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Abstract

In this paper, we propose a collective self-supervised learn-
ing method to be deployed in acoustic sensor arrays. We de-
scribe a series of experiments on the automated classification
of tropical bird species and bird individuals from their songs
by a classifier ensemble. Simulation results showed that accu-
rate classification can be achieved using the proposed model.

Introduction
Adaptive sensor arrays provide excellent platforms for test-
ing hypotheses about critical properties of living systems, in-
cluding collective and social behavior, communication and
language, emergent structures and behaviors, among others.
Further, understanding the capabilities and limitations of
sensor arrays are useful for understanding self-organization
in its own right, and may also prove helpful in guiding the
construction of artificial agents that possess problem-solving
abilities.

Over the past few years, we have been concerned with
developing acoustic sensor arrays for use in observing and
analyzing bird diversity and behavior (Vallejo and Taylor,
2009). We would like each sensor to see and “understand”
part of the situation – depending on its own location – then to
fuse their experiences with other such sensors to form a sin-
gle, coherent understanding by the ensemble (Taylor, 2002).
The ideal is that the array will act something like a living
membrane, sensitive to what is going on within it, around it
and passing through it.

So far, we have developed and tested sensor arrays that
can identify their own location and sense bird vocalizations
in real-world settings. We have developed filters to identify
species (in some instances individual birds) and software
tools to localize those individuals in natural environments.
In the same vein, we have determined, to some extent, the
conditions under which different classification approaches,
both supervised and unsupervised, would be particularly ef-
fective (Vilches, et al 2006; Escobar, et al 2007; Vallejo etal
2007; Trifa, et al, 2008; Kirschel, et al 2009).

A problem with unsupervised learning methods has been
that a particular bird species might be attached to one cate-

gory in one part of the array, but to another category in other
parts of the array. Therefore, achieving coherence and con-
sistency in classification at the ensemble level have remained
elusive. The main goal of the learning process should not
only be to allow individual nodes to classify environmental
sources accurately, but also to achieve coherent and consis-
tent classification capabilities along the entire sensor array.

Toward that goal we have devised a self-supervised clas-
sifier ensemble model in which individual nodes of the ar-
ray collectively act as both learners and teachers during the
learning process. At each training step, each node of the ar-
ray uses the classification outcomes of its neighbor nodes as
output targets and learns accordingly. Therefore, the provi-
sion of labeled data from an external teacher is not necessary
as the ensemble uses self-supervision for achieving collec-
tive classification capabilities.

Here we report simulation results on birds species recog-
nition from their songs using the proposed model. Prelim-
inary results indicate that consistent and coherent classifi-
cation capabilities could be deployed in sensor arrays using
self-supervised classification. Moreover, the time required
for achieving convergence in learning have been improved
for unsupervised classification.

Related work

In this section, we summarize the work of our laboratories
aimed at developing filters to identify species, and individual
birds in natural environments. These employ a variety of su-
pervised and unsupervised approaches, as described below.

The simplest is to calculate the power spectrum, whereby
the amount of energy at each wavelength is calculated and
used to form a vector, typical to that individual or species.

We obtain better results by generating a sonogram of the
vocalization, then look at particular features of those sono-
grams that might be particular to the species or individu-
als. We have found it most helpful is to adapt methods
from human voice recognition to create a Markov Transi-
tion Matrix appropriate to the vocalizations of each individ-
ual or species. We are also looking at other methods that ap-
pear promising, especially data mining and Self-Organizing
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Maps.
A collection of software tools have proven helpful for fea-

ture extraction, by providing efficient representations ofbird
songs while at the same time preserving the essential infor-
mation contained in the songs. The emphasis has been on
feature selection and on the conversion of analog waveforms
into efficient digital representations. These tools, some of
which are described in Kirschel et al, (2009), are mostly
built on the signal processing toolbox of MatLab. Such
transformations of signals are intended to minimize the com-
munication capacity required for transmission of bird songs
over a sensor network, to minimize the storage capacity re-
quired for saving such information in databases, and to pro-
vide the simplest possible accurate descriptions of a signal
so as to minimize the subsequent complexity of identifica-
tion and localization of individual birds.

Following feature extraction, we explored the use of dif-
ferent data mining techniques for the classification of bird
species. The main goal has been to understand the impor-
tance of particular features of the acoustic signal that are
distinctive for the accurate discrimination of bird species. A
secondary goal has been to reduce the dimensionality of the
acoustic signal in order to minimize the computational re-
sources required for its manipulation and analysis.

Our approach has been to obtain large collections of tem-
poral and spectral attributes using signal processing software
tools to characterize bird songs and to use data mining to ex-
tract implicit and potentially useful information from these
data. In this way, we have obtained a collection of asso-
ciation rules that describe correlations among features that
appear to be inherent to a group of individuals and their con-
specifics (Vilches et al, 2007).

Particularly, we used decision tree-based ID3 and J.48 al-
gorithms for the identification of the most informative at-
tributes and then use the selected attributes for species dis-
crimination using a Naive Bayes classifier. Experimental
results showed considerable dimensionality reduction can
be achieved without significant loss in species classification
accuracy with respect to alternative methods (Vilches et al,
2006).

In addition, we have explored the use of Self-Organizing
Maps (SOMs) for the acoustic classification of bird species
and individuals. The overall goal has been to examine the
scope in which unsupervised learning is capable of confer-
ring meaningful categorization abilities and increasing au-
tonomy to sensor arrays.

Despite its preliminary character, our experiments with
SOMs indicate that accurate unsupervised categorization of
bird species can be achieved using two-dimensional SOMs
(Escobar et al, 2007). However, unsupervised classification
of bird individuals have proven to be extremely difficult for
SOMs so we are beginning to explore complementary ap-
proaches such as semi-supervised and supervised classifica-
tion.

Bird song is thought to possess a hierarchical organization
similar to that used for describing human language. As a re-
sult bird song is typically described as consisting of phrases,
syllables and elements (Catchpole and Slater, 1995). We
have drawn inspirations from the structure of bird song to
formulate a hierarchical approach for species and individual
unsupervised classification.

The overall approach has been to transform the acoustic
signal of bird songs into strings of symbols. This trans-
formation is achieved by the unsupervised classification of
syllables of the original acoustic signal using a competi-
tive learning network. Unsupervised species classification is
achieved using a second competitive learning network that
classifies strings of symbols from their syllable structure(i.
e. syntactical) features (Vallejo et al, 2007).

Our experiments suggested that using different abstrac-
tion levels for the description of bird song provides a conve-
nient approach for analyzing different aspects of the acous-
tic signals. On the one hand, temporal and spectral features
have proven to be useful for the categorization of song seg-
ments. On the other hand, compositional features of sylla-
bles have proven to be sufficiently informative for species
classification.

Despite of their obvious advantages, unsupervised learn-
ing methods have shown important limitations in practice.
For example, even though individual nodes have been com-
petent at discriminating bird species, and in some cases in-
dividual birds, achieving consistency and coherence in clas-
sification along the entire sensor array has been less satis-
factory. In this paper, we further elaborate on this particular
aspect of source recognition.

Methods and tools

Biological context

The principal field site for our work has been the rainfor-
est environment at the Estacion Chajul in the Reserva de
la Biosfera Montes Azules, in Chiapas Mexico (approxi-
mately16◦6′44′′ N and90◦56′27′′ W). The species of birds
in our analysis have been antbirds from the suboscine fami-
lies ThamnophilidaeandFormicariidae. The songs of sub-
oscines are less complicated than those of some others, and
are thought to be largely determined genetically, rather than
learned, making them more stable and appropriate for test-
ing methods of classification. The species toward which we
have directed most of our attention are Barred Antshrikes
(BAS) (Thamnophilus doliatus), Dusky Antbirds (DAB)
(Cercomacra tyrannina), Great Antshrikes (GAS) (Taraba
major), and the Mexican Antthrushs (MAT) (Formicarius
analis). The spectrograms describing the songs of each
species are shown in Figure 1. It is apparent that the songs
from different species posses a similar structure. In effect,
they consist of repetitive segments of sounds that span simi-
lar frequency spectra. These similarities pose challengesfor
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Figure 1: Spectrograms for antbirds in this study. From top,
BAS, DAB, GAS, and MAT. The spectrograms were ob-
tained from the Raven sound analysis software tool (Charif
et al., 2004).

automated species recognition; especially for those methods
that rely on unsupervised classification.

Sensor arrays

Th sensor arrays we are using consist of Acoustic ENSBox
subarrays (Girod et al, 2006), pictured in Figure 2. These
are ARM-based embedded platform designed for rapid de-
velopment and deployment of distributed acoustic sensing
applications. Each subarray node is self contained, with an
embedded processor and a four channel microphone array
that can process data locally as well as archive it and for-
ward to other nodes wirelessly.

Typically, 5 - 8 nodes are deployed concurrently to form
a distributed system of sensor sub-arrays. They are typically
placed 10 - 30m apart encompassing the area to be moni-
tored. They are automatically calibrated, to determine their
node locations and orientation, then activated to perform

Figure 2: The Acoustic ENSBox Version 2, shown deployed
near Chajul Station at left. A detailed description of both
the hardware and software of this platform may be found in
Collier (2010).

streaming event recognition and acquire data when triggered
by animal vocalizations.

This approach provides greater sensor coverage, and cre-
ates a multi-hop wireless network for forwarding data and
results back to a base station where data can be archived and
displayed. Since each sub-array is small and has a fixed ge-
ometry, data from a single sub-array can be processed using
algorithms that rely on coherence. Data from several sub-
arrays can be fused to perform source localization (Ali, et al
2008). Mre detailed descriptions of the hardware and soft-
ware of this platform may be found in Collier (2010) and
Collier et al (2010a).

Self-supervised classifier ensemble
For this study, we devised a self-supervised classifier en-
semble model (El Gayar, 2004). Different versions of self-
supervised learning have been increasingly used for mod-
eling different aspects of life-like behavior such as pattern
classification, sensory motor coordination and motion plan-
ning, among others (Cohen, 2007; Lieb, 2005).

The proposed classifier ensemble consists of a collec-
tion of competitive neural networks in which classification
is achieved by self-supervised learning as described below.
Each competitive learning network, in turn, consists of a sin-
gle layer of output unitsCi, each fully connected to a set of
inputsoj via excitatory connectionswij . Figure 3 shows an
example of such a network.

The presence of an external source initiates the operation
of those nodes of the ensemble that perceived the external
stimulus. Particularly, if a node of the ensemble detects an
input stimulus, it proceeds to determine the output unit that
most resembles the input signal. Formally, given an input
vectoro, the winner is the unitCi∗ with the weight vector
wi∗ as follows:

|wi∗ − o| ≤ |wi − o| (for all i)
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Figure 3: Simple competitive learning network. Each unit
Ci can be seen as possessing a prototype that is used to rep-
resent a collection of inputs belonging to the same category.
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Figure 4: The learning procedure. Learner nodevl interacts
with teacher nodevt and then iterates over all of the neigh-
bor nodes.

Once the output nit for a given input has been determined,
the node of the ensemble becomes a learner and its neighbor
nodes become teachers, as shown Figure 4. For example,
a learner nodevl of the ensemble detects an inputo from
the environment and determines the winner unitCi∗l. The
learner nodevl then communicates with the teacher nodevt

to use the teacher’s winner unitCi∗t as label for the inputo.
The learner nodevl then updates the weightswi∗j for the

winning unitCi∗ only, as follows:

∆wi∗j =

{

+η(oj − wi∗j) if Ci∗l = Ci∗t

−η(oj − wi∗j) if Ci∗l 6= Ci∗t

whereη ∈ [0, 1] is the learning constant.
A prediction derived from the formulation of the learning

algorithm is that learning at the node level would be accel-
erated by the interaction of the learner node with a group of
teacher nodes instead of using a target output provided by an
external teacher. Furthermore, coherence and consistencyof
classification at the ensemble level would be incidental to
the collective learning process.

The operation of the collective self-supervised learning
procedure is described using the pseudocode in Table 1.

1. Create a setN of neural networks with initial random weights
(one for each node)

2. Do until number of simulation stepsk is met

(a) For each nodevl ∈ N that detects an input signaldo
i. Determine the winner unitCi∗l of vl

ii. Select a setT ⊆ N of networks in the neighborhood ofvl

iii. For each nodevt ∈ T do
Modify the weights ofvl using the learning rule:

∆wi∗j =

{

+η(oj − wi∗j) if Ci∗l = Ci∗t

−η(oj − wi∗j) if Ci∗l 6= Ci∗t

End for

End for

End do

Table 1: Training algorithm.

Parameter Value
Nodes 16-32
Neighbors 2-8
Categories 4-8
Learning constant 0.01-0.1
Simulation steps 100-2000

Table 2: Parameters for the simulations. The values of the
learning constant and simulation steps were determined em-
pirically.

Experiments and results
Bird species recognition
We conducted simulations in order to explore the capabili-
ties of the proposed classifier ensemble on the discrimina-
tion of bird species from their songs. We use recordings
obtained by Martin L. Cody at our field site. From these
recordings, we generated a collection of unlabeled training
and validation sets using the procedure described in (Vallejo,
et al 2007). Twelve training and twelve validation samples
for each species of antbirds (BAS, DAB, GAS and MAT)
were used in our experiments.

Multiple simulations were conducted using different com-
binations of parameter values as shown in Table 2. The fol-
lowing were the major results:

1. The classifier ensemble produced a meaningful classifi-
cation of the unlabeled training sets. Table 3 shows the
accuracy in classification in a typical simulation.

2. The classifier ensemble produced acceptable generaliza-
tion performance when confronted to labeled validation
sets, as shown in Figure 5.

3. Reasonable numbers of training steps (˜500) are required
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procedure accuracy classified misclassified

training 93.75% 45 3
testing 91.66% 44 4

Table 3: Classification results

Figure 5: Classification results during validation. Misclassi-
fied samples are false negatives

for achieving coherent and consistent classification along
the entire classifier ensemble.

4. Low communication bandwidth would be required for
data transmission between nodes of a sensor arrays dur-
ing self-supervised learning.

5. Coherence and consistency in classification along the en-
tire classifier ensemble is achieved without compromising
the accuracy of classification of individual nodes.

Bird individuals classification
It is sometimes possible to distinguish individual singers.
Songs were recorded from each of 5 Mexican Antthrushs
(MAT) (Formicarius analis) bird individual during Decem-
ber 2006, by Martin Cody. The identification of each singer
was inferred from timing and location. The individuals were
identified by labels PMPa, PMPb, PBEa, AVEa, and SNWa,
Samples of 16 songs from each of the 4 territories they oc-
cupied (labeled PMP, PBE, AVE, SNW) were included. The
sonogram of each song was measured for 7 traits, including
length and maximum or minimum frequency at various parts
of the song, so that each song was represented by a vector.
From this dataset, it is apparent that some individuals are
clearly distinguished while others are much less so, at least
by inspection.

Multiple simulations were conducted using different com-
binations of parameter values as the previous experiment.
The classification results obtained in a typical simulation
are shown in Table 4. Specific results during validation are
shown in Figure 6.

procedure accuracy classified misclassified

training 77.50% 33 7
testing 72.50% 31 9

Table 4: Classification results

Figure 6: Classification results during validation. Misclassi-
fied samples are false negatives

Conclusions and future work
Our long term goal is to provide sensor arrays with the
adaptation capabilities required to identify the meaning of
bird vocalizations in the social context of the vocalizing an-
imals. This requires event recognition, symbol grounding
and adaptive communication in order for the array to arrive
at a collective understanding (Lee et al, 2003). Previous
studies have established plausible scenarios for the emer-
gence of these capabilities in sensor arrays (Collier and Tay-
lor, 2005).

Several methods for event recognition have been sug-
gested, e.g. (Nolfi, 2005). We are currently examining meth-
ods based on information theory, among others (Kobele et al,
2004). Symbol grounding, identifying and binding seman-
tically meaningful events to symbols, then communicating
that information among parts of the arrays is of great impor-
tance.

Once events have been recognized then we can use the un-
supervised classification to categorize the songs . A problem
has been that new events might be attached to one symbol in
one part of the array, but to another symbol in other parts
of the array. Our future efforts will be directed at testing
the prediction that coherence and consistency in communi-
cation could be achieved in sensor arrays using the method
proposed here.

Finally, we are developing the linguistic structure that is
necessary to describe these songs and events in an expres-
sive, learnable manner, based on the ideas developed by Sta-
bler et al (2003).

Overall, adaptive sensor arrays seem promising platforms
for monitoring applications. In the near future, our efforts
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will be directed towards enabling sensor arrays with increas-
ing adaptability and cognitive abilities. To accomplish this
we will build largely on the results reported here.
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