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1University of Skövde, Cognition and Interaction Lab, Sweden
2University of West England, Bristol Robotics Lab, UK

Abstract

We present an evolutionary robotics investigation into the
metabolism constrained homeostatic dynamics of a simulated
robot. Unlike existing research that has focused on either en-
ergy or motivation autonomy the robot described here is con-
sidered in terms of energy-motivation autonomy. This stipu-
lation is made according to a requirement of autonomous sys-
tems to spatiotemporally integrate environmental and physi-
ological sensed information. In our experiment, the latter is
generated by a simulated artificial metabolism (a microbial
fuel cell batch) and its integration with the former is deter-
mined by an E-GasNet-active vision interface. The investiga-
tion centres on robot performance in a three-dimensional sim-
ulator on a stereotyped two-resource problem. Motivation-
like states emerge according to periodic dynamics identifi-
able for two viable sensorimotor strategies. Robot adaptivity
is found to be sensitive to experimenter-manipulated devia-
tions from evolved metabolic constraints. Deviations detri-
mentally affect the viability of cognitive (anticipatory) capac-
ities even where constraints are significantly lessened. These
results support the hypothesis that grounding motivationally
autonomous robots is critical to adaptivity and cognition.

Introduction
The pursuit of imbuing robots with levels of autonomy has
resulted in recent emphasis on internal dynamics of robotic
systems as they affect adaptive and cognitive behaviour (cf.
Parisi 2004, Ziemke and Lowe 2009). McFarland (2008) has
identified three core levels of autonomy – energy, motivation
and mental levels and suggests: “Autonomy implies freedom
from outside control. There are three main types of freedom
relevant to robots. One is freedom from outside the control
of energy supply. Most current robots run on batteries that
must be replaced or recharged by people. Self-fuelling ro-
bots would have energy autonomy. Another is freedom of
choice of activity. An automaton lacks such freedom, be-
cause either it follows a strict routine or it is entirely reac-
tive. A robot that has alternative possible activities, and the
freedom to decide which to do, has motivational autonomy.
Thirdly, there is freedom of ‘thought’. A robot that has the
freedom to think up better ways of doing things may be said
to have mental autonomy” (McFarland 2008, p.15).

Naturally, how the robot designer is to seamlessly inte-
grate these levels of autonomy represents another challenge
but inspiration can be derived from biology. A key fea-
ture of biological autonomous systems is homeostatic reg-
ulation. Drawing from Cannon (1915), the importance of
bodily ‘essential’ variables to behavioural dynamics was
identified in an artificial systems context by Ashby (1960).
Ashby’s homeostat produced feedback signals following de-
viation from a pre-set range of the essential variables (EVs).
While Ashby’s notion was deliberately abstract, biological
evidence for the effects of EVs on regulation of behaviour
has recently been found regarding feeding and drinking.
Canabal et al. (2007) discovered that levels of extra cellular
glucose in hypothalamus can impact on neural activity via
slow diffusing nitric oxide (NO) molecules. NO emissions
in glucose-sensitive cells correlate with feeding (cf. Mor-
ley et al., 1999) while ‘osmoreceptor’ cell NO emissions in
hypothalamus correlate with drinking (cf. Yao et al. 2005).

Robot controllers have utilized bio-inspired mechanisms
for ‘brain-body’ interfacing in the areas of: navigation (Var-
gas et al. 2009), foraging (McHale and Husbands 2006),
two-resource problems (Avila-Garcı̀a and Cañamero 2004).
This work has, however, invariably abstracted away details
of the dynamic grounding of brain-body interfacing. Specif-
ically, metabolic dynamics and their imposed behavioural
constraints have been ignored. Instead, emphasis has been
placed on motivation-like states (cf. McFarland and Spier
1997) as a function of abstract internal (essential) variable,
and externally sensed, information. Such states are typically
non-grounded either evolutionarily or metabolically. The re-
sulting homeostatic expression of such robots may, there-
fore, be critically constrained regarding adaptive behaviour
in spatial-temporal realistic environments.

Research into metabolic performance constraints has been
carried out in recent years in the form of microbial fuel
cell (MFC) robotics applications (cf. Melhuish et al. 2006,
Ieropolous et al. 2007). MFCs can provide wheeled robots
with (electrical) energy for driving motors as constrained by
bio-chemical EV dynamics. MFC technology has the ca-
pacity to produce bioelectricity from virtually any unrefined
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renewable biomass (e.g. wastewater sludge, ripe fruit, flies)
using bacteria; thus, when used as the power source for ac-
tuation MFCs equip robots with a degree of energy auton-
omy concerning choice of ‘recharging’ resource. A limita-
tion of artificial metabolism motored robots such as EcoBot
(cf. Melhuish et al. 2006) given the present state of the
art, however, is the energy requirement for actuating motors.
Consequently, the robot may take as long as 15 minutes to
move 15mm. This renders experimentation with new forms
of homeostatic control and performance optimization chal-
lenging. A need is evident for simulations based scenarios
for assessing the potential development of metabolism con-
strained robotic behaviour.

In the rest of this article we will describe an initial inves-
tigation into the dynamics of a robotic system that integrates
two levels of autonomous control – energy-motivation. Two
themes address the influence of simulated metabolic con-
straints on: 1) evolved sensor-motor resource acquiring
strategies, 2) the emergence of affective (‘motivational’) dy-
namics. Spatiotemporal coherence between internal and
sensorimotor domains is evaluated as it renders adaptive
and cognitive behaviour. In the next section we introduce
the components of the energy-motivation autonomous robot
and our methodological approach. The results section evalu-
ates themes 1) and 2) according to a comparative case study
of best evolved controllers. The discussion section includes
reference to present and future work.

Robot Architecture and Methodology
There are three architectural components: 1) a brain-body
interface (E-GasNet) between 2) artificial metabolism (MFC
model), and 3) sensorimotor (active vision) system. Be-
low, each component is described in turn followed by the
methodology used to assess the spatiotemporal coherent in-
tegration of the three components to adaptive behaviour.

Robot Architecture: The E-GasNet
The neurophysiological controller we propose is an exten-
sion of the GasNet (Husbands et al. 1998). The essential
components comprise a standard neural network the activity
of which is modulated by nitric oxide (NO) emissions en-
abling a spatiotemporal dynamic that when embedded in a
wheeled robot tunes network performance to task require-
ments (cf. Smith et al. 2002). Work has been carried out
utilizing GasNets according to evolutionary robotics inves-
tigations on bodily homeostasis (cf. Vargas et al. 2009) and
energy constraints (cf. McHale and Husbands 2006). The
focus, however, has not been on the incorporation of non-
neural bodily states into GasNet ‘nervous system’ activity.

Based on the neuroscientific findings referred to in the
previous section, we propose the E-GasNet (‘Essential Vari-
able Monitoring GasNet’) as a type of GasNet developed
according to an evolutionary robotics approach. The novel
feature it incorporates is the use of EV level sensing nodes

Figure 1: E-GasNet component of the complete energy-motivation
autonomous robot architecture. Nodes: H = hidden, L = left mo-
tor, R = right motor, P = pan, T = tilt, Vi = Visual input, Pr = pan
proprioception, W = water sensitive e-node, S = substrate sensitive
e-node, Vo = MFC voltage input. Grey shaded circles depict poten-
tial e-node gas emissions. Green and blue coloured vertical lines
provided by MFC represent substrate and water levels, respectively.

(for water and metabolizing-substrate) that emit gas con-
tingent on the state of concomitant EVs. We term these
nodes e-nodes. The E-GasNet (fig.1) represents the inter-
face between artificial metabolic EV dynamics and actua-
tors – (left and right) motors and active vision (pan and tilt)
nodes. Depending on topological positioning on the two di-
mensional plane motor nodes in the network are modulated
only by a retinal pan proprioception node and gas modula-
tion – this simplified analysis concerning comparative sen-
sorimotor activity. Pan and tilt nodes are modulated by elec-
tric input and gas. Electric input permits transient retinal im-
age positioning on the camera. The position of nodes on the
plane, the number of e-nodes and the sign and connectivity
are determined by a genetic algorithm or GA (see method-
ology). An E-GasNet consists of four actuator nodes, four
‘hidden’ nodes and a variable number of e-nodes. E-nodes
emit gas modulating the electric activity of neighbouring
nodes (within a genetically specified radius) via affecting
the gain of the output function. Gas emissions are depen-
dent on a genetically determined e-node specific EV thresh-
old. EV values are provided by the MFC dynamics (see next
sub-section). Hidden nodes do not emit gas. Output from
the MFC gates motor wheel activity while an output from a
visual node provides a mean value of all cells on a ‘retina’
which inputs to the network as it pans and tilts across the
camera image. The E-GasNet dynamic is governed by the
same set of difference equations utilized by Husbands et al.
(1998) and, where slightly adapted, Smith et al. (2002). It
is to these papers that the reader is referred for details of
electric output and gas emission dynamics.
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Figure 2: MFC model of system level (electric) energy output dy-
namics. The vertical axis provides output voltage (mV) where 2900
is the discharge level providing energy to the actuators (e.g. mo-
tors), the horizontal axis represents time in arbitrary units.

Robot Architecture: Artificial Metabolism
This component is comprised of the Microbial Fuel Cell
(MFC) model of Montebelli et al. (2010a), designed at a
level of abstraction purpose-made for autonomous robot-
ics investigations. Critical to energy-motivation autonomous
level integration is the charge-discharge electric output dy-
namics that gate motor wheel activation. An example of
this dynamic is illustrated in figure 2 according to a sub-
strate exhaustion cycle. At a threshold of electricity storage
at the MFC capacitor bank (pre-set to 2900mV) energy is
utilized by motors that indirectly contribute to the mainte-
nance of the charge-discharge dynamic, i.e. through feed-
ing/drinking. After a period without substrate, the charge is
not arrived at in spite of periodic rehydration (every 0.2∗104

time units) at the cathode. Re-establishment of an efficient
output dynamic owes to simulated fuel source provision at
1.8 ∗ 104 at the anode. This cycle demonstrates the require-
ment for both water and substrate (EVs) to be replenished
for efficient system level energy to be produced. Reduced
charge rate ensures less energy for the motors.

In the set-up used in our investigation, the robot produces
a pulsing motor behaviour similar to ‘EcoBot’ (cf. Melhuish
et al. 2006). This entails energy being made available to the
motors for a short time window following the point of dis-
charge. Where MFC performance degrades, motor pulses
slow and in turn MFC performance continues to degrade as
resource acquisition capacity is impaired. If the discharge
threshold is not reached, motor output eventually ceases – no
such constraint has been placed on visual sensing at present.
For specific values used in our experimentation and an alter-
native application see Montebelli et al. (2010b).

The E-GasNet is evolved to track the level of the EVs
in the MFC model – the GA may ‘select’ for e-nodes that
‘monitor’ the level of either substrate or water according to
a genetically determined threshold value specific to the par-
ticular node. If the EV level falls below such a node-specific
threshold, gas emission is initiated and linearly increments
to an upper bound; only when EV values are re-established
above threshold (as set by the GA) does the gas level lin-
early dissipate. In this Ashby-like manner, e-node activity

Figure 3: Controller dynamics top-left: retina superimposed on
camera image, top-right: E-GasNet topology – blue circle repre-
sents (inhibitory) gas emission at node 9, bottom-left: E-GasNet
parameters – K is gain level; C1/C2 are gas 1/2, respectively;
Elec is the electric output of each network node; vis is the scalar
input from the retina (here 3*3 units); In is actual visual input, i.e.
above noise threshold ensuring a differentiated node response to
visual input, bottom-right: EV dynamics of the MFC including the
same dynamics as they relate to e-node gas emission thresholds.

serves to anticipate the effect that EV depletion will have
on the ‘life-energy’ output of the MFC providing a mode of
embodied cognition. This occurs since MFC electric output
cycles depend absolutely on efficient regulation of these two
EVs. The e-node gas emission is the means by which body
can interface with sensor-motor activity in order to pre-empt
catastrophic performance degradation.

Robot Architecture: Sensor-Motor Morphology
An E-puck robot simulated in Webots (Cyberbotics Ltd.
– http://www.cyberbotics.com) was used but any simple
wheeled robot may be suitable. Our emphasis is on inte-
gration of sensorimotor capacities with neurophysiological
dynamics. Sensor input consisted of a low dimensional grey-
scaled retinal image superimposed on an e-puck camera im-
age. The ‘retina’ is initialized for each evaluated robot con-
troller in the centre of the camera image but may pan and
tilt through 360 ◦ within the 2D bounds. Pan/tilt values (one
node each) for the retina are modulated through: electric in-
puts from E-GasNet nodes, gas, a pan proprioception node.
This permits a type of active vision similar to Floreano et
al. (2004). A retinal scalar value inputs to GA-determined
nodes in the network. Figure 3 provides a snapshot of the
robot graphical interface for the retinal network (along with
E-GasNet topology/activity and EV dynamics).

The equations that determine the active vision effects on
robot dynamics are as follows: Po(t) = (Cx + Rw/2) −
Cw/2 and Pr(t) = Po(t−1)/(Cw−Rw) where Po(t) = pan
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orientation at time t, Cx = x axis value of the robot camera
image in [0,50], Rw = retina width genetically determined
in [15,25], Cw = camera image width (50 pixels); To(t) =
(Cy + Rh/2) − Ch/2 where To(t) = tilt orientation at time
t, Cy = y axis value of the robot camera image in [0,40],
Rh = retina height genetically determined in [12,20], Ch =
camera image height (40 pixels); Pr(t) = pan proprioception
at time t. Motor wheel output is determined by: Oi(t) =
br∗(α+Pr(t−1)∗(Vi > Vti)∗(Vi−Vti)) where O = wheel
output for node i ∈ {1, 2} at time t, br = ‘burst’ boolean,
α = a constant set at 0.5, V = retina input in [0,1], Vt = a
genetically determined node-specific threshold in [0,0.5].

Methodology: The Two Resource Problem
The energy-motivation autonomous robot was evaluated ac-
cording to a two resource problem (McFarland and Spier
1997) where applicable resources are water and fuel sub-
strate. The literal use of two resources (one of each type)
serves as an initial benchmark control to facilitate identifica-
tion of core principles and homeostatic dynamics. The two
resource paradigm is a class of problem whereby adaptive
sensorimotor activity enables a (quasi) optimal trade-off be-
tween two conflicting EV needs. Spier (1997) studied two-
resource problems on 2D scenarios for agents utilizing an
ethology-based cue-deficit model that states that likelihood
of enacting a ‘motivated’ behaviour in animals is determined
by the product of: 1) external stimuli, 2) related physiologi-
cal need deficit. The realization of such a cue-deficit model
in a 3D world is not obvious particularly if the robot sen-
sors do not provide pre-given information with which to dis-
criminate stimuli or/and implicitly provide information re-
garding stimulus distance/attainability. A stronger measure
of autonomous capabilities is provided by robots remaining
viable over long periods in partially human-known environ-
ments, possibly inhospitable to human habitation. Energy
autonomous robots flexible in their means of refuelling are
critical in this case. Realistic metabolic constraints impact
on sensorimotor capabilities rendering high-level modelling
approaches compromised regarding robot adaptivity to dy-
namic and challenging environments. Situated integration
of internal and external sensing is therefore needed in order
to enable motivational autonomous capabilities.

Evolved E-GasNet interfacing of metabolic and senso-
rimotor activity provides a spatiotemporally and metaboli-
cally situated cue-deficit model apt for 3D world robot per-
formance where resource-specific sensory information con-
cerning distance and type is not explicitly pre-given.

Methodology: An Evolutionary Robotics Approach
100 candidate controllers were evaluated over 50 genera-
tions via the distributed GA used by Husbands et al. (1998).
Each evaluation consisted of a robot making 20 selections
(one per trial) from the 2 available resources. Each trial
is terminated either by successfully reaching a resource

leading to instantaneous related EV replenishment, or if a
resource is not reached by 500 cycles (basic timestep =
64ms). The latter time constraint ensured against ineffi-
cient/arbitrary approach behaviours. The metabolic con-
straints required the robot to ‘switch’ preference from one
resource to the other at least twice ensuring against evolu-
tion of uninteresting dynamics. Agents viable after 20 trials
were considered survivors. Both resources were within cam-
era image scope at the beginning of each trial to limit poten-
tial bias towards one or other resource – test trials found no
observable bias. Water and substrate resources were placed
left and right of the robot trial starting position, respectively.
This positioning – relative to the centre of the robot – was
not varied in order to promote ease of analysis of the com-
plex interactive dynamics of the system. Solutions were an-
alyzed according to an independent variable (IV) – clamp-
ing, or not, of gas effects on motor node activity; the IV,
thus, consisted of two values - a) Gas modulated motor out-
put (GM), b) Non-gas modulated motor output (NGM). In a)
motor output could be affected both by gas and the pan pro-
prioception node; in b) motor output was modulated only
by the pan proprioception node – this exerted evolutionary
pressure for the emergence of ‘active vision’ strategies while
purely electric inputs to the retina position otherwise en-
sured early stabilization. The only means by which robots
can survive trials is by switching from one resource prefer-
ence to the other over the 20 trials. This switching in the lat-
ter condition can, therefore, only be achieved via e-node gas
modulation of pan-tilt activity. The emergence of e-node ar-
bitration is therefore unsurprising. Our investigation instead
focuses on exactly how such arbitration dynamically occurs.

The evaluation criteria consisted of 1) fitness, 2) no. sur-
vivors. Robot fitness is defined: fit(t) = fit(t − 1) +
(subst(t)+wat(t))/2 and fitµ = tterm ∗ (fit(t)/Ntr) up-
dated once per trial at time t, tterm is a boolean determining
termination of the controller evaluation, i.e. at the end of
Ntr = 20 trials. The fitness function captures physiological
state at the time of resource acquisition while no assump-
tions concerning ideal state are made. Evolutionary para-
meters adhered to Husbands et al. (1998) but adopted the
gaussian gas diffusion of Smith et al. (2002) and the connec-
tivity schema of Jakobi (1998). Further parameters subject
to the GA were: e-node no. (in [0,6]), e-node gas emission
thresholds (in [0.0,1.0]), retina squared unit dimension size
(in [3,5] where a unit = 5*4 pixels and camera dimensions
are fixed at width = 50, height = 40). Finally, unlike the
classical GasNet, left/right wheel (and pan/tilt) nodes’ x, y
coordinates were evolutionarily specified.

Results
Evolution and Evolvability of Strategies
Figure 4 illustrates fitness and survivor rate of all controllers
over 10 runs. Evaluation of independent sample t-tests indi-
cated that robots were significantly fitter in early generations
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Figure 4: Left: Fitness (in [0.0,1.0]). Right: Survival rate. Mean
values for agent popn. over 50 generations comparing gas mod-
ulating motor activity (GM) to non-gas motor modulating (NGM)
runs; Error bars calculated as: SE = sd√

N
where N = 10 runs.

(1-4) of NGM runs than they were in GM runs. Compar-
ison of performance of survivors uncovered that only gen-
erations 5, 7-9 produced significant differences with higher
survivor rate in NGM runs. All tests were at p < 0.05 for
two-tailed tests with d.o.f = 18. These results suggest a ten-
dency, early in evolution, to favour higher performance in
NGM runs suggesting greater evolvability. However, allow-
ing motor nodes to be potentially modulated by gas emis-
sions in GM runs ensured additional genome complexity
possibly requiring more generations for adaptive strategies
to manifest. The high survival variance in GM runs – 3/10
runs produced no survivors by generation 50 – compared to
10/10 in NGM runs producing > 30 survivors by generation
50 – and higher mean in NGM runs hints at NGM strategies
differentiable from those found in GM runs.

MFC Constraints: A Comparative Case Study
An in-depth evaluation of individual controllers taken from
the best runs of each condition furnished a case study com-
parison in order to unveil adaptive strategies. Owing to evo-
lution converging on a common ancestor by generation 50
a given controller selected from the genome candidate so-
lution grid (see Husbands et al. 1998) provided a typical
evolved topology for the run. We compared only viable con-
trollers, i.e. ones that enabled robots to ‘survive’ 20 trials.

Figure 5 depicts trial-by-trial motor trajectories for the
two controllers. On the left of the figure is the GM con-
troller (GMC). Typically, per trial, the robot followed an
arced path towards the nearest edge of the approached re-
source which is energy-efficient. On the right of the figure
is the NGM controller (NGMC) showing a similar pattern of
approach for the water resource (left-side) but more varied
trajectories for substrate approach (right-side). Substrate is
acquired on 4/20 occasions (compared to 7/20 for the GMC).
On trial one the robot retina is biased, by electric inputs to
pan/tilt nodes, towards water resource saccade-fixation but
pans to substrate subsequent to gas modulation effects. Fig-
ure 5 (right) depicts this initial movement towards the water

Figure 5: Inter-trial motor trajectories – inset camera images show
in-trial perspectives. Left: GMC trajectories (20 trials). Right:
NGMC trajectories (for visibility – trial 1 and 2, and a sub-set).

which then arcs towards the substrate. On trial two, the robot
decisively approaches the substrate where the retina remains
fixated while the gas dissipates. Regarding NGMC, expres-
sion of ‘opportunism’ (trial 1) and ‘persistence’ (trial 2) is
afforded by active vision. Such modes of flexible foraging
activity have been posited as expressions of motivated be-
haviour in non-metabolically grounded architectures tested
on two-resource problems (cf. Spier 1997, Avı́la-Garcı́a and
Cañamero 2004). Opportunism entails ability to “change
one’s mind” concerning a preference while persistence en-
tails behavioural resistance to alternative motivations. These
behaviours accord with McFarland’s (2008) non-reactive
criterion for motivational autonomy. Such flexibility is af-
forded owing to fast saccade-fixation speed relative to inter-
pulse wait time providing an example of how such system
level energy constraints may be exploited sensorially given
low, or, in the case of the robots here, zero, energy con-
straints to saccade. In essence, during the waiting period,
the robot is able to saccade to the ‘desired’ resource afford-
ing anticipatory activity. Regarding GMC, the orientation
behaviour, is more reactive – the tight coupling between
metabolic and motor activity ensures behaviour is tied to
present state (the inter-pulse wait time is not exploited – the
retina remains, mostly, static). The comparative metabolic
under-determination of sensor-motor activity in NGMC be-
haviour might permit us to label it cognitive (see Barandi-
aran and Moreno 2008). In spite of its cognitive utility, the
emergence of active vision strategies appears to be stifled
in the GMC condition and to no apparent advantage. This
appears to owe to the relative ease of evolution to tap and
fine-tune motor orientation-based solutions creating an ob-
stacle for active vision evolutionary transition.

Internal and Sensorimotor Dynamics In order to pro-
vide a mechanistic explanation of how metabolism con-
strains sensorimotor strategies we investigated sensorimotor
and internal dynamics as they affected resource selection. In
figure 6 are displayed the evolved topologies for our study.
In both cases, multiple gas-emitting e-nodes (grey-circled)
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Figure 6: Topology of evolved controllers. Left: GM controller.
Right: NGM controller.

evolved. However, via systematic ‘clamping’ of gas emis-
sion capability it was found that both controllers function-
ally depended on only a single e-node. The left side (GMC)
shows that only the right wheel (node 3) is directly affected
by gas (e-node 11). Left wheel (1) and pan (0) nodes are
only indirectly gaseously affected while the tilt node (2) is
affected only by sensory input (indicated by yellow figure
colouration). The right side (NGMC) shows both pan and
tilt nodes within the e-node (11) gas emission radius. This
implicates gas as a motor switch mechanism where for GMC
and NGMC the individual e-nodes are sensitive to water and
substrate, respectively. The GMC was observed on individ-
ual re-runs not to use active vision. Figure 7 displays over
the 20 trials GMC motor activity in [0,0.5] where a constant
C = 0.75 was added to ensure forward movement (given
sufficient MFC-supplied energy). The boxed windows cap-
ture a transient phase prior to a more regular periodic dy-
namic. MFC charge-discharge cycles slow during this pe-
riod as does left and right wheel pulsed activity. The in-
creased output of the right wheel captured in a time-lagged
window reflects slow diffusing gas emission effects consis-
tent with a water resource orienting response. The slow gas
dissipation ensures ‘commitment’ in GMC accounting for a
water-substrate acquisition ratio of 2:1 – the robot chooses
water a second time even after acquisition brings the EV
value above the e-node gas emission threshold.

Figure 8 displays GMC internal dynamics for: EVs (top),
E-GasNet electric activity (middle), e-node gas output (bot-
tom). Periodic activity for gas output at the e-node arises
after the previously described transient phase. Vertical red
dashed lines capture windows of resource acquisition dy-
namics comprised of 3 selections at the 2:1 ratio for wa-
ter:substrate. The dashed horizontal grey line depicts the sta-
ble (mean) EV balance and it can be observed with reference
to the skewed horizontal black line linking EV balance win-
dows that stability occurs after 3 windows. During this pe-
riod the robot’s initial EV values become increasingly well
regulated therefore. On the other hand, a salient periodic gas
emission (and GasNet electric activation) dynamic appears

Figure 7: MFC-constrained sensor-motor activity for GM con-
troller over 20 trials on a normalized time scale.

Figure 8: Internal activity for GM controller over 20 trials. Top:
Physiological (EV) balance. Middle: E-GasNet electric activity (4
hidden nodes, 4 e-nodes). Bottom: E-node 11 gas dissipation.

prior to this – after the first window – in accordance with wa-
ter acquisition dynamics. This happened in spite of the fact
that resource distance from the invariant initial position of
the robot was varied (to prevent strong sensor-motor depen-
dencies – see Jakobi 1998). The duration of gas emission ac-
tivity in the e-node observably correlates with the undulating
right wheel activity responsible for ‘behavioural switching’
(fig.7) and dissipates at the point of water resource acqui-
sition. Substrate approach, in the absence of gas effects, is
the default behaviour – this is reversed for the NGMC. The
gaseous ‘thirst’ signal is affective insofar as it is evolutionar-
ily and metabolically grounded into the agent-environment
dynamic and the product of embodied (e-node) anticipatory
activity. In sum, the two controller strategies use gas for
EV-relevant switching from a default resource-orientation
response to spatiotemporally-tuned orientation towards the
alternative resource. This ‘tuning’ is critical to sustaining
the internal-sensorimotor cohesion of the robot. To better
establish the relevance of metabolic grounding to this co-
hesion we varied inter-pulse wait time (MFC system level
constraint) and re-assessed performance of the controllers.
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Figure 9: Gas emission as modulated by metabolic constraints
over 20 trials according to bC = {0, 50, 75, 100, 150} where
constraints are represented top to bottom according to ascending
strengths. Left: GM controller, Right: NGM controller.

Dynamic Robustness to MFC constraints The inter-
pulse wait time is determined by a constant/parameter bC.
All controllers were evolved according to bC = 75 steps.
This was chosen as an apt challenge level following pre-
trial testing. The two evolved controllers in the case study
were tested against bCε{0, 50, 75, 100, 150} providing zero,
intermediate (50,75,100) and high (150) constraints, respec-
tively. Figure 9 provides gas emission plots over all trials for
the two evaluated controllers. It is observed for the NGMC
(right-side) that only at the constraint value on which it was
evolved does it remain viable – robots ‘die’ at the gas verti-
cal ‘cut-off’ point and must emit at least twice – perform two
switches – over all trials. Interestingly, at zero and low in-
termediate constraints the robot fairs badly but performs rel-
atively better at high intermediate and high constraints. Fig-
ure 10 illustrates why this is the case. On the left-side (low
intermediate constraint), saccade-fixation activity is now in-
sufficiently fast relative to motor speed. The robot behaves
‘opportunistically’ but receives insufficient retinal stimula-
tion to fixate on the substrate leading to ‘dis-orientation’. On
the right-side, the high inter-pulse wait time allows saccad-
ing to the substrate. This behaviour is more efficient than at
the bC value on which the controller was evolved. However,
owing to the strong constraint and requirement for regular
rehydration the robot soon becomes unviable.

The internal dynamics of the GMC (fig.9 – left) are equiv-
alent for all intermediate constraints with the same resource
choice profile over the 20 trials. Interestingly, at the zero
constraint the dynamic pattern of gas emissions bifurcates,
relative to intermediate constraints, early in the trial set.
This is an example of robot ‘dithering’ between the two
resources leading to no resource acquisition on trial two
which, following the initial transient, periodically recurs.
This dynamic is viable but sub-optimal – the robot controller
was evolved on bC = 75 and whilst robust to relatively mi-
nor bC intermediate shifts, dynamics are non-robust to ex-
treme shifts of the metabolic constraint. The use of a sub-
optimal strategy given a zero constraint is viable since the ro-

Figure 10: NGMC motor trajectories at different metabolic con-
straints. Left: low intermediate – the robot is not viable beyond
one trial. Right: high intermediate – the robot stops moving (is
non-viable) following two successful resource acquisitions.

bot only ‘dies’ following a full trial of non-movement. MFC
degradation is not sufficient for this to occur owing to the
relatively unchallenging agent-environment dynamic.

In summary, we can say that the challenge level of the
environment alone is an insufficient indicator of likely ro-
bot viability. It is more informative to consider the ro-
bot’s spatiotemporal cohesion given internal and sensorimo-
tor domains and evolved metabolic grounding. Specifically,
‘dithering’ in the GMC at zero metabolic constraint is an ex-
ample of maladaptive behavioural performance not present
at the evolved constraint. The above highlights the require-
ment for autonomous robotics architectures to account for
metabolic grounding in order to shape adaptive and cogni-
tive (anticipatory) capacities. Affective signals are critical
for cohering body-brain dynamics and may be robust to per-
turbations in agent-environment coupling but are rendered
ineffectual if the integration of internal and sensorimotor ro-
botic domains is insufficient.

Discussion
This paper has described work towards an autonomous
robotic system focused on the integration of energy and
motivation autonomous levels as described by McFarland
(2008). We suggest that top-down (e.g. ethological) mod-
els claiming to implement motivational autonomy in robots
are limited as they: 1) ignore how metabolic constraints im-
pact on sensorimotor activity, 2) require a priori environ-
ment knowledge. A major application for autonomous ro-
bots, however, is in their deployment in inhospitable and
unknown environments where harmonious spatiotemporal
agent-environment integration is crucial for long-term via-
bility. Our work presents the first steps towards integrating
levels of autonomy hinting at the potential for adaptive cog-
nitive behaviour to emerge out of metabolic constraints. We
summarize our findings as follows:

1. Two strategies evolutionarily emerged that spatiotempo-
rally integrated metabolic and sensorimotor activity.
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2. Strategy one – active vision – enabled robots to exploit the
energy-constrained pulsed motor behaviour to produce:

(a) Sensorial anticipatory behaviour,
(b) Energy-efficient motor trajectories,
(c) Adaptive opportunistic-persistent behaviours.

3. Strategy two – motor orientation – did not sensorially ex-
ploit its energy-constrained motor-pulsed behaviour.

4. E-nodes, via EV-level thresholded gas emission, antici-
pate metabolism constrained performance degradation.

The grounding of behaviour according to artificial
metabolic constraints permitted the evolution of sensorial
anticipatory behaviour in the form of simple pan/tilt active
vision. Interfacing ‘body’ (MFC) and ‘brain’ (E-GasNet)
entailed tuning gas emissions to enable this anticipatory
sensorimotor response. Stable gas emission dynamics in
functional nodes when metabolically situated constitutes
motivation-like (thirst/hunger) signals. The existence per
se of such signals precipitates orientation/saccade switching
and is functional therein. The periodicity and duration of
such signals are requisite to the agent-environment dynamic
niche and functional therein. A significant change to this dy-
namic, e.g. severe modification of the metabolic constraint,
renders the motivation-like signals non-adaptive even if the
task challenge is effectively reduced.

We are currently investigating ‘naturalistic’ settings with
dynamic resource configurations. Early findings hint at the
emergence of distributed forms of e-node networks adapted
to this more complex dynamic. A long term aim is to unveil
robot controllers that exhibit energy-motivation-mental au-
tonomy (see Ziemke and Lowe 2009) described using utility-
and optimality-based ecological models.
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