
Proc. of the Alife XII Conference, Odense, Denmark, 2010 765

A Morphogenetic Approach to Self-Reconfigurable Modular Robots using a Hybrid
Hierarchical Gene Regulatory Network

Yan Meng1, Yuyang Zhang1 and Yaochu Jin2

1Department of Electrical and Computer Engineering
Stevens Institute of Technology, Hoboken, NJ 07030, USA

2Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK
yan.meng@stevens.edu, yzhang14@stevens.edu, yaochu.jin@surrey.ac.uk

Abstract

In this paper, we present a morphogenetic approach to self-
reconfiguration of a lattice-based simulated modular robot,
CrossCube, under dynamic environments. A hybrid
hierarchical controller inspired by the embryonic development
of multi-cellular organisms is proposed to form different
patterns for modular robots to adapt to environmental changes.
The first layer is a rule-based controller to generate a number of
appropriate target patterns (i.e. configurations) for various
environments. The second layer is a gene regulatory network
(GRN) based controller to coordinate the modules of
CrossCube to transform from its current pattern to the target
pattern. This hybrid hierarchical control framework is
distributed in the sense that each module makes its own
decisions based on its local perception. The global behavior of
modular robots emerges from the local interactions with the
environment and between the modules. The simulation results
demonstrate that the proposed system is efficient and robust in
adaptively reconfiguring modular robots to adapt to the
changing environment.

Introduction

Self-reconfigurable modular robots are autonomous robots
with a variable morphology, where they are able to
deliberately change their own shapes by reorganizing the
connectivity of their modules to adapt to new environments,
perform new tasks, or recover from damages. Each module
is an independent unit that is able to connect it to or
disconnect it from other units to form various
structures/patterns dynamically. Compared with conventional
robotic systems, self-reconfigurable robots are potentially
more robust and more adaptive under dynamic environments.
 Modular robots can be generally classified into two groups
according to their geometric arrangements of the modules: the
chain/tree-based architectures [16] [19] [21] [22] and the
lattice-based architectures [5] [7] [8] [10] [13] [14] [17] [24]
[25]. In the chain/tree-based architectures, the modules are
connected in a topology of a chain or a tree, where the motion
controls of the modules are executed sequentially. It is
relatively easier to design and implement this kind of
architectures. In the lattice-based architecture, robot
modules are usually arranged and connected in 3D patterns,
such as a cubical or hexagonal grid, and the motion control of
modules are carried out in parallel. Therefore, compared to
the chain/tree-based architectures, the lattice-based

architectures are more flexible and efficient to form complex
structures although the design and implementation of this kind
of architectures are more difficult. From this point of view,
lattice-based modular robots are more suitable for dynamic
environments. However, most available lattice-based modular
robotic systems only have basic locomotion controllers to
reconfigure the modular robots to a few predefined patterns by
following predefined sequences or rules which have been
optimized by human operators as a global controller. These
predefined rules or sequences cannot predict all the possible
situations that may occur for modular robots under dynamic
environments. Although self-reconfiguration is believed to
be the most important feature of modular robots, the ability to
adapt their configuration autonomously under environmental
changes remains to be demonstrated.

Generally, centralized high-level controllers for lattice-
based modular robots are vulnerable to system failures or
malfunctions of robot modules. On the other side,
decentralized controllers are more robust and flexible under
dynamic and uncertain environments. However, the main
challenge for distributed systems is that it is difficult to predict
the emerging behaviors only from local interactions of
individual agents; neither is it easy to design rules for local
interactions to generate desired global behaviors. Therefore,
the major challenge in developing a decentralized controller
for self-reconfigurable modular robots is how to coordinate
local behaviors of multiple modules to achieve the desired
global patterns to adapt to current environmental situations.
To this end, we turn our attention to biological systems.
Biological systems, from macroscopic swarm systems of
social insects to microscopic cellular systems, can generate
robust and complex emerging behaviors through relatively
simple local interactions subject to various kinds of
uncertainties [9]. We are more interested in the
morphogenesis procedure in multi-cellular organisms. During
the morphogenesis, genes in each cell are expressed, resulting
in various cellular functions. The expression of the genes is
regulated by their own protein products as well as proteins
produced by other genes in the same cell or neighboring cells
through intracellular and intercellular diffusion, forming a
gene regulatory network that can be described by a set of
coupled ordinary differential equations.

The connection between reconfigurable modular robots and
multi-cellular organisms appears straightforward. Each unit in
modular robots can be seen as a cell, and there are similarities

Proc. of the Alife XII Conference, Odense, Denmark, 2010 766

in control, communication and physical interactions between
cells in multi-cellular organisms and modules in modular
robots. For example, control in both modular robots and
multi-cellular organisms are decentralized. In addition, global
behaviors of both modular robots and multi-cellular organisms
emerge through local interactions of the units, which include
mechanic, magnetic and electronic mechanisms in modular
robots, and chemical diffusion and cellular physical
interactions such as adhesion in multi-cellular organisms.
Therefore, it is a natural idea to develop control algorithms for
self-reconfigurable modular robots using biological
morphogenetic mechanisms.
 Inspired by the embryonic development of multi-cellular
organisms [24], in this paper, we propose a morphogenetic
approach to self-reconfiguration of a lattice-based simulated
modular robot, CrossCube. Basically, each module of
CrossCube has a flexible single cubic shape like Molecube
[25] [15], which does not require much free space for modules
to move around, similar to the mechanics of SUPERBOT [14]
[4] and MTRAN [10] [11] [20]. In the high-level controller, a
two-layer morphogenetic architecture is proposed. Layer 1 is
pattern generation layer, which is a rule-based controller to
generate appropriate patterns represented by look-up tables.
Layer 2 is a gene regulatory network (GRN) based controller
to reconfigure modules automatically to the target patterns
generated from layer 1.
 Recently, Stoy proposed cellular automata to control
reconfiguration [17]. Both our method and Stoy’s method
used cellular mechanism to reconfigure the modular robots.
However, there are some major differences between our work
and his work. Our method is two-layer hierarchical method. In
[17], one-layer approach was proposed which corresponds to
layer 2 in our model. Layer 2 of our model uses priorities to
assign the importance of the positions of the target pattern,
which help to improve the balance of target formation. In
addition, our proposed method can solve the dead-lock
situations of the modules while [17] cannot.
 The major contributions of this paper are listed as follows.
(1) The mechanics of CrossCube enables highly flexible
locomotion compared to that in existing lattice-based modular
robots. (2) A hybrid hierarchical morphogenetic controller is
proposed, which is a decentralized approach where each
module makes its own decisions based on its local perceptions
on the environment and interactions with its immediate
neighboring modules. (3) The modular robots can
autonomously choose an appropriate pattern based on the
current environment and then automatically self-reconfigure
itself to the target pattern. (4) The proposed system is very
robust to system failures.
 The rest of the paper is organized as follows. The basic
mechanics and locomotion design of CrossCube are described
at first, followed by a brief introduction to biological
morphogenesis. Then the proposed morphogenetic approach
to self-organization of modular robots is presented. Various
simulation results on evaluating the proposed morphogenetic
approach to modular robots under dynamic environments are
described. The paper concludes with a short summary of the
current results and future work.

CrossCube – A Simulated Modular Robot

CrossCube is a simulated modular robot we developed in a
robot simulator using a real time physics engine PhysX. The
detailed information on the simulator will be discussed in the
simulation section. CrossCube adopts a lattice-based cube
design. Each module is a cubical structure having its own
computing and communication resource and actuation
capability. Like all modular robots, the connection part of the
modules can easily be attached to or detached from other
modules. Each module can perceive its local environment and
communicate with its neighboring modules using on-board
sensors.
 Each CrossCube module consists of a core and a shell as
shown in Fig. 1(a). The core is a cube with six universal
joints. Their default heading directions are bottom, up, right,
left, front, and back, respectively. Each joint can attach to or
detach from the joints of its neighbor modules. The axis of
each joint can actively rotate, extend, and return to its default
direction and length.
 The cross-concaves on each side of the shell restrict the
movement trajectory of the joints, as show in Fig. 1(a). The
borders of each module can actively be locked or unlocked
with the borders of other modules, as shown in Fig. 1(b).
 Basic motions of modules in CrossCube include rotation,
climbing and parallel motion. Fig. 1(c) illustrates a rotation
movement of two modules. Parallel motion means that a
module moves to a next position which is parallel to its
current position. During a parallel motion, a module moves
from its current position to a parallel position Climbing
motion means that a module moves to a diagonal neighboring
position. Parallel motion and climbing motion allow a module
of CrossCube to move to any position within the modular
robot as long as the modules are connected. Since the major
focus of this paper is the self-reconfiguration control
algorithm, the detailed mechanical design of CrossCube is
skipped here.

Figure 1: Mechanical demonstration of CrossCube. (a) The
joints; (b) The locks on the boundaries of the modules. (c)
Rotation and extension of the joints of the modules.

Morphogenetic Approach

Multi-Cellular Morphogenesis
Multi-cellular morphogenesis is under the control of gene
regulatory networks. When a gene is expressed, information
stored in the genome is transcribed into mRNA and then
translated into proteins. Some of these proteins are
transcription factors that can regulate the expression of their
own or other genes, thus resulting in a complex network of

Proc. of the Alife XII Conference, Odense, Denmark, 2010 767

interacting genes termed as a gene regulatory network (GRN).
To understand the emergent morphology resulting from the
interactions of genes in a regulatory network, reconstruction
of gene regulatory pathways using a computational model has
become popular in systems biology [1]. A large number of
computational models for GRNs have been suggested [2], [3],
which can largely be divided into discrete models, such as
random Boolean networks and Markovian models, and
continuous models, such as ordinary differential equations and
partial differential equations. Sometimes, GRN models also
distinguish themselves as deterministic models and stochastic
models according to their ability to describe stochasticity in
gene expression. Note that in artificial life, a few high-level
abstraction models have also been used for modeling
development, such as the L-systems [12] and grammar trees
[6].

The Hierarchical Framework
 The metaphor between reconfigurable modular robots and
multi-cellular organisms is straightforward. We can treat
each module in modular robots as a single cell. And the
similarities in control, communication and physical
interactions between cells in multi-cellular organisms and
modules in modular robots are obvious. For example, the
control in both modular robots and multi-cellular organisms in
decentralized. Furthermore, the global behaviors of both
modular robots and multi-cellular organisms emerge through
local interactions of the units, which include mechanic,
magnetic and electronic mechanisms in modular robots, and
chemical diffusion and cellular physical interactions such as
adhesion in multi-cellular organisms.

Figure 2: The block diagram of the hierarchical framework
for the morphogenetic approach.

Based on this metaphor, a hybrid hierarchical morphogenetic
approach is developed in this paper for self-reconfiguration of
modular robots. First, the target pattern (i.e. final
configuration) that a modular robot needs to form has to be
generated automatically based on the current environments
and mission at hand using some heuristic rules, which is the
layer 1 controller of the hierarchical framework. Then, the
modules in a modular robot need to self-organize themselves
to form the target pattern generated by layer 1 using a GRN-
based controller, which is the layer 2 controller. Fig. 2
shows the block diagram of this hierarchical GRN framework.
Each unit of the modular robots contains a chromosome
consisting of several genes that can produce different proteins.
The local communications between the modules can be setup
by diffusing the proteins into neighboring modules. The

concentration of the diffused proteins decays over time and
distance.

Layer 1: Pattern Generation
Adaptation to environmental changes is of paramount
importance in reconfigurable modular robots. A mechanism is
needed to define and modify the target configuration of the
modular robot adaptively. Adaptation of the global
configuration of the modular robot, i.e., change in morphogen
values, can be triggered by local sensory feedback. For such
tasks, it is assumed that each module is equipped with a sensor
to detect the distance(s) between the module and obstacle(s) in
the environment. Once a module receives such sensory
feedback, this information will be passed on to its neighbors
through local communication. In this way, a global change in
configuration can be achieved.

The target pattern of the modular robot is defined by
morphogen values of each grid. Grids are discretized from the
space in which the modular robot is located. Each grid has the
same size of with a robot module. The morphogen value can
be either positive or negative. A positive morphogen value
means that the grid should be occupied by a module, while a
negative gradient suggests that the module in the grid, if any,
should be removed. A higher value of morphogen value
indicates a higher priority for the grid to be filled by a module.

For the sake of simplicity, a number of basic configurations
for different environments can be represented in terms of a
look-up-table for a given mission, for instance locomotion. An
example of defining the configuration of a vehicle is provided
in Table 1. In the table, x, y, and z are 3D coordinates of grid
positions, MG denotes morphogen level and PID stands for
position identification. Additionally, we define some joints’
behaviors to enable the vehicle to move once the
configuration is completed. Joints can be identified by its
PID and RD means joint rotate direction.

Then the question is how to generate the look-up-table and
decide the morphogen value for each position of a pattern
under current environmental situations. A rule-based
controller is developed for this purpose. In this paper, we
only focus on the generation of some specific vehicle patterns
to explain the basic ideas. We will investigate a more generic
controller for different patterns in the future.

It is assumed that initially all robot modules know the
heading direction of the vehicle pattern. When a robot needs
to traverse a path whose width is narrower than that of the
robot, the width of the front row will be first adapted to fit in
the path. The remaining rows of the vehicle will be adapted
row by row in a decentralized manner through local
communication. The basic rules for this procedure can be
summarized as follows:
 Rule 1: Once a module in the front row detects obstacle(s),

it passes this information through local communication to its
neighboring modules until all the modules are reset to the
unstable state for initialization. Refer to the next section for
a definition of different states of the robot modules.

 Rule 2: If some of the modules in the first row detect an
obstacle, they will estimate whether the robot need to
reconfigure itself to avoid the obstacle. If yes, these
modules will estimate how many modules need to be
removed and this information is passed to other modules in

Task
requirements

Layer 1:
Pattern

Generation

Layer 2:
Pattern

Formation

Pattern/Body
Motion Control

Environment

Hierachical Morphogenetic Framework

Proc. of the Alife XII Conference, Odense, Denmark, 2010 768

the same row through local communication. Therefore, the
mophogen gradients of these need-to-remove positions are
set up as negative values while others as positive values. As
a result, those positions with positive mophogen values are
head of the new vehicle pattern.

 Rule3: After the GRN-based pattern formation controller
finishes the reorganization of the modules in one row, the
states of these modules are set to be ‘stable’. If a row of a
vehicle pattern is filled in by stable modules, these modules
can set the positive morphogen values for the position in the
next row. One exception is that if the module is used as a
wheel for the vehicle pattern, the morphogen value of its
next position should be set as negative because two
neighboring wheel modules causes fault pattern.

 Rule4: The pattern generation procedure stops when all the
modules change to the stable state.

Layer 2: Pattern Formation
By setting any single module as the origin, all other modules
can figure out their relative positions to this origin easily
through local communications. Based on the relative positions
and the information on the target pattern, each module can
produce different types of proteins to attract other modules to
fill in its neighboring positions with positive morphogen
values, or repel its neighbor modules from positions with
negative morphgen values.

Finite States of Modules
The attraction and repellent behaviors of the modules are
regulated by a GRN-based controller, which can adaptively
set the state of the modules to one of the following five states,
namely, ‘stable’, ‘unstable’, ‘attracting’, ‘repelling’, and
‘repelled’. The transition relationships between the five states
of modules are given in Figure 3.

Figure 3: State transition of each module in CrossCube.

 The “stable” state means the final state of the module. The
“attracting” state means the module can attract other modules
to fill in some of its neighboring positions. The “unstable”
state means the module can respond to attractions. The
“repelling” state means the module can repel specific
neighboring modules away. The “repelled” state means that

the module responds to repelling requests and move away
from the current position.

When an ‘unstable’ module arrives at the destination
position (grid), it changes its state to “stable” (arrow a in
Figure 3). A ‘stable’ module can change its state to
‘attracting’ (arrow b in Figure 3) if it has neighboring
positions with a positive morphogen value. When those
neighboring positions are occupied by modules, the
‘attracting’ module returns to the ‘stable’ state (arrow c in
Figure 3). A ‘stable’ module may also give up its current
position so that it can fill in some more important positions in
the pattern (with a high positive gradient) by turning its state
to ‘unstable’ (arrow d in Fig. 2).

When the ‘repelled’ module moves away from its current
position it switches its state to ‘unstable’ (arrow h in Figure
3). A module can be triggered to be ‘repelling’ state under
two situations. First one is when a ‘stable’ module finds out
that some of its neighboring modules are located in the
positions with negative morphogen value, it changes its state
to ‘repelling’ (arrow e in Figure 3) and switches the state of
those neighbors to be ‘repelled’ (arrow g in Figure 3). When
all the ‘repelled’ modules have left, the ‘repelling’ module
returns to the ‘stable’ state (arrow j in Figure 3). The second
situation is a deadlock situation. A deadlock happens when a
module is blocked by its neighboring modules. To resolve this
deadlock, the blocked module switches its state to be
‘repelling’ (arrow f in Figure 3), and trying to change the state
of all its neighbors to be ‘repelled’ (arrow g in Figure 3). This
removes some of its neighboring modules to make room for
the blocked module to move away. Then the ‘repelling’
module turns back to the ‘repelled’ state (arrow i in Figure 3).

The state transitions are controlled by a GRN-based model
having two gene-protein pairs: an attracting gene-protein pair

),(AA pg and a repelling gene-protein pair),(pp pg . We
assume that the repellent states always have a higher priority
than the attracting states. As a result, all the states triggered by
the attracting behaviors can be overwritten by the states
triggered by the repelling behaviors. The reason for this
assumption is that the positions with a repelling (negative)
morphogen value should be kept empty as long as migration
modules are still in need during reconfiguration.

Gene-Protein Pair for Attraction
The attracting gene-protein pair),(AA pg is used to control
the transitions between ‘attracting’, ‘stable’ and ‘unstable’
states in Figure 3. Basically the expression level of Ag
affects the state as shown in (1). And protein Ap will
regulate Ag ’s expression level.

_

_ _

_

'unstable' if

state 'stable' if

'attracting' if

A A L

A L A A H

A A H

g G

G g G

g G

 (1)

where _A LG is a negative threshold and _A HG is a positive

threshold.

At the initial stage of pattern formation, all modules are set
as ‘unstable’. After they are initialized with the target pattern
and the relative position information to the origin, modules
that are located in the grids with a positive morphogen value
become ‘stable’. A new ‘stable’ module initializes the gene
expression level of its attracting gene Ag to zero.

Repelling

Unstable Attracting

Repelled

Stable

Repelling

Atrracting

a
d

b
c

i
f

g
g

fh

e

g

j

Proc. of the Alife XII Conference, Odense, Denmark, 2010 769

Each ‘stable’ module generates attracting protein Ap for
all of the empty neighboring grids having a positive
morphogen value. The local generated Ap and received Ap
from other modules will regulate the expression level of Ag .
When Ag is high enough to trigger the module to be
‘attracting’, the local generated Ap will be diffused to other
modules. During diffusion, the concentration of Ap are
weaken by a fix rate each time when it enters a cell. Here,

Ap is defined as
},{ ij

A
ijij

A MAPp (2)

where ij
Ap is the attracting protein generated by i-th module

for its j-th neighbor position. ijAP is the position, and ij
AM is

the concentration of the protein ij
Ap , which is discounted

from the morphogen value of ijAP defined by layer 1 of the
control framework.

The dynamics of regulation can be described by the
following GRN model:

1 2 3 _

()
()

i
i ijA
A A A received

j

dg t
k g t k p k p

dt
 (3)

where)(tg i
A is Ag ’s concentration of the i-th module. The

first term indicates that)(tg i
A will decay over time. The

second term represents the sum of all locally generated Ap
by grid i. The more proteins a module (which is associated
with grid i) generates for its empty neighboring grid, the
higher the Ag expression level this grid will be, which means
it will have better chance to change its state from “stable” to
“attracting”. Meanwhile, ()Ag t will decrease if it receives

Ap from other modules. The module may turn to ‘unstable’ if
outer attraction is strong enough. 1 2 3, ,and k k k are constant
coefficients. Unstable modules choose the attracting position
with the highest AP from all the received attracting proteins
to fill in, and move to the destination by following morphogen
gradient. Once a module reaches its destination, it will become
stable.

To summarize, the gene-protein pair),(AA pg can regulate

each other according to the GRN model described in Eqns. (1)
and (3). More specifically, Ap can regulate Ag through Eqn.

(3). Meanwhile, Ap can diffuse only if Ag is greater

than HAG _ based on Eqn. (1).

Gene-Protein Pair for Repelling
The ‘repelling’ states are controlled by the repelling gene-
protein pair),(pp pg . The repelling modules produce pp ,
which is defined as

 },{ ij
P

ijij
P MRPp (4)

where ij

Pp is the repellent protein generated by i-th module
for its j-th neighbor. ijRP is the j-th repellent grid around i-th
module, and ij

PM is the concentration of the protein ij
Pp ,

which equals to a predefined positive constant. Each module
has repelling gene whose concentration affects whether the
module should change to ‘repelled’ state, that is, to respond to
a ‘repelling’ module. The gene expression level of Pg is
initialized as 0 and can be regulated by Pp through Eqn. (5)

 4 5 _

()
()

state repelled when

i
iP
P P rec

i
P

dg t
k g t k p

dt

g MG

 (5)

where ()pg t is the gene expression level of the repellent
gene at time t. _P recp is the concentration of the received
repellent protein. iMG is the morphogen value of the current
position. 4 5and k k are constant coefficients. The first item
denotes ()pg t will decays to zero along time. The second
term indicates that when a module receives Pp , the
concentration of Pg is reduced. Obviously modules with a
lower morphogen value are more likely to be repelled.

To summarize, Pp can regulate Pg through Equation
(5). Pg can produce Pp under the condition that Pg is
below iMG and the module is blocked.

Simulation Results

To evaluate the efficiency and robustness of the
morphogenetic approach to the self-reconfiguration of
CrossCube, several case studies have been conducted in a
robot simulator, as shown in Figure 4. This simulator is used
to simulate the behaviors and interaction of CrossCube with a
physical world using C++ and the PhysX engine from nVidia
(http://en.wikipedia.org/wiki/PhysX). In the following
experiments, the system parameters are setup as
follows: 1 0.7,k 2 1,k 3 1k , 4 0.5,k 5 2k , _A LG = -
1, _A HG = 1, _ 2P LG , ij

PC = 0.7. Protein
concentration decays to 80% of its previous level when it
diffuses into a neighbor module.

Case Study 1: Pattern Formation
To evaluate the performance of the GRN-based controller for
pattern formation layer, first, we can predefine a fixed target
pattern using a look-up table. For example a vehicle pattern,
can be defined as Table 1.

Positions
(X, Y, Z, MG, PID)

Joints
(PID1, PID2, RD)

(0, 0, 0, 10, 0) (1, 0, 3, 10, 10) (0, 1, 0)

(1, 0, 0, 10, 1) (2, 0, 3, 10, 11) (2, 3, 1)

(2, 0, 0, 10,2) (0, 0, 4, 10,12) (6, 7, 0)

(3, 0, 0, 10, 3) (1, 0, 4, 10, 13) (8, 9, 1)

(1, 0, 1, 10, 4) (2, 0, 4, 10, 14) (12, 13, 0)

(2, 0, 1, 10, 5) (3, 0, 4, 10, 15) (14, 15, 1)

(0, 0, 2, 10, 6) (0, 0, 1, ‐1, 16)

(1, 0, 2, 10, 7) (3, 0, 1, ‐1, 17)

(2, 0, 2, 10, 8) (0, 0, 3, ‐1, 18)

(3, 0, 2, 10, 9) (3, 0, 3, ‐1, 19)

Table 1: Definition of a vehicle pattern for case study 1. In the
table, x, y, and z are 3D coordinates of grid positions, MG
denotes morphogen level and PID stands for position
identification.

Based on this predefined target pattern, the modules of
CrossCube modules need to autonomously configure
themselves to form the target pattern using the GRN-based
controller in layer 2. A set of snapshots of this pattern

Proc. of the Alife XII Conference, Odense, Denmark, 2010 770

formation procedure in the experiment is depicted in Figure 4.
From Figure 4, we can see that the CrossCube can
automatically form a given target pattern through self-
reconfiguration using the proposed GRN-based controller.

Figure 4: Autonomous reconfiguration of a CrossCube from a
rectangle to a vehicle using the GRN-based model.

Figure 5: A set of snapshots for the simulation using the
repelling feature of the GRN-based controller to resolve a
deadlock problem. (a) The original pattern of the robot. (b)(c)
Two modules are repelled by the central modules. (d)(e) The
central modules move away from blocked positions. (f) The
target pattern is finished.

Case Study 2: Resolving Deadlock

In this case study, a deadlock problem is resolved using the
repelling function of the GRN-based controller in layer 2.
Robot modules are initialized in a 4x3x3 solid cube, starting at
(0, 0, 0) and ending at (3, 2, 2). The target pattern is
predefined in Table 2 which is a center-empty box plus two
additional modules at sides. To build the pattern, the modules
in the center of the solid cube should move out the module
that is blocked by the modules on surface. Then the GRN-
based controller of layer 2 is conducted to solve the deadlock
problem to form the target pattern. Figure 5 shows the
successful procedure of solving this deadlock problem using
this morphogenetic approach on CrossCube simulator. It is

shown that the modules with lower morphogen value are
repelled which is consistent with our design.

Positions (x, y, z)
Morphogen

value

(-1, 0, 1), (4, 0, 1), (0, 1, 1), (3, 1, 1) 2

(1, 1, 1), (2, 1, 1) ‐10

Other positions 10

 Table 2 Definition of a vehicle pattern for case study 2

Case Study 3: Self-Repairing
One important feature of a reconfigurable modular robot is
being able to dynamically self-repair itself from the
malfunctions of modules or damaged modules. For example, if
some of the modules are damaged, the remaining modules will
release new attracting proteins to repel those damaged
modules and attract existing modules in the positions with a
low morphogen value to fill in the positions of the damaged
modules. In other words, modules that are located in less
important positions of the target pattern will automatically
migrate to the positions originally occupied by the damaged
modules with a higher morphogen value. To evaluate the self-
repairing performance of the GRN-based control in layer 2,
another experiment is conducted here. First, the look-up table
for the target pattern (i.e., a vehicle patter here) is given in
Table 3 as a fixed predefined layer 2. The bottom modules (y
equals to 0) are functional modules in the vehicle pattern. The
top modules (y equals to 1) are backup modules, which are
used to repair the malfunctioned parts of the vehicle pattern.
Therefore, the backup modules have a lower morphogen value
than that of the functional modules.

When the vehicle is moving, an “explosion” occurs and
some functional modules are blown away. The backup
modules then automatically move to fill in the damaged
modules. Figure 6 shows a snapshot of this self-repairing
procedure using the proposed hierarchical framework on
CrossCube modules. This experiment demonstrates that the
proposed approach is efficient for self-repair of a modular
robot in the presence of some failed modules.

Positions
(X, Y, Z, MG, PID)

Joints
(PID1, PID2, RD)

(0, 0, 0, 10, 0) (0, 0, 4, 10,12) (0, 1, 0)

(1, 0, 0, 10, 1) (1, 0, 4, 10, 13) (2, 3, 1)

(2, 0, 0, 10,2) (2, 0, 4, 10, 14) (6, 7, 0)

(3, 0, 0, 10, 3) (3, 0, 4, 10, 15) (8, 9, 1)

(1, 0, 1, 10, 4) (0, 0, 1, ‐1, 16) (12, 13, 0)

(2, 0, 1, 10, 5) (3, 0, 1, ‐1, 17) (14, 15, 1)

(0, 0, 2, 10, 6) (0, 0, 3, ‐1, 18)

(1, 0, 2, 10, 7) (3, 0, 3, ‐1, 19)

(2, 0, 2, 10, 8) (1, 1, 1, 1, 20)

(3, 0, 2, 10, 9) (2, 1, 1, 1, 21)

(1, 0, 3, 10, 10) (1, 1, 2, 1, 22)

(2, 0, 3, 10, 11) (2, 1, 2, 1, 23)

Table 3 Definition of a vehicle pattern for case study 3

Pattern Adaptation in a Changing Environment
To verify the efficiency and robustness of the rule-based
controller for pattern generation, a transformable vehicle is

Proc. of the Alife XII Conference, Odense, Denmark, 2010 771

developed. During the pattern generation process, the positive
morphogen value is set as 10 and the negative morphogen
value is -10.

A set of snapshots showing the adaptation of the vehicle
pattern to environmental changes is provided in Figure 7.
First the pattern generation controller generates a vehicle
pattern based on the width of path it needs to traverse using
the rule-based method. As the vehicle is moving forward, a
narrower path is detected. Consequently, a new vehicle pattern
that can fit in this narrower tunnel is generated. Then steps are
detected in front of the robot, new target patterns are
dynamically generated to allow the robots to climb the steps,
and eventually a new vehicle pattern is generated to continue
its locomotion task after finishing the climbing. During this
procedure, the GRN-based controller for pattern formation
layer would automatically reconfigure the modules to form the
new target patterns.

Figure 6: A set of snapshots of the self-repairing of CrossCube
using the GRN-based controller. (a) A vehicle pattern is
formed. (b) The vehicle pattern moves forward. (c) Some
modules are blown off when the explosion happens. (d) The
failed part is filled up by the backup modules. (e) The vehicle
is repaired. (f) The repaired vehicle continues moving.

Conclusion and Future Work

In this paper, we presented a hybrid hierarchical approach to
self-reconfiguration of a simulated modular robot, CrossCube,
which is inspired by multi-cellular morphogenesis. First
layer defines the desired configuration of the modular robots
while the other layer organizes the modules autonomously to
achieve the desired configuration. Such a hierarchical
structure makes it possible to separate the control mechanisms
for defining a target configuration from those for realizing it,
similar to biological gene regulatory networks. In response to
the environment changes, the layer for defining the robot
configuration is able to adapt the target configuration, based
on which the second layer can re-organize the modules
autonomously to realize the target configuration.
The current system is only based on simulated modular robots
with considerations of physical constraints. In the future, we
will develop the real modular robots based on the current
mechanical design. Furthermore, since the current design of
the first layer is a heuristic rule-based method, it has some
limitations to generate various patterns for dynamic
environments, only some simply patterns are possible. In the
future, we will investigate a more general approach for the
design of layer 1 so that more general patterns can be
automatically generated to adapt to various dynamic
environmental changes.

Figure 7. A set of snapshots demonstrating a series of
reconfigurable processes during locomotion and climbing. The
robot first adapted its width to the narrow path, then changed
its configuration for climbing up a step, and finally
reconfigured itself into a vehicle again to move forward.

Acknowledgements

This work was supported in part by Honda Research Institute
Europe. The work was done while Yaochu Jin was with
Honda Research Institute Europe.

Proc. of the Alife XII Conference, Odense, Denmark, 2010 772

References
[1] Alon, U. (2007). Network motifs: theory and experimental approaches,

Nature Review Genetics, vol. 8, pp. 450–461.
[2] DeJong, H. (2002). Modeling and simulation of genetic regulatory

systems: A literature review, Journal of Computational Biology,
vol. 9, pp. 67–103.

[3] Endy D., and Brent, R. (2001). Modeling cellular behavior, Nature,
vol. 409,pp. 391–395.

[4] Everist, J., Hou, F., and Shen, W. (2006). Transformation of Control
in Congruent Self-Reconfigurable Robot Topologies, in Proc. of
International Conference on Intelligent Robots and Systems.

[5] Gilpin, K., Kotay, K. and Rus, D. (2007). Miche: Modular Shape
Formation by Self-Dissasembly, in Proc. of IEEE International
Conference on Robotics and Automation.

[6] Gruau, F. (1993). Genetic synthesis of modular neural networks, in
International Conferences on Neural Networks. Morgan Kaufmann,
pp. 318–325.

[7] Jorgensen, M. W., Ostergaard, E. H., and Lund, H. H. (2004). Modular
ATRON: Moduels for a self-reconfigurable robot, in Proc. of IEEE
International Conference on Intelligent Robots and Systems.

[8] Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K.,
and Kokaji, S. (2004). Distributed adaptive locomotion by a
modular robotic system, M-TRAN II, in Proc. of IEEE International
Conference on Intelligent Robots and Systems.

[9] Kelly, K. (1994). Out of Control – The New Biology of machines,
Social Systems and Economic World. Basic Books.

[10] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., and
Murata, S. (2008). Distributed self-reconfiguration of M-TRAN III
modular, The International Journal of Robotics Research, 27(3-
4):373–386.

[11] Kurokawa, H., Tomita, K., Kamimura, A., Yoshida, E., Kokaji, S.,
and Murata, S. (2005). Distributed Self-reconfiguration Control of
Modular Robot M-TRAN, in Proc. of International Conference on
Mechatronics and Automation.

[12] Lindenmayer, A. (1968). Mathematical models for cellular
interaction indevelopmental. Parts I and II, Journal of Theoretical
Biology, vol. 18, pp. 280–315.

[13] Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., and Kokaji, S.
(2001). Self-repairing mechanical systems, Autonomous Robots, vol.
10, pp. 7–21.

[14] Salemi, B., Moll, M., and Shen, W. (2006). SUPERBOT: A
Deployable, Multi-Functional, and Modular Self-Reconfigurable
Robotic System, in Proc. of IEEE International Conference on
Intelligent Robots and Systems.

[15] Moll, M., Will, P., Krivokon, M., and Shen, W. (2006). Distributed
Control of the Center of Mass of a Modular Robot, in Proc. of IEEE
International Conference on Intelligent Robots and Systems.

[16] Shen, W., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., and
Venkatesh, J. (2006). Multimode locomotion for reconfigurable
robots, Autonomous Robots, vol. 20, no. 2, pp. 165-177.

[17] Stoy, K. (2006), Using cellular automata and gradients to control
self-reconfiguration, Robotics and Autonomous Systems, vol. 54,
pp.135-141.

[18] Unsal, C., Killiccote, H., and Kholsa, P.K. (2001). A Modular Self-
Reconfigurable Bipartite Robotic System: Implementation and
Motion Planning, Autonomous Robots, vol. 10, pp.23–40.

[19] Yim, M., Eldershaw, C., Zhang, Y., and Duff, D. G. (2004).
Limbless conforming gaits with modular robots, in Proc. of
International Symposium on Experimental Robotics.

[20] Yoshida, E., Kurokawa, H., Kamimura, A., Tomita, K., Kokaji, A.,
and Murata, S. (2004). Planning Behaviors of a Modular Robot: an
Approach Applying a Randomized Planner to Coherent Structure, in
Proc. IEEE International Conference on Intelligent Robots and
Systems.

[21] Yu, C.H., Haller, K., Ingber, D., and Nagpal, R. (2009). Morpho: A
selfdeformable modular robot inspired by cellular structure, in Proc.
of International Conference on Robotics and Automation.

[22] Yu, C., and Nagpal, R. (2009). Self-Adapting Modular Robotics: A
Generalized Distributed Consensus Framework, in Proc. of
International Conference on Robotics and Automation.

[23] White, P., Zykov, V., Bongard, J., and Lipson, H. (2006). Three
Dimensional Stochastic Reconfiguration of Modular Robots, in
Proc. of Robotics: Science and Systems Conference, pp. 161–168.

[24] Wolpert. L. (2002). Principles of Development. Oxford University
Press.

[25] Zykov, V., Chan, A., and Lipson, H. (2007). Molecubes: An Open-
Source Modular Robotics Kit, in Proc. of International Conference
on Robotics and Automation.

