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Abstract 

In this paper, we present a morphogenetic approach to self-
reconfiguration of a lattice-based simulated modular robot, 
CrossCube, under dynamic environments.    A hybrid 
hierarchical controller inspired by the embryonic development 
of multi-cellular organisms is proposed to form different 
patterns for modular robots to adapt to environmental changes. 
The first layer is a rule-based controller to generate a number of 
appropriate target patterns (i.e. configurations) for various 
environments. The second layer is a gene regulatory network 
(GRN) based controller to coordinate the modules of 
CrossCube to transform from its current pattern to the target 
pattern. This hybrid hierarchical control framework is 
distributed in the sense that each module makes its own 
decisions based on its local perception. The global behavior of 
modular robots emerges from the local interactions with the 
environment and between the modules. The simulation results 
demonstrate that the proposed system is efficient and robust in 
adaptively reconfiguring modular robots to adapt to the 
changing environment.  

Introduction 

Self-reconfigurable modular robots are autonomous robots 
with a variable morphology, where they are able to 
deliberately change their own shapes by reorganizing the 
connectivity of their modules to adapt to new environments, 
perform new tasks, or recover from damages.  Each module 
is an independent unit that is able to connect it to or 
disconnect it from other units to form various 
structures/patterns dynamically. Compared with conventional 
robotic systems, self-reconfigurable robots are potentially 
more robust and more adaptive under dynamic environments.  
 Modular robots can be generally classified into two groups 
according to their geometric arrangements of the modules: the 
chain/tree-based architectures [16] [19] [21] [22] and the 
lattice-based architectures [5] [7] [8] [10] [13] [14] [17] [24] 
[25]. In the chain/tree-based architectures, the modules are 
connected in a topology of a chain or a tree, where the motion 
controls of the modules are executed sequentially. It is 
relatively easier to design and implement this kind of 
architectures.  In the lattice-based architecture, robot 
modules are usually arranged and connected in 3D patterns, 
such as a cubical or hexagonal grid, and the motion control of 
modules are carried out in parallel.  Therefore, compared to 
the chain/tree-based architectures, the lattice-based 

architectures are more flexible and efficient to form complex 
structures although the design and implementation of this kind 
of architectures are more difficult.  From this point of view, 
lattice-based modular robots are more suitable for dynamic 
environments. However, most available lattice-based modular 
robotic systems only have basic locomotion controllers to 
reconfigure the modular robots to a few predefined patterns by 
following predefined sequences or rules which have been 
optimized by human operators as a global controller.  These 
predefined rules or sequences cannot predict all the possible 
situations that may occur for modular robots under dynamic 
environments.  Although self-reconfiguration is believed to 
be the most important feature of modular robots, the ability to 
adapt their configuration autonomously under environmental 
changes remains to be demonstrated. 

Generally, centralized high-level controllers for lattice-
based modular robots are vulnerable to system failures or 
malfunctions of robot modules. On the other side, 
decentralized controllers are more robust and flexible under 
dynamic and uncertain environments.  However, the main 
challenge for distributed systems is that it is difficult to predict 
the emerging behaviors only from local interactions of 
individual agents; neither is it easy to design rules for local 
interactions to generate desired global behaviors. Therefore, 
the major challenge in developing a decentralized controller 
for self-reconfigurable modular robots is how to coordinate 
local behaviors of multiple modules to achieve the desired 
global patterns to adapt to current environmental situations.  
To this end, we turn our attention to biological systems.  
Biological systems, from macroscopic swarm systems of 
social insects to microscopic cellular systems, can generate 
robust and complex emerging behaviors through relatively 
simple local interactions subject to various kinds of 
uncertainties [9]. We are more interested in the 
morphogenesis procedure in multi-cellular organisms. During 
the morphogenesis, genes in each cell are expressed, resulting 
in various cellular functions. The expression of the genes is 
regulated by their own protein products as well as proteins 
produced by other genes in the same cell or neighboring cells 
through intracellular and intercellular diffusion, forming a 
gene regulatory network that can be described by a set of 
coupled ordinary differential equations. 

The connection between reconfigurable modular robots and 
multi-cellular organisms appears straightforward. Each unit in 
modular robots can be seen as a cell, and there are similarities 
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in control, communication and physical interactions between 
cells in multi-cellular organisms and modules in modular 
robots. For example, control in both modular robots and 
multi-cellular organisms are decentralized. In addition, global 
behaviors of both modular robots and multi-cellular organisms 
emerge through local interactions of the units, which include 
mechanic, magnetic and electronic mechanisms in modular 
robots, and chemical diffusion and cellular physical 
interactions such as adhesion in multi-cellular organisms. 
Therefore, it is a natural idea to develop control algorithms for 
self-reconfigurable modular robots using biological 
morphogenetic mechanisms. 
 Inspired by the embryonic development of multi-cellular 
organisms [24], in this paper, we propose a morphogenetic 
approach to self-reconfiguration of a lattice-based simulated 
modular robot, CrossCube. Basically, each module of 
CrossCube has a flexible single cubic shape like Molecube 
[25] [15], which does not require much free space for modules 
to move around, similar to the mechanics of SUPERBOT [14] 
[4] and MTRAN [10] [11] [20]. In the high-level controller, a 
two-layer morphogenetic architecture is proposed. Layer 1 is 
pattern generation layer, which is a rule-based controller to 
generate appropriate patterns represented by look-up tables. 
Layer 2 is a gene regulatory network (GRN) based controller 
to reconfigure modules automatically to the target patterns 
generated from layer 1.  
   Recently, Stoy proposed cellular automata to control 
reconfiguration [17]. Both our method and Stoy’s method 
used cellular mechanism to reconfigure the modular robots. 
However, there are some major differences between our work 
and his work. Our method is two-layer hierarchical method. In 
[17], one-layer approach was proposed which corresponds to 
layer 2 in our model. Layer 2 of our model uses priorities to 
assign the importance of the positions of the target pattern, 
which help to improve the balance of target formation. In 
addition, our proposed method can solve the dead-lock 
situations of the modules while [17] cannot.  
 The major contributions of this paper are listed as follows. 
(1) The mechanics of CrossCube enables highly flexible 
locomotion compared to that in existing lattice-based modular 
robots. (2) A hybrid hierarchical morphogenetic controller is 
proposed, which is a decentralized approach where each 
module makes its own decisions based on its local perceptions 
on the environment and interactions with its immediate 
neighboring modules.  (3) The modular robots can 
autonomously choose an appropriate pattern based on the 
current environment and then automatically self-reconfigure 
itself to the target pattern. (4) The proposed system is very 
robust to system failures. 
 The rest of the paper is organized as follows.  The basic 
mechanics and locomotion design of CrossCube are described 
at first, followed by a brief introduction to biological 
morphogenesis.  Then the proposed morphogenetic approach 
to self-organization of modular robots is presented. Various 
simulation results on evaluating the proposed morphogenetic 
approach to modular robots under dynamic environments are 
described. The paper concludes with a short summary of the 
current results and future work. 

CrossCube – A Simulated Modular Robot 

CrossCube is a simulated modular robot we developed in a 
robot simulator using a real time physics engine PhysX. The 
detailed information on the simulator will be discussed in the 
simulation section. CrossCube adopts a lattice-based cube 
design. Each module is a cubical structure having its own 
computing and communication resource and actuation 
capability. Like all modular robots, the connection part of the 
modules can easily be attached to or detached from other 
modules. Each module can perceive its local environment and 
communicate with its neighboring modules using on-board 
sensors. 
 Each CrossCube module consists of a core and a shell as 
shown in Fig. 1(a). The core is a cube with six universal 
joints. Their default heading directions are bottom, up, right, 
left, front, and back, respectively. Each joint can attach to or 
detach from the joints of its neighbor modules. The axis of 
each joint can actively rotate, extend, and return to its default 
direction and length. 
 The cross-concaves on each side of the shell restrict the 
movement trajectory of the joints, as show in Fig. 1(a). The 
borders of each module can actively be locked or unlocked 
with the borders of other modules, as shown in Fig. 1(b). 
 Basic motions of modules in CrossCube include rotation, 
climbing and parallel motion. Fig. 1(c) illustrates a rotation 
movement of two modules. Parallel motion means that a 
module moves to a next position which is parallel to its 
current position. During a parallel motion, a module moves 
from its current position to a parallel position Climbing 
motion means that a module moves to a diagonal neighboring 
position. Parallel motion and climbing motion allow a module 
of CrossCube to move to any position within the modular 
robot as long as the modules are connected. Since the major 
focus of this paper is the self-reconfiguration control 
algorithm, the detailed mechanical design of CrossCube is 
skipped here. 

Figure 1: Mechanical demonstration of CrossCube. (a) The 
joints; (b) The locks on the boundaries of the modules. (c) 
Rotation and extension of the joints of the modules. 

Morphogenetic Approach 

Multi-Cellular Morphogenesis 
Multi-cellular morphogenesis is under the control of gene 
regulatory networks. When a gene is expressed, information 
stored in the genome is transcribed into mRNA and then 
translated into proteins. Some of these proteins are 
transcription factors that can regulate the expression of their 
own or other genes, thus resulting in a complex network of 
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interacting genes termed as a gene regulatory network (GRN). 
To understand the emergent morphology resulting from the 
interactions of genes in a regulatory network, reconstruction 
of gene regulatory pathways using a computational model has 
become popular in systems biology [1].  A large number of 
computational models for GRNs have been suggested [2], [3], 
which can largely be divided into discrete models, such as 
random Boolean networks and Markovian models, and 
continuous models, such as ordinary differential equations and 
partial differential equations. Sometimes, GRN models also 
distinguish themselves as deterministic models and stochastic 
models according to their ability to describe stochasticity in 
gene expression. Note that in artificial life, a few high-level 
abstraction models have also been used for modeling 
development, such as the L-systems [12] and grammar trees 
[6]. 

The Hierarchical Framework 
  The metaphor between reconfigurable modular robots and 
multi-cellular organisms is straightforward.  We can treat 
each module in modular robots as a single cell. And the 
similarities in control, communication and physical 
interactions between cells in multi-cellular organisms and 
modules in modular robots are obvious.  For example, the 
control in both modular robots and multi-cellular organisms in 
decentralized.  Furthermore, the global behaviors of both 
modular robots and multi-cellular organisms emerge through 
local interactions of the units, which include mechanic, 
magnetic and electronic mechanisms in modular robots, and 
chemical diffusion and cellular physical interactions such as 
adhesion in multi-cellular organisms.                

Figure 2:  The block diagram of the hierarchical framework 
for the morphogenetic approach. 
 
Based on this metaphor, a hybrid hierarchical morphogenetic 
approach is developed in this paper for self-reconfiguration of 
modular robots.  First, the target pattern (i.e. final 
configuration) that a modular robot needs to form has to be 
generated automatically based on the current environments 
and mission at hand using some heuristic rules, which is the 
layer 1 controller of the hierarchical framework.  Then, the 
modules in a modular robot need to self-organize themselves 
to form the target pattern generated by layer 1 using a GRN-
based controller, which is the layer 2 controller.  Fig. 2 
shows the block diagram of this hierarchical GRN framework. 
Each unit of the modular robots contains a chromosome 
consisting of several genes that can produce different proteins.  
The local communications between the modules can be setup 
by diffusing the proteins into neighboring modules. The 

concentration of the diffused proteins decays over time and 
distance. 

Layer 1: Pattern Generation 
Adaptation to environmental changes is of paramount 
importance in reconfigurable modular robots. A mechanism is 
needed to define and modify the target configuration of the 
modular robot adaptively. Adaptation of the global 
configuration of the modular robot, i.e., change in morphogen 
values, can be triggered by local sensory feedback.  For such 
tasks, it is assumed that each module is equipped with a sensor 
to detect the distance(s) between the module and obstacle(s) in 
the environment.  Once a module receives such sensory 
feedback, this information will be passed on to its neighbors 
through local communication. In this way, a global change in 
configuration can be achieved. 

The target pattern of the modular robot is defined by 
morphogen values of each grid. Grids are discretized from the 
space in which the modular robot is located. Each grid has the 
same size of with a robot module. The morphogen value can 
be either positive or negative. A positive morphogen value 
means that the grid should be occupied by a module, while a 
negative gradient suggests that the module in the grid, if any, 
should be removed. A higher value of morphogen value 
indicates a higher priority for the grid to be filled by a module. 

For the sake of simplicity, a number of basic configurations 
for different environments can be represented in terms of a 
look-up-table for a given mission, for instance locomotion. An 
example of defining the configuration of a vehicle is provided 
in Table 1. In the table, x, y, and z are 3D coordinates of grid 
positions, MG denotes morphogen level and PID stands for 
position identification. Additionally, we define some joints’ 
behaviors to enable the vehicle to move once the 
configuration is completed.  Joints can be identified by its 
PID and RD means joint rotate direction. 

Then the question is how to generate the look-up-table and 
decide the morphogen value for each position of a pattern 
under current environmental situations. A rule-based 
controller is developed for this purpose.  In this paper, we 
only focus on the generation of some specific vehicle patterns 
to explain the basic ideas. We will investigate a more generic 
controller for different patterns in the future. 

It is assumed that initially all robot modules know the 
heading direction of the vehicle pattern.  When a robot needs 
to traverse a path whose width is narrower than that of the 
robot, the width of the front row will be first adapted to fit in 
the path. The remaining rows of the vehicle will be adapted 
row by row in a decentralized manner through local 
communication.  The basic rules for this procedure can be 
summarized as follows:   
 Rule 1:  Once a module in the front row detects obstacle(s), 

it passes this information through local communication to its 
neighboring modules until all the modules are reset to the 
unstable state for initialization. Refer to the next section for 
a definition of different states of the robot modules.  

 Rule 2: If some of the modules in the first row detect an 
obstacle, they will estimate whether the robot need to 
reconfigure itself to avoid the obstacle.  If yes, these 
modules will estimate how many modules need to be 
removed and this information is passed to other modules in 

Task 
requirements

Layer 1:
Pattern 

Generation

Layer 2:
Pattern 

Formation

Pattern/Body 
Motion Control 

Environment

Hierachical Morphogenetic Framework
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the same row through local communication. Therefore, the 
mophogen gradients of these need-to-remove positions are 
set up as negative values while others as positive values. As 
a result, those positions with positive mophogen values are 
head of the new vehicle pattern. 

 Rule3: After the GRN-based pattern formation controller 
finishes the reorganization of the modules in one row, the 
states of these modules are set to be ‘stable’. If a row of a 
vehicle pattern is filled in by stable modules, these modules 
can set the positive morphogen values for the position in the 
next row. One exception is that if the module is used as a 
wheel for the vehicle pattern, the morphogen value of its 
next position should be set as negative because two 
neighboring wheel modules causes fault pattern. 

 Rule4: The pattern generation procedure stops when all the 
modules change to the stable state. 

Layer 2: Pattern Formation 
By setting any single module as the origin, all other modules 
can figure out their relative positions to this origin easily 
through local communications. Based on the relative positions 
and the information on the target pattern, each module can 
produce different types of proteins to attract other modules to 
fill in its neighboring positions with positive morphogen 
values, or repel its neighbor modules from positions with 
negative morphgen values. 
 
Finite States of Modules 
The attraction and repellent behaviors of the modules are 
regulated by a GRN-based controller, which can adaptively 
set the state of the modules to one of the following five states, 
namely, ‘stable’, ‘unstable’, ‘attracting’, ‘repelling’, and 
‘repelled’. The transition relationships between the five states 
of modules are given in Figure 3.  
    

Figure 3: State transition of each module in CrossCube. 
 
   The “stable” state means the final state of the module. The 
“attracting” state means the module can attract other modules 
to fill in some of its neighboring positions. The “unstable” 
state means the module can respond to attractions.  The 
“repelling” state means the module can repel specific 
neighboring modules away. The “repelled” state means that 

the module responds to repelling requests and move away 
from the current position.  

When an ‘unstable’ module arrives at the destination 
position (grid), it changes its state to “stable” (arrow a in 
Figure 3). A ‘stable’ module can change its state to 
‘attracting’ (arrow b in Figure 3) if it has neighboring 
positions with a positive morphogen value. When those 
neighboring positions are occupied by modules, the 
‘attracting’ module returns to the ‘stable’ state (arrow c in 
Figure 3).  A ‘stable’ module may also give up its current 
position so that it can fill in some more important positions in 
the pattern (with a high positive gradient) by turning its state 
to ‘unstable’ (arrow d in Fig. 2).  

When the ‘repelled’ module moves away from its current 
position it switches its state to ‘unstable’ (arrow h in Figure 
3).  A module can be triggered to be ‘repelling’ state under 
two situations. First one is when a ‘stable’ module finds out 
that some of its neighboring modules are located in the 
positions with negative morphogen value, it changes its state 
to ‘repelling’  (arrow e in Figure 3) and switches the state of 
those neighbors to be ‘repelled’ (arrow g in Figure 3). When 
all the ‘repelled’ modules have left, the ‘repelling’ module 
returns to the ‘stable’ state (arrow j in Figure 3). The second 
situation is a deadlock situation. A deadlock happens when a 
module is blocked by its neighboring modules. To resolve this 
deadlock, the blocked module switches its state to be 
‘repelling’ (arrow f in Figure 3), and trying to change the state 
of all its neighbors to be ‘repelled’ (arrow g in Figure 3). This 
removes some of its neighboring modules to make room for 
the blocked module to move away. Then the ‘repelling’ 
module turns back to the ‘repelled’ state (arrow i in Figure 3). 

The state transitions are controlled by a GRN-based model 
having two gene-protein pairs: an attracting gene-protein pair 

),( AA pg and a repelling gene-protein pair ),( pp pg .  We 
assume that the repellent states always have a higher priority 
than the attracting states. As a result, all the states triggered by 
the attracting behaviors can be overwritten by the states 
triggered by the repelling behaviors. The reason for this 
assumption is that the positions with a repelling (negative) 
morphogen value should be kept empty as long as migration 
modules are still in need during reconfiguration.  

 
Gene-Protein Pair for Attraction 
The attracting gene-protein pair ),( AA pg is used to control 
the transitions between ‘attracting’, ‘stable’ and ‘unstable’ 
states in Figure 3. Basically the expression level of Ag  
affects the state as shown in (1). And protein Ap  will 
regulate Ag ’s expression level.  

  
_

_ _

_

'unstable'        if 

state 'stable'            if 

'attracting'      if 

A A L

A L A A H

A A H

g G

G g G

g G

 


  
 

         (1) 

where _A LG  is a negative threshold and _A HG  is a positive 

threshold. 

At the initial stage of pattern formation, all modules are set 
as ‘unstable’. After they are initialized with the target pattern 
and the relative position information to the origin, modules 
that are located in the grids with a positive morphogen value 
become ‘stable’. A new ‘stable’ module initializes the gene 
expression level of its attracting gene Ag  to zero. 

Repelling

Unstable Attracting

Repelled

Stable

Repelling

Atrracting

a
d

b
c

i
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fh

e

g

j



Proc. of the Alife XII Conference, Odense, Denmark, 2010 769

Each ‘stable’ module generates attracting protein Ap  for 
all of the empty neighboring grids having a positive 
morphogen value. The local generated Ap  and received Ap  
from other modules will regulate the expression level of Ag . 
When Ag  is high enough to trigger the module to be 
‘attracting’, the local generated Ap  will be diffused to other 
modules. During diffusion, the concentration of Ap  are 
weaken by a fix rate each time when it enters a cell. Here, 

Ap  is defined as  
},{ ij

A
ijij

A MAPp        (2) 
 

where ij
Ap  is the attracting protein generated by i-th module 

for its j-th neighbor position. ijAP is the position, and ij
AM is 

the concentration of the protein ij
Ap , which is discounted 

from the morphogen value of ijAP  defined by layer 1 of the 
control framework.  

The dynamics of regulation can be described by the 
following GRN model:  

1 2 3 _

( )
( )

i
i ijA
A A A received

j

dg t
k g t k p k p

dt
          (3) 

where )(tg i
A  is Ag ’s concentration of the i-th module. The 

first term indicates that )(tg i
A will decay over time.  The 

second term represents the sum of all locally generated Ap  
by grid i. The more proteins a module (which is associated 
with grid i ) generates for its empty neighboring grid, the 
higher the Ag expression level this grid will be, which means 
it will have better chance to change its state from “stable” to 
“attracting”.  Meanwhile, ( )Ag t will decrease if it receives 

Ap from other modules. The module may turn to ‘unstable’ if 
outer attraction is strong enough. 1 2 3, ,and k k k  are constant 
coefficients. Unstable modules choose the attracting position 
with the highest AP   from all the received attracting proteins 
to fill in, and move to the destination by following morphogen 
gradient. Once a module reaches its destination, it will become 
stable. 

To summarize, the gene-protein pair ),( AA pg can regulate 

each other according to the GRN model described in Eqns. (1) 
and (3). More specifically, Ap can regulate Ag through Eqn. 

(3).  Meanwhile, Ap  can diffuse only if  Ag   is greater 

than HAG _  based on Eqn. (1). 

 
Gene-Protein Pair for Repelling 
The ‘repelling’ states are controlled by the repelling gene-
protein pair ),( pp pg . The repelling modules produce pp , 
which is defined as  
 

   },{ ij
P

ijij
P MRPp                (4) 

 
where ij

Pp is the repellent protein generated by i-th module 
for its j-th neighbor. ijRP is the j-th repellent grid around i-th 
module, and ij

PM is the concentration of the protein ij
Pp , 

which equals to a predefined positive constant. Each module 
has repelling gene whose concentration affects whether the 
module should change to ‘repelled’ state, that is, to respond to 
a ‘repelling’ module. The gene expression level of Pg  is 
initialized as 0 and can be regulated by Pp  through Eqn. (5) 
 

     4 5 _

( )
( )

state  repelled when 

i
iP
P P rec

i
P

dg t
k g t k p

dt

g MG

    

  

       (5)        

where ( )pg t  is the gene expression level of the repellent 
gene at time t. _P recp  is the concentration of the received 
repellent protein. iMG  is the morphogen value of the current 
position. 4 5and k k  are constant coefficients. The first item 
denotes ( )pg t  will decays to zero along time. The second 
term indicates that when a module receives Pp , the 
concentration of Pg  is reduced. Obviously modules with a 
lower morphogen value are more likely to be repelled. 

To summarize, Pp  can regulate Pg  through Equation 
(5). Pg can produce Pp  under the condition that Pg is 
below iMG  and the module is blocked. 

Simulation Results 

To evaluate the efficiency and robustness of the 
morphogenetic approach to the self-reconfiguration of 
CrossCube, several case studies have been conducted in a 
robot simulator, as shown in Figure 4.  This simulator is used 
to simulate the behaviors and interaction of CrossCube with a 
physical world using C++ and the PhysX engine from nVidia 
(http://en.wikipedia.org/wiki/PhysX). In the following 
experiments, the system parameters are setup as 
follows: 1 0.7,k  2 1,k   3 1k  , 4 0.5,k  5 2k  , _A LG  = -
1, _A HG  = 1, _ 2P LG   , ij

PC  = 0.7.  Protein 
concentration decays to 80% of its previous level when it 
diffuses into a neighbor module.  

Case Study 1: Pattern Formation 
To evaluate the performance of the GRN-based controller for 
pattern formation layer, first, we can predefine a fixed target 
pattern using a look-up table.  For example a vehicle pattern, 
can be defined as Table 1. 
 

Positions 
(X, Y, Z, MG, PID) 

Joints 
(PID1, PID2, RD) 

(0, 0, 0, 10, 0) (1, 0, 3, 10, 10)  (0, 1, 0)

(1, 0, 0, 10, 1)  (2, 0, 3, 10, 11)  (2, 3, 1) 

(2, 0, 0, 10,2)  (0, 0, 4, 10,12)  (6, 7, 0) 

(3, 0, 0, 10, 3)  (1, 0, 4, 10, 13)  (8, 9, 1) 

(1, 0, 1, 10, 4)  (2, 0, 4, 10, 14)  (12, 13, 0) 

(2, 0, 1, 10, 5)  (3, 0, 4, 10, 15)  (14, 15, 1) 

(0, 0, 2, 10, 6) (0, 0, 1, ‐1, 16)   

(1, 0, 2, 10, 7)  (3, 0, 1, ‐1, 17)     

(2, 0, 2, 10, 8)  (0, 0, 3, ‐1, 18)   

(3, 0, 2, 10, 9)  (3, 0, 3, ‐1, 19)     

 
Table 1: Definition of a vehicle pattern for case study 1.  In the 
table, x, y, and z are 3D coordinates of grid positions, MG 
denotes morphogen level and PID stands for position 
identification. 

Based on this predefined target pattern, the modules of 
CrossCube modules need to autonomously configure 
themselves to form the target pattern using the GRN-based 
controller in layer 2.  A set of snapshots of this pattern 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 770

formation procedure in the experiment is depicted in Figure 4. 
From Figure 4, we can see that the CrossCube can 
automatically form a given target pattern through self-
reconfiguration using the proposed GRN-based controller. 
 

 
Figure 4: Autonomous reconfiguration of a CrossCube from a 
rectangle to a vehicle using the GRN-based model. 
 

 
Figure 5: A set of snapshots for the simulation using the 
repelling feature of the GRN-based controller to resolve a 
deadlock problem. (a) The original pattern of the robot. (b)(c) 
Two modules are repelled by the central modules. (d)(e) The 
central modules move away from blocked positions. (f) The 
target pattern is finished. 

Case Study 2: Resolving Deadlock 

In this case study, a deadlock problem is resolved using the 
repelling function of the GRN-based controller in layer 2. 
Robot modules are initialized in a 4x3x3 solid cube, starting at 
(0, 0, 0) and ending at (3, 2, 2). The target pattern is 
predefined in Table 2 which is a center-empty box plus two 
additional modules at sides. To build the pattern, the modules 
in the center of the solid cube should move out the module 
that is blocked by the modules on surface. Then the GRN-
based controller of layer 2 is conducted to solve the deadlock 
problem to form the target pattern.  Figure 5 shows the 
successful procedure of solving this deadlock problem using 
this morphogenetic approach on CrossCube simulator. It is 

shown that the modules with lower morphogen value are 
repelled which is consistent with our design. 

Positions (x, y, z) 
Morphogen 

value 

(-1, 0, 1), (4, 0, 1), (0, 1, 1), (3, 1, 1)  2

(1, 1, 1), (2, 1, 1)  ‐10

Other positions 10 

 Table 2 Definition of a vehicle pattern for case study 2 

Case Study 3: Self-Repairing 
One important feature of a reconfigurable modular robot is 
being able to dynamically self-repair itself from the 
malfunctions of modules or damaged modules. For example, if 
some of the modules are damaged, the remaining modules will 
release new attracting proteins to repel those damaged 
modules and attract existing modules in the positions with a 
low morphogen value to fill in the positions of the damaged 
modules.  In other words, modules that are located in less 
important positions of the target pattern will automatically 
migrate to the positions originally occupied by the damaged 
modules with a higher morphogen value. To evaluate the self-
repairing performance of the GRN-based control in layer 2, 
another experiment is conducted here. First, the look-up table 
for the target pattern (i.e., a vehicle patter here) is given in 
Table 3 as a fixed predefined layer 2. The bottom modules (y 
equals to 0) are functional modules in the vehicle pattern. The 
top modules (y equals to 1) are backup modules, which are 
used to repair the malfunctioned parts of the vehicle pattern. 
Therefore, the backup modules have a lower morphogen value 
than that of the functional modules. 

When the vehicle is moving, an “explosion” occurs and 
some functional modules are blown away. The backup 
modules then automatically move to fill in the damaged 
modules. Figure 6 shows a snapshot of this self-repairing 
procedure using the proposed hierarchical framework on 
CrossCube modules.  This experiment demonstrates that the 
proposed approach is efficient for self-repair of a modular 
robot in the presence of some failed modules. 
 

Positions 
(X, Y, Z, MG, PID) 

Joints 
(PID1, PID2, RD) 

(0, 0, 0, 10, 0) (0, 0, 4, 10,12)  (0, 1, 0)

(1, 0, 0, 10, 1) (1, 0, 4, 10, 13)  (2, 3, 1)

(2, 0, 0, 10,2) (2, 0, 4, 10, 14)  (6, 7, 0)

(3, 0, 0, 10, 3) (3, 0, 4, 10, 15)  (8, 9, 1)

(1, 0, 1, 10, 4) (0, 0, 1, ‐1, 16)  (12, 13, 0)

(2, 0, 1, 10, 5) (3, 0, 1, ‐1, 17)    (14, 15, 1)

(0, 0, 2, 10, 6) (0, 0, 3, ‐1, 18)   

(1, 0, 2, 10, 7) (3, 0, 3, ‐1, 19)     

(2, 0, 2, 10, 8) (1, 1, 1, 1, 20)   

(3, 0, 2, 10, 9) (2, 1, 1, 1, 21)   

(1, 0, 3, 10, 10) (1, 1, 2, 1, 22)   

(2, 0, 3, 10, 11) (2, 1, 2, 1, 23)   

Table 3 Definition of a vehicle pattern for case study 3 

Pattern Adaptation in a Changing Environment 
To verify the efficiency and robustness of the rule-based 
controller for pattern generation, a transformable vehicle is 
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developed. During the pattern generation process, the positive 
morphogen value is set as 10 and the negative morphogen 
value is -10. 

A set of snapshots showing the adaptation of the vehicle 
pattern to environmental changes is provided in Figure 7.  
First the pattern generation controller generates a vehicle 
pattern based on the width of path it needs to traverse using 
the rule-based method. As the vehicle is moving forward, a 
narrower path is detected. Consequently, a new vehicle pattern 
that can fit in this narrower tunnel is generated. Then steps are 
detected in front of the robot, new target patterns are 
dynamically generated to allow the robots to climb the steps, 
and eventually a new vehicle pattern is generated to continue 
its locomotion task after finishing the climbing. During this 
procedure, the GRN-based controller for pattern formation 
layer would automatically reconfigure the modules to form the 
new target patterns.   

 

 
 
Figure 6: A set of snapshots of the self-repairing of CrossCube 
using the GRN-based controller.  (a) A vehicle pattern is 
formed. (b) The vehicle pattern moves forward. (c) Some 
modules are blown off when the explosion happens.  (d) The 
failed part is filled up by the backup modules. (e) The vehicle 
is repaired.   (f) The repaired vehicle continues moving. 

Conclusion and Future Work 

In this paper, we presented a hybrid hierarchical approach to 
self-reconfiguration of a simulated modular robot, CrossCube, 
which is inspired by multi-cellular morphogenesis.  First 
layer defines the desired configuration of the modular robots 
while the other layer organizes the modules autonomously to 
achieve the desired configuration. Such a hierarchical 
structure makes it possible to separate the control mechanisms 
for defining a target configuration from those for realizing it, 
similar to biological gene regulatory networks. In response to 
the environment changes, the layer for defining the robot 
configuration is able to adapt the target configuration, based 
on which the second layer can re-organize the modules 
autonomously to realize the target configuration. 
The current system is only based on simulated modular robots 
with considerations of physical constraints. In the future, we 
will develop the real modular robots based on the current 
mechanical design.  Furthermore, since the current design of 
the first layer is a heuristic rule-based method, it has some 
limitations to generate various patterns for dynamic 
environments, only some simply patterns are possible.  In the 
future, we will investigate a more general approach for the 
design of layer 1 so that more general patterns can be 
automatically generated to adapt to various dynamic 
environmental changes.  
 

Figure 7. A set of snapshots demonstrating a series of 
reconfigurable processes during locomotion and climbing. The 
robot first adapted its width to the narrow path, then changed 
its configuration for climbing up a step, and finally 
reconfigured itself into a vehicle again to move forward. 

Acknowledgements 

This work was supported in part by Honda Research Institute 
Europe. The work was done while Yaochu Jin was with 
Honda Research Institute Europe. 



Proc. of the Alife XII Conference, Odense, Denmark, 2010 772

References 
[1] Alon, U. (2007). Network motifs: theory and experimental approaches, 

Nature Review Genetics, vol. 8, pp. 450–461. 
[2] DeJong, H. (2002). Modeling and simulation of genetic regulatory 

systems: A literature review, Journal of Computational Biology, 
vol. 9, pp. 67–103. 

[3] Endy D., and Brent, R. (2001). Modeling cellular behavior, Nature, 
vol. 409,pp. 391–395. 

[4] Everist, J., Hou, F., and Shen, W. (2006). Transformation of Control 
in Congruent Self-Reconfigurable Robot Topologies, in Proc. of 
International Conference on Intelligent Robots and Systems. 

[5] Gilpin, K., Kotay, K. and Rus, D. (2007). Miche: Modular Shape 
Formation by Self-Dissasembly, in Proc. of IEEE International 
Conference on Robotics and Automation. 

[6] Gruau, F. (1993). Genetic synthesis of modular neural networks, in 
International Conferences on Neural Networks. Morgan Kaufmann, 
pp. 318–325. 

[7] Jorgensen, M. W., Ostergaard, E. H., and Lund, H. H. (2004). Modular 
ATRON: Moduels for a self-reconfigurable robot, in Proc. of IEEE 
International Conference on Intelligent Robots and Systems. 

[8] Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., 
and Kokaji, S. (2004). Distributed adaptive locomotion by a 
modular robotic system, M-TRAN II, in Proc. of IEEE International 
Conference on Intelligent Robots and Systems.  

[9] Kelly, K. (1994). Out of Control – The New Biology of machines, 
Social Systems and Economic World. Basic Books.  

[10] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., and 
Murata, S. (2008). Distributed self-reconfiguration of M-TRAN III 
modular, The International Journal of Robotics Research, 27(3-
4):373–386.  

[11] Kurokawa, H., Tomita, K., Kamimura, A., Yoshida, E., Kokaji, S., 
and Murata, S. (2005). Distributed Self-reconfiguration Control of 
Modular Robot M-TRAN, in Proc. of International Conference on 
Mechatronics and Automation. 

[12] Lindenmayer, A. (1968). Mathematical models for cellular 
interaction indevelopmental. Parts I and II, Journal of Theoretical 
Biology, vol. 18, pp. 280–315. 

[13] Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., and Kokaji, S. 
(2001). Self-repairing mechanical systems, Autonomous Robots, vol. 
10, pp. 7–21. 

[14] Salemi, B., Moll, M., and Shen, W. (2006). SUPERBOT: A 
Deployable, Multi-Functional, and Modular Self-Reconfigurable 
Robotic System, in Proc. of IEEE International Conference on 
Intelligent Robots and Systems. 

[15] Moll, M., Will, P., Krivokon, M., and Shen, W. (2006). Distributed 
Control of the Center of Mass of a Modular Robot, in Proc. of IEEE 
International Conference on Intelligent Robots and Systems. 

[16] Shen, W., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., and 
Venkatesh, J. (2006). Multimode locomotion for reconfigurable 
robots, Autonomous Robots, vol. 20, no. 2, pp. 165-177. 

[17] Stoy, K. (2006), Using cellular automata and gradients to control 
self-reconfiguration, Robotics and Autonomous Systems, vol. 54, 
pp.135-141. 

[18] Unsal, C., Killiccote, H., and Kholsa, P.K. (2001). A Modular Self-
Reconfigurable Bipartite Robotic System: Implementation and 
Motion Planning, Autonomous Robots, vol. 10, pp.23–40. 

[19] Yim, M., Eldershaw, C., Zhang, Y., and Duff, D. G. (2004).  
Limbless conforming gaits with modular robots, in Proc. of 
International Symposium on Experimental Robotics. 

[20] Yoshida, E., Kurokawa, H., Kamimura, A., Tomita, K., Kokaji, A., 
and Murata, S. (2004). Planning Behaviors of a Modular Robot: an 
Approach Applying a Randomized Planner to Coherent Structure, in 
Proc. IEEE International Conference on Intelligent Robots and 
Systems. 

[21] Yu, C.H., Haller, K., Ingber, D., and Nagpal, R. (2009). Morpho: A 
selfdeformable modular robot inspired by cellular structure, in Proc. 
of International Conference on Robotics and Automation.  

[22] Yu, C., and Nagpal, R. (2009). Self-Adapting Modular Robotics: A 
Generalized Distributed Consensus Framework, in Proc. of 
International Conference on Robotics and Automation. 

[23] White, P., Zykov, V., Bongard, J., and Lipson, H. (2006). Three 
Dimensional Stochastic Reconfiguration of Modular Robots, in 
Proc. of Robotics: Science and Systems Conference, pp. 161–168. 

[24] Wolpert. L. (2002). Principles of Development. Oxford University 
Press. 

[25] Zykov, V., Chan, A., and Lipson, H. (2007). Molecubes: An Open-
Source Modular Robotics Kit, in Proc. of International Conference 
on Robotics and Automation. 


