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Abstract 
Simple distributed strategies that modify the behaviour of 
selfish individuals in a manner that enhances cooperation or 
global efficiency have proved difficult to identify. We consider 
a network of selfish agents who each optimise their individual 
utilities by coordinating (or anti-coordinating) with their 
neighbours, to maximise the pay-offs from randomly weighted 
pair-wise games. In general, agents will opt for the behaviour 
that is the best compromise (for them) of the many conflicting 
constraints created by their neighbours, but the attractors of the 
system as a whole will not maximise total utility. We then 
consider agents that act as 'creatures of habit' by increasing 
their preference to coordinate (anti-coordinate) with whichever 
neighbours they are coordinated (anti-coordinated) with at the 
present moment. These preferences change slowly while the 
system is repeatedly perturbed such that it settles to many 
different local attractors. We find that under these conditions, 
with each perturbation there is a progressively higher chance of 
the system settling to a configuration with high total utility. 
Eventually, only one attractor remains, and that attractor is very 
likely to maximise (or almost maximise) global utility. This 
counterintutitve result can be understood using theory from 
computational neuroscience; we show that this simple form of 
habituation is equivalent to Hebbian learning, and the improved 
optimisation of global utility that is observed results from well-
known generalisation capabilities of associative memory acting 
at the network scale. This causes the system of selfish agents, 
each acting individually but habitually, to collectively identify 
configurations that maximise total utility.  

Selfish Agents and Total Utility 
This paper investigates the effect of a simple distributed 
strategy for increasing total utility in systems of selfishly 
optimising individuals. The broader topic concerns many 
different types of systems. For example, in technological 
systems, it is often convenient or necessary to devolve control 
to numerous autonomous components or agents that each, in a 
fairly simple manner, acts to optimise a global performance 
criterion: e.g. communications routing agents act to minimise 
calls dropped, or processing nodes in a grid computing system 
each act to maximise the number of jobs processed (1,2). 
However, since each component in the network acts 
individually, i.e., using only local information, constraints 
between individuals can remain unsatisfied, resulting in 

poorly optimised global performance. In an engineered system 
one could, in principle, mandate that all nodes act in accord 
with the globally optimal configuration of behaviours 
(assuming one knew what that was) – but this would defeat 
the scalability and robustness aims of complex adaptive 
systems. The question for engineered complex adaptive 
systems then, is the question of how to cause simple 
autonomous agents to act ‘smarter’ in a fully distributed 
manner such that they better satisfy constraints between 
agents and thereby better optimise global performance.  

Meanwhile, in evolutionary biology it appears that in 
certain circumstances symbiotic species have formed 
collaborations that are adaptive at a higher level of 
organisation (3), but it has been difficult to integrate this 
perspective with the assumption that under natural selection 
such collaborations must be driven by the selfish interests of 
the organisms involved (4,5). In social network studies there 
is increasing interest in adaptive networks (6) where agents in 
a network can alter the structure of the connections in the 
network. Of particular interest is the possibility that by doing 
so they may increase the ability of the system to maintain high 
levels of cooperation (7,8). However, a general understanding 
of how agents on a network modify their interactions with 
others in a way that increases total cooperation is poorly 
understood. In each domain we are, at the broadest level, 
interested in understanding/identifying very simple 
mechanisms that might cause self-interested agents to modify 
their behaviour, or how their behaviours are affected by 
others, in a manner that increases adaptation or efficiency 
either globally or at a higher-level of organisation than the 
individual.  

Taking an agent perspective, the obvious problem is this: If 
it is the case that agents collectively create adaptation that is 
not explained by the default selfish behaviours of individuals, 
then it must be the case that, on at least some occasions, 
agents take decisions that are detrimental to individual 
interests. If this were not the case then there is nothing to be 
explained over and above the selfish actions of individuals. 
But if it is the case, then this runs counter to any reasonable 
definition of a rational selfish agent. In what sense could it be 
self-consistent to suggest that a selfish agent has adopted a 
behaviour that decreased individual utility? One way to make 
sense of this is the possibility that, at the time that the agent 
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takes this action, it appears to them be the best thing for them 
– that the agent is no longer making decisions according to the 
true utility function but some distortion of it that alters their 
perception of the utility of that action. If somehow the 
perception of an agent were distorted in the right way, so that 
the action that it preferred, the one that it thought was best for 
it, was in fact the action that was globally optimal, then a 
rational agent with this distorted set of preferences could 
increase global efficiency even at the cost of personal utility. 
One might assume that this is easier said than done – but in 
this paper we suggest that the reverse is true; it is easier to do 
than to explain how it works. However, the general problem 
and the essence of the strategy we investigate is 
straightforwardly introduced by means of the following 
simple parable. Although this makes the concepts intuitively 
accessible it might tend to cast the model in a narrow 
interpretation – it is, of course, not really a model about 
scientists and their drinking habits, but a general model of 
interacting agents on a network with pair-wise constraints 
between binary behaviours. 

Consider a community of individuals (e.g. researchers) in a 
social network. Each has an intrinsic symmetric compatibility, 
or ‘complementarity’, with every other individual that 
determines the productivity/pay-off of collaborating with 
them. Each evening all researchers attend one of two 
intrinsically equal public houses (or other such collaborative 
projects) initially at random. Individuals must decide which to 
attend based solely on who else attends that venue. Each 
individual seeks to maximise their scientific productivity by 
attending the pub that, on that night, maximises the sum of 
compatibilities with other researchers and minimises 
incompatibilities. Assessing the company they find at any 
moment, individuals therefore (one at a time in random order) 
may choose to switch pubs to maximise their productivity 
according to the locations of others. Since each individual has 
compatibilities and incompatibilities with all other 
individuals, each must choose the pub that offers the best 
compromise of these conflicting interests. Since 
compatibilities are symmetric, the researchers will quickly 
reach a configuration where no-one wants to change pubs (9), 
however, this configuration will not in general be the 
arrangement that is maximal in total productivity, but merely 
a locally optimal configuration.  

This describes the basic behaviour of agents on the 
network. Our aim is to devise a simple individual strategy that 
causes researchers to make better decisions about when to 
change pubs such that total productivity is maximised. This 
will necessarily mean that some researchers, at some moments 
in time, must change pubs even though it decreases their 
individual productivity. 
 Surprisingly, we find that this can be achieved (over many 
evenings) by implementing a very simple rule – each 
individual must develop a preference for drinking with 
whichever other researchers they are drinking with right now. 
As Crosby, Stills and Nash put it “If you can’t be with the one 
you love, honey, love the one you’re with” (10). Since we 
already know the arrangements of researchers will be initially 
random and, most of the time, at best sub-optimal, this seems 
like a counter productive strategy. But, in fact we find that it 

is capable, given enough evenings and slowly developed 
preferences, of causing all researchers to develop preferences 
that cause them to make decisions that maximise total 
productivity reliably every evening. 
 The agents that we model are therefore not wholly selfish 
agents – they sometimes take actions that do not maximise 
individual utility, which is the point of the exercise after all. 
But neither are they overtly cooperative or altruistic agents. 
They are simply habitual selfish agents. In this paper we are 
not directly addressing why it might be that selfish agents act 
as creatures of habit, although we will discuss this briefly. But 
we suggest this type of distorted perception of a true utility 
function, one which agents come to prefer familiarity over 
otherwise obvious opportunities for personal gain, is one 
which does not require any teleological or, certainly, any 
centralised control and is therefore relevant to many domains. 
 In the next two sections we will detail an illustration of this 
strategy and the results we observe. In the Discussion section 
we will outline how this result can be interpreted in terms of 
adaptive network restructuring. Briefly: Initially, interactions 
between agents are governed by a network of intrinsic 
constraints (compatibilities), and latterly they are governed by 
a combination of these intrinsic constraints plus the 
interaction preferences that the agents have developed. The 
new behavioural dynamics of the agents caused by interaction 
preferences can therefore equally be understood as a result of 
changes to connection strengths in the effective interaction 
network. The increased global utility observed can then be 
explained using theory from computational neuroscience. In 
particular, we can understand how the system as a whole 
improves global adaptation via the observation that when each 
agent acts as a creature of habit it changes the effective 
dependencies in the network in a Hebbian manner (11,12). 
This means that through the simple distributed actions of each 
individual agent, the network as a whole behaves in a manner 
that is functionally equivalent to a simple form of learning 
neural network (13). In this case, the network is not being 
trained by an external training set, but instead is ‘learning’ its 
own attractor states, as we will explain. We discuss how a 
separation of the timescales for behaviours on the network and 
behaviours of the network (i.e. changes to network structure) 
is essential for this result.  

Methods 

Default agents 
Our model involves N=100 agents playing two-player games 
on a fully connected network (Table 1). Specifically, for each 
game (i.e. each connection in the network), there is a single 
symmetric payoff matrix, Uij, which defines for agents i and j 
either a coordination game (α=1, β=0) or anti-coordination 
game (α=0, β=1) with equal probability (Table 1).  

Player 2  
A B 

A α,α β,β Player 
1 B β,β α,α 

Table 1: Payoff for (player 1, player 2). 
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Games are played in extensive form, i.e., initially all agents in 
the network are assigned a behaviour at random, and then 
each agent in random order is permitted to update its 
behaviour (to either A or B). Each agent does so according to 
a best response strategy, i.e., to adopt the behaviour (choose a 
pub) that maximises its utility, ui (Eq.1) given the behaviours 
(pub choices) currently adopted by its neighbours: 

€ 

ui ( t ) = Uij (si ( t ),s j ( t ))
j

N

∑           (1) 

where Uij(x,y) is the payoff received by player i when player i 
plays strategy x and player j plays strategy y (according to 
Table 1 above), and sn(t) is the strategy currently played by 
agent n. Behaviours are updated in this manner repeatedly. 
Each agent is involved in many games but can adopt only one 
behaviour at any one time, thus coordinating with one 
neighbour may preclude coordinating with another, and so 
each agent must therefore adopt the behaviour that is the best 
compromise of these constraints. By using a symmetric game, 
Uij=Uji, we can ensure that the system will reach a stable fixed 
point (9), i.e. a configuration where no agent wants to change 
behaviour unilaterally (14). Moreover, this configuration will 
be a local optimum in the total or global utility, G, of the 
system which is simply the sum of individual utilities (9) 
(Eq.2).  

          (2) 

However, in general, the stable configuration reached from an 
arbitrary initial condition will not be globally maximal in total 
utility. If the system is repeatedly perturbed (reassigning 
random behaviours to all agents) at infrequent intervals (here 
every 1000 time steps = one evening), and thereby allowed to 
settle, or relax, to many different local equilibria (on different 
evenings), the behaviour of the system given these default 
agents can be described by the distribution of total utilities 
found at the end of each of these ‘relaxations’ (Fig. 1.c).  

Creatures of habit 
We seek a simple distributed strategy that causes agents to 
make different (hence unselfish) behavioural choices in 
particular contexts in such a manner that configurations of 
higher global utility are attained or high global utility 
configurations are attained with greater reliability (i.e. from a 
greater number of random initial conditions). To this end we 
investigate agents that act as 'creatures of habit' by increasing 
their preference to coordinate with whichever neighbours they 
are coordinated with at the present moment (regardless of 
whether this is presently contributing positively or negatively 
to their utility). Specifically, in addition to the ‘true’ utility 
matrix, Uij, each agent also possesses a ‘preference’ matrix, 
Pij, for each of its connections. These are used to modify the 
behaviour of the agent such that it chooses the behaviour that 
maximises its ‘perceived utility’, pi, (Eq.3), instead of its true 
utility (Eq.2) alone: 

€ 

pi ( t ) = Uij (si (t ),s j (t )) + Pij ( t )(si (t ),s j (t ))[ ]
j

N

∑     (3) 

where Pij is a pay-off matrix that represents an agent’s 
preference for the combination of behaviours si and sj. The 
perceived utility is thus simply the sum of the true utility plus 
the agent’s preferences. Each agent has a separate preference 
pay-off matrix for each other agent. All preference payoff 
matrices are initially set to zero, such that the initial dynamics 
of the agents are as per the default agents. But as the values in 
these matrices change over time they may come to 
collectively overpower the tendency to maximise true utility 
and thereby cause agents to make different decisions about 
which behaviour is best for them to adopt.  

It should be clear that it is possible in principle, with 
knowledge of the globally optimal system configuration, to 
assign values to each of the Pij matrices that will cause agents 
to adopt behaviours that maximise global system utility 
instead of choosing behaviours that maximise individual 
utility and thereby failing to maximise total utility. But our 
question then becomes how to enable agents to develop, via a 
simple distributed strategy (without knowledge of the global 
optimum, of course) such a perception of interactions with 
others that causes them to make these globally optimal 
decisions.  

The strategy we investigate is very simple – we assert that 
each Pij matrix is updated so as to increase the agent’s 
perceived utility at the current moment. Specifically, 
whenever an agent’s behaviour has just been updated 
(whether it changed behaviour or not), with probability rp = 
0.0001 all of its Pij matrices will also be updated. To decide 
how to update each Pij matrix, one of two possibilities is 
considered (chosen at random), either  = Pij(t)+A or = 

Pij(t)-A, where A is the adjustment matrix defined in Table 2. 
If pi(t)_given_  > pi(t)_given_

€ 

Pij  then Pij(t+1)=  else 

Pij(t+1)= 

€ 

Pij . 
 

Player 2  
A B 

A r -r Player 
1 B -r r 

Table 2: adjustment matrix A (r=0.005) 
 

This strategy has the effect of increasing agent i’s 
preference for coordinating or anti-coordinating with agent j 
according to whether it is currently coordinating or anti-
coordinating with agent j, respectively. Note that this 
preference is not sensitive to whether the interaction between 
these two agents is currently contributing positively to the 
utility of agent i; an agent increases its preference for the 
current combination of behaviours irrespective of whether 

. It is thereby simply reinforcing a 

preference for doing more of what it is currently doing with 
respect to coordinating with others (i.e. I’m in the same pub 
with them now, so change my preference so I like being in the 
same pub with them a little more or dislike it less). This is a 
counterintuitive strategy in the sense that it can increase the 
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preference for coordinating with other agents even when Uij 
defines an anti-coordination game, and vice versa. Note that 
this habituation does not alter the independent preference for 
playing behaviour A or B, but instead alters the preference for 
coordinating behaviours with others. 

Results 
The system is run for 1000 relaxations, of 1000 time steps 
each, without habituation (i.e. default agents). Example 
trajectories of total utility for individual relaxations are shown 
in Fig1.a. The total utility at the end point of each relaxation is 
shown in Fig.1.b (first 1000 relaxations). The system is then 
run for 1000 relaxations with habituation (i.e. r=0.0005). As 
the preference utility matrices change over time the 
distribution of local optima found changes (Fig.1.b, 
relaxations 1001-2000). We see in these figures that the 
probability of finding the configurations with high total utility 
increases over time, such that the trajectories of the system 
after habituation (Fig.1.c) find high-utility configurations 

reliably. Histograms of the total utilities found before and 
after habituation are shown in Fig.1.d. 

These results therefore show that habituation of agent 
interactions, created by developing a preference for whatever 
combination of behaviours is currently observed, has the 
effect of causing agents to adopt different behaviours in some 
situations (essentially because the resulting combination of 
behaviours has been experienced more often in the past). 
Specifically, since without habituation agents adopt 
behaviours that maximise their individual (true) utility, so the 
different behaviours adopted with habituation are therefore 
behaviours that (at least temporarily) decrease their true utility 
– otherwise the trajectories would not be different (neutral 
changes are very rare in this system). Over time agents 
therefore come to choose behaviours that decrease their 
individual utility in certain circumstances, but that allow the 
system to ultimately reach states of global utility higher than 
would have been otherwise possible. Accordingly, trajectories 
before and after habitation are different, but more specifically, 
the behavioural choices that agents make after habituation 
increase total system utility and are in this well-defined sense 
more cooperative.

a)     c)  

b)    d)  

 

Fig.1. Behaviour of the system using default (no habituation) and habituating agents. a) Some example trajectories of system 
behaviour before habituation – each curve represents one relaxation (N=100, relaxation length 10N) – vertical axis is the total system utility 
(G, Eq 2); b) utilities of attractor states visited (i.e. end points of curves like those in (a)) without habituation (relaxations 1-1000) and 
during habituation (relaxations 1001-2000, r=0.0005); c) example trajectories after habituation; d) histogram of attractor utilities before 
habituation (relaxations 1-1000) and after habituation (relaxations 2001-3000), showing that after habituation the system reliably finds one 
of the highest total-utility configurations from any initial condition. 
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Results collected for 50 runs (each consisting of 1000 
relaxations before habitation, 1000 relaxations during 
habituation and 1000 relaxations after habituation) show that 
with the current parameters, the global utility of system 
configurations found after habituation is on average in the 93rd 
percentile of global utilities of system configurations found 
before habituation. While this represents a considerable 
increase in the likelihood of finding a high utility system 
configuration, it is clear that with the current learning rate 
(r=0.0005) habituation will not always cause the system to 
ultimately settle at the global optimum. However, it is 
important to note that this is simply due to the learning rate 
used; with a sufficiently low learning rate, after habituation 
the system will only ever find the global optimum utility 
configuration (13,15). 

 Discussion 

Adaptive networks  
 
An agent system where actions are governed by a perceived 
utility (rather than the true utility) is formally equivalent to a 
system where actions are governed by a new network of 
constraints (rather than the original network of constraints) 
(28). Here we have been modelling a system that is fully 
connected with coordination and anti-coordination games 
played on the edges of that network. This is equivalent to a 
weighted network, where edges are weighted by ωij=±1, and 
all games are coordination games (α=1, β=0) with pay-off 
ωijUij. (i.e. each of the table entries in Uij is multiplied by the 
scalar ωij). The structure of the games defined by the pay-off 
matrices is thus converted into the connections of the network 
(with identical pay-off matrices). Further, the addition of a 
preference matrix (restricted to the limited form investigated 
here) is equivalent to an alteration of this weighting; 
specifically, (ωij+kijr)Uij, where r is the learning rate (as 
above) and kij is the number of times agents i and j have been 
coordinated in the past minus the number of times they have 
been anti-coordinated (note that kij will always equal kji, 
ensuring that the connections remain symmetric if they start 
symmetric). Thus, although conceptually contrasting, 
changing the perception of pay-offs for agent i via a 
preference matrix is functionally identical to altering the 
connection strengths between the agents. We chose not to 
introduce the model in these terms, in part because it is 
important to realise that although an agents’ behaviours will 
be governed by the new connections, the effects on global 
‘true’ utility that we are interested in must be measured using 
the original connection strengths (13) (it should be clear that if 
this were not the case it would be trivial for agents to alter 
connections in a manner that would make satisfying 
constraints easier for them and thereby increase total utility). 
Nonetheless, this perspective helps us to connect the current 
work with studies of adaptive networks (6) where agents on a 
network can alter the topology (here, connection strengths) of 
connections in the network. We can thereby understand the 
system we have illustrated to be an example of how agents on 

a network can ‘re-structure’ the network in a manner that 
enhances the resolution of conflicting constraints and thereby 
global efficiency. Other works in this area include that of (7,8) 
where agents on a network, playing a variety of games, re-
wire their links when their utility is low, but keep the local 
topology unchanged if their utility is high. Although there are 
several important technical differences with the current work, 
the basic intuition that agents should alter network topology to 
make themselves happier (or at least, alter it if they are 
unhappy) is common to both. 
 In essence, the form of habituation we model is a very 
simple form of re-structuring; it simply asserts that 
connections between agents increase or decrease in strength in 
a manner that reinforces the current combinations of 
behaviours observed. The effects of this habituation are put 
into context by considering the problem at hand: we are 
dealing with a limited form of global optimisation problem 
(16) in which local optima (and the global optimum) are 
created by the inability to resolve many overlapping low-order 
dependencies (17, 13). When using simple local search on this 
problem (i.e. agents without habituation), there is only a small 
probability of finding configurations with high global utility 
(Fig.1.a and b); however, they are found nonetheless. 
Habituation outcompetes local search, not by finding new 
configurations of absolute higher utility (although this may 
occur in some cases), but instead by progressively increasing 
the probability of finding high utility configurations, until 
only one configuration is ever found (which is very likely to 
be one of high utility). We can therefore view habituation as a 
mechanism that gradually transforms the search space of the 
problem from one with many varied local optima, to one with 
a single (and very likely high utility) optimum, which will 
always be reached; furthermore, it does so via a simple 
distributed strategy. 

Specifically, although it is not immediately obvious from a 
static analysis of the connection matrix which connections 
should be increased and which decreased in order to cause 
selfish agents to solve the problem better, the necessary 
information is naturally revealed by allowing the system to 
repeatedly settle to local optima and reinforcing the 
correlations in behaviours so created. These correlations are 
created by the connections of the original network in an 
indirect manner. For example, a particular constraint may 
often remain unsatisfied in locally optimal configurations 
even though the direct connection defining this constraint 
states that it is just as valuable to satisfy it as any other 
connection. Then if a constraint is often easily satisfied its 
importance is strengthened, if it is equally often satisfied and 
unsatisfied it remains unchanged on average, and when agents 
are on average unable to satisfy it its importance is weakened 
and eventually its sign can be reversed. This causes the system 
to, gradually over time, pay more attention to the connections 
that can be simultaneously satisfied and weaken or soften the 
constraints that cannot be satisfied. One way to understand the 
result of this adaptive constraint relaxation/exaggeration is 
that agents become specialists, i.e. selectively attuned to some 
constraints more than others. That is, whereas the default 
agents are generalists who persist in trying to satisfy all 
constraints whether satisfiable or unsatisfiable, habituating 
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agents, through the self-organisation of the behaviours on the 
network, come to specialise in a manner that ‘for their own 
comfort’ (i.e. for the immediate increase of their perceived 
utility) fits together better with one another but thereby 
actually resolves more of the system constraints in total.  

Self-structuring adaptive networks, neural network 
learning and associative memory 
How this type of adaptive network, with very simple, local 
modification of connections, comes to maximise global utility 
can be explained formally using theory from computational 
neuroscience. Specifically, the behaviour of the network of 
default agents detailed above is identical to the behaviour of 
the discrete Hopfield network (9) (which is just a bit-flip hill-
climber (15)) and when connections between nodes increase 
or decrease in strength in a manner that reinforces the current 
combinations of behaviours this is formally equivalent to 
Hebbian learning (13). Hebb’s rule, in the context of neural 
network learning, is often represented by the slogan neurons 
that fire together wire together, meaning that synaptic 
connections between neurons that have correlated activation 
are strengthened. This learning rule has the effect of 
transforming correlated neural activations into causally linked 
neural activations, which from a dynamical systems 
perspective, has the effect of enlarging the basin of attraction 
for the current activation pattern/system configuration. This 
type of learning can be used to train a recurrent neural 
network to store a given set of training patterns (9) thus 
forming what is known as an ‘associative memory’ of these 
patterns. A network trained with an associative memory then 
has the ability to ‘recall’ the training pattern that is most 
similar to a partially specified or corrupted test pattern. 
 Formally, a common simplified form of Hebb’s rule states 
that the change in a synaptic connection strength ωij is Δωij = 
δsisj where δ>0 is a fixed parameter controlling the learning 
rate and sn is the current activation of the nth neuron. Here by 
changing the pay-off matrix of each individual by kij(t)rUij 
where kij(t) is the correlation of behaviours at time t, we are 
effecting exactly the same changes. Thus the habituating 
agents each modify their perceived utilities in a manner that 
effects Hebbian changes to connection strengths – which they 
must if these preferences are to mean that this behaviour 
combination is preferred more. This equivalence at the agent 
level has the consequence that the system of agents as a whole 
implements an associative memory. Since this is a self-
organised network, not a network trained by some external 
experimenter, this is not an associative memory of any 
externally imposed training patterns. Rather this is an 
associative memory of the configuration patterns that are 
commonly experienced under the networks intrinsic dynamics 
– and given the perturbation and relaxation protocol we have 
adopted, which means that the system spends most of its time 
at locally optimal configurations, it is these configurations that 
the associative memory stores. 

From a neural network learning point of view, a network 
that forms a memory of its own attractors is a peculiar idea 
(indeed, the converse is more familiar (18)). Forming an 
associative memory means that a system forms attractors that 

represent particular patterns or state configurations. For a 
network to form an associative memory of its own attractors 
therefore seems redundant; it will be forming attractors that 
represent attractors that it already has. However, in forming an 
associative memory of its own attractors the system will 
nonetheless alter its attractors; it does not alter their positions 
in state configuration space, but it does alter the size of their 
basins of attraction (i.e. the set of initial conditions that lead to 
a given attractor state via local energy minimisation).  

Specifically, the more often a particular state configuration 
is visited the more its basin of attraction will be enlarged and 
the more it will be visited in future, and so on. Because every 
initial condition is in exactly one basin of attraction it must be 
the case that some attractor basins are enlarged at the expense 
of others. Accordingly, attractors that have initially small 
basins of attraction will be visited infrequently, and as the 
basins of other, more commonly visited attractors increase in 
size, so these infrequently visited attractors will decrease. 
Eventually, with continued positive feedback, one attractor 
will out-compete all others, resulting in there being only one 
attractor remaining in the system.  
 But what has this got to do with resolving the constraints 
that were defined in the original connections of the system? 
One might expect, given naïve positive feedback principles, 
that the one remaining attractor would have the mean or 
perhaps modal global utility of the attractor states in the 
original system; but this is not the case (Fig.1.d). In order to 
understand whether the competition between attractors in a 
self-modelling system enlarges attractors with especially high 
total utility or not, we need to understand the relationship 
between attractor basin size and the total utility of their 
attractor states. At first glance it might appear that there is no 
special reason why the largest attractor should be the ‘best’ 
(highest utility) attractor – after all, it is not generally true in 
optimisation problems that the basin of attraction for a locally 
optimal solution is proportional to its quality. But in fact, 
existing theory tells us that this is indeed the case (17) for 
systems that are additively composed of many low-order 
interactions. Specifically, in systems that are built from the 
superposition of many symmetric pair-wise interactions, the 
height (with respect to total utility) of an attractor basin is 
positively related to its width (the size of the basin of 
attraction), and the globally optimal attractor state has the 
largest basin of attraction. One must not conflate, however, 
the idea that the global optimum has the largest basin, with the 
idea that it is a significant proportion of the total configuration 
space and therefore easy to find: In particular, the global 
optimum may be unique, whereas there will generally be 
many more attractors that lead to inferior solutions, and 
importantly, the basins of these sub-optimal attractors will 
collectively occupy much more of the configuration space 
than the basin of the global optimum.    

Given that high utility attractors have larger basins than 
low utility attractors, they are therefore visited more 
frequently and therefore out-compete low utility attractors in 
this self-modelling system. Thus, (in the limit of low learning 
rates such that the system can visit a sufficient sample of 
attractors) we expect that when a dynamical system forms an 
associative memory model of its own utility maximisation 
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behaviour it will produce a ‘model’ with ultimately only one 
attractor, and this attractor will correspond to the globally 
optimal minimisation of constraints between variables in the 
original system (13).  
 This is not an entirely satisfactory conclusion however. It 
implies that the system only fixes on the global optimum 
because the global optimum has already been visited many 
times in the past. But this is not the full story. A final part of 
the puzzle is provided by the well-known ability of Hebbian 
learning to generalise training patterns and create learned 
attractors that represent new combinations of common 
features from the training patterns rather than the training 
patterns per se. In associative memory research the creation of 
such ‘spurious attractors’ is generally considered to be a 
nuisance (18,19), but it in fact represents a simple form of 
generalisation that is important for our results. Producing new 
attractor states that are new combinations of features (sub-
patterns) observed in the training patterns (20) enables the 
globally optimal attractor to be enlarged even though it has 
not yet been visited. Basically, this occurs because when 
Hebbian learning is applied to a training pattern it not only has 
the effect of enlarging the basin of attraction for this pattern, 
but also it enlarges the basin of attraction for all 
configurations in proportion to how many behaviour-pairs 
they share in common. The global optimum is, by definition, 
the configuration that has the most simultaneously satisfied 
constraints, and this ensures that, on average at least, it tends 
to share many behaviour combinations in common with 
locally optimal configurations that have many constraints 
simultaneously satisfied (but not as many as globally 
possible). 

Lastly on this equivalence, it is essential to recognise how 
the separation of the timescales for behaviours on the network 
and behaviours of the network (i.e. changes to network 
structure) influence this result. Getting the timescale of the 
changes to network structure correct is equivalent to the 
problem of setting the learning rate correctly in a neural 
network. If connections are modified too slowly then learning 
is unnecessarily slow. And if learning happens too quickly the 
network will only learn the first local optimum it arrives at, or 
worse, if the learning rate is really high, the system could get 
stuck on some transient configuration that is not even locally 
optimal. More generally, if most learning happens at or near 
random initial conditions then the patterns learnt will be 
similarly random. It is therefore essential that the system is 
allowed to relax to local optima, and that most learning 
therefore happens at local optima, so that the patterns learned 
are better than random. But if the system is not perturbed 
frequently enough or vigorously enough, and consequently 
spends all of its time at one or a few local optima, the system 
will simply learn these attractor configurations and will not 
generalise correctly. 

Limitations and further work 
Why would agents be creatures of habit? In this paper we 
have mandated that (otherwise selfish) agents behave as 
creatures of habit and examined the consequences of this 
simple local mechanism on global system behaviour. But we 

are also interested in the question of whether selfish agents, 
given the opportunity to alter their preferences according to 
their own self-interest, would alter them in a Hebbian/habit 
forming manner. Intuitively, we suggest that this is indeed the 
case – that forming preferences for the status quo is a natural 
strategy for any agent that favours exploitation over 
exploration, as any non-teleological agent must.  

There is some interesting subtlety involved here however. 
If an agent’s perceptions only alter the perceived utility of its 
actions, and not its true utility, then an agent can only assess a 
proposed change in perception as having some real 
consequence for its utility if that change in perception causes 
it to change its behaviours and hence its true utility. Note that 
when the system is at a locally optimal configuration all 
changes to behaviours are deleterious, whereas Hebbian 
changes to preferences never cause a change in behaviour and 
are therefore neutral. This indicates a preference for Hebbian 
changes in a somewhat subtle sense. However, when 
behaviours are discrete (and deterministic) as in the current 
model, most changes to preferences, either Hebbian or non-
Hebbian, will not cause a change in behaviour and will 
therefore be neutral.  

Investigations using alternate behavioural models are 
therefore being developed elsewhere to address this question. 
This relates to work we are developing in the context of co-
evolving species in an ecosystem where species may evolve 
the coefficients of a Lotka-Volterra system (21,22) or evolve 
symbiotic relationships (23). This connects the current work 
with concepts we refer to as ‘social niche construction’ 
(24,25,26,27). 

Altruism in populations of self-interested individuals has 
been well researched (e.g. 29); however, very few previous 
studies investigate games on adaptive networks. Those that do 
(7,8) differ in a number of ways from the current model, in 
that here, we: a) only address one type of game 
(coordination/anti-coordination games), b) play games in 
normal form, and c) only allow strategies to be adopted to a 
best-response strategy, rather than by replication equations. 
  However, despite the novelty of the current model, there 
appears to be an important similarity between this and many 
other game theoretic models (network or otherwise) which 
observe flourishing altruism. Whether they do so by giving 
agents memory of their past games (30), allowing ‘reputation’ 
(31), rewiring links (7,8) or changing link weightings (15), all 
of these models promote altruism by giving the system a 
method of passing information from one game to the next, that 
is not available in the simple, non-altruistic case. This 
information passing effectively forms a distributed system-
level memory, allowing optimisation over multiple games – a 
mechanism that unites these disparate mechanisms under a 
common theme.  

Finally, it should be noted that the Hopfield model is not 
new (9), and its capabilities for Hebbian learning are well 
known (18). However, here we provide a reinterpretation of 
the system, staging it in a generic, game-theoretic network 
scenario. This opens up the possibility of reinterpretation of 
some of the analytically solved variants of the Hopfield model 
(e.g. 32,33). 
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Conclusions 
This paper has investigated the effect of a simple distributed 
strategy for increasing total utility in systems of selfish agents. 
Specifically, habituating selfish agents develop a preference 
for coordinating behaviours with those they are coordinating 
with at the present moment, and henceforth adopt behaviours 
that maximise the sum of true utility and these preferences. 
We show that this causes agents to modify the dynamical 
attractors of the system as a whole in a manner that enlarges 
the basins of attraction for system configurations with high 
total utility. This means that after habituation, agents 
sometimes make decisions about their behaviour that may (at 
least temporarily) decrease their personal utility but that in the 
long run increases (the probability of arriving at 
configurations that maximise) global utility. We show that the 
habituating agents effectively restructure the connections in 
the network in a Hebbian manner and thus through the simple 
distributed actions of each individual agent, the network as a 
whole behaves in a manner that is functionally equivalent to a 
simple form of learning neural network. This network 
improves global adaptation by forming an associative memory 
of locally optimal configurations that, via the inherent 
generalisation properties of associative memory, enlarges the 
basin of attraction of the global optima. This work thereby 
helps us to understand self-organisation in networks of selfish 
agents and very simple processes that subtly deviate selfish 
agents in the direction that maximises global utility without 
overtly prescribing cooperation or using any form of 
centralised control. 
 
Acknowledgments: Alex Penn, Simon Powers and Seth 
Bullock. 
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