 1300 generations evolved player by one King and
4 Men in 59 Moves. It is worth mentioning that the agent
was trained (evolved) to play forty moves. It never played
a game beyond forty moves during evolution. From the re-

Proc. of the Alife XII Conference, Odense, Denmark, 2010

640

1801 Number of Dendrite Branches
160
140
1201
100

8o

60|

a0
201

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 4: Variations in the number of Dendrite and Axon
branches during the game

Number of Axon Branches

sults shown in table 2 it is evident that as the level of play of
the opponent increases, the winning margin decreases, thus
demonstrating clearly that we are able to obtain a DNA using
CGP such that when used inside neuron produce a structure
that can play game intelligently.

Conclusion

We have investigated the evolution of checkers playing
agents that are controlled by a single developmental neu-
ron. The development and signal processing inside neuron is
controlled by a number of CGP programs working as DNA
of the agent. The branching structure of neuron develops
during the course of game. The agent demonstrated that it
can play intelligently and beat a human intelligence based
agent by a large margin. We have also tested a single neuron
based agent for its generality. It beated the low level players
with big margins in lesser time and tends to have problems
beating high level players. From the results, it appears that
we have successfully evolved CGP programs that encode an
ability to learn "how to play’ checkers. In the future, we are
planning to run the programs for longer, and against high
level professional checkers agents to have more experience.

References
Cangelosi, A., Nolfi, S., and Parisi, D. (1994). Cell divi-
sion and migration in a *genotype’ for neural networks.
Network-Computation in Neural Systems, 5:497-515.

Chellapilla, K. and Fogel, D. B. (2001). Evolving an expert
checkers playing program without using human exper-
tise. In IEEE Trans. on Evolutionary Computation, vol-
ume 5, pages 422-428.

Dimand, R. W. and Dimand, M. A. (1996). A history of
game theory: From the beginnings to 1945. Rout-
ledge,Urbana, 1.

Federici, D. (2005). Evolving developing spiking neural net-
works. In Proceedings of CEC 2005 IEEE Congress on
Evolutionary Computation, pages 543-550.

Gruau, F. (1994). Automatic definition of modular neural
networks. Adaptive Behaviour, 3:151-183.

Kandel, E. R., Schwartz, J. H., and Jessell, T. (2000). Prin-
ciples of Neural Science, 4rth Edition. McGraw-Hill.

Kleim, J., Napper, R., Swain, R., Armstrong, K., Jones, T.,
and Greenough, W. (1998). Selective synaptic plastic-
ity in the cerebellar cortex of the rat following complex
motor learning. Neurobiol. Learn. Mem., 69:274-289.

Miller, J. F. and Thomson, P. (2000). Cartesian genetic pro-
gramming. In Proc. of the 3rd European Conf. on Ge-
netic Programming, volume 1802, pages 121-132.

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic
plasticity in evolving neural networks. In Proc. Int.
Conf. from perception to action. IEEE Press.

Roggen, D., Federici, D., and Floreano, D. (2007). Evo-
Iutionary morphogenesis for multi-cellular systems.
Journal of Genetic Programming and Evolvable Ma-

chines, 8:61-96.

Rust, A. G., Adams, R., George, S., and Bolouri, H. (1997).
Activity-based pruning in developmental artificial neu-
ral networks. In Proc. of the European Conf. on Artifi-
cial Life (ECAL’97), pages 224-233. MIT Press.

Samuel, A. (1959). Some studies in machine learning using
the game of checkers. IBM J. Res. Dev., 3(3):210-219.

Schaeffer, J. (1996). One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer, Berlin.

Shannon, C. (1950). Programming a computer for playing
chess. Phil. Mag., 41:256-275.

Shepherd, G. (1990). The synaptic organization of the brain.
Oxford Press.

Terje, L. (2003). The discovery of long-term potentiation.
Philos Trans R Soc Lond B Biol Sci, 358(1432):617—
20.

Van Ooyen, A. and Pelt, J. (1994). Activity-dependent out-
growth of neurons and overshoot phenomena in devel-

oping neural networks. Journal of Theoretical Biology,
167:27-43.

Zubler, F. and Douglas, R. (2009). A framework for mod-
eling the growth and development of neurons and net-
works. Frontiers in Computational Neuroscience, 3.

Proc. of the Alife XII Conference, Odense, Denmark, 2010

641

