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Abstract

Using a set of genetic logic gates (AND, OR and XOR), we
constructed a binary full-adder. The optimality analysis of
the full-adder showed that, based on the position of the reg-
ulation threshold, the system displays different optimal con-
figurations for speed and accuracy under fixed metabolic cost.
In addition, the analysis identified an optimal trade-off curve
bounded by these two optimal configurations. Any configu-
ration outside this optimal trade-off curve is sub-optimalin
both speed and accuracy. This type of analysis represents a
useful tool for synthetic biologists to engineer faster, more
accurate and cheaper genes.

Introduction
The desire to control is a recurring theme of human nature
and the control of biological systems represents the ultimate
goal for synthetic biologists. Towards achieving this goal,
researchers have modelled and engineered genes in bacterial
cells that perform basic computational tasks. These tasks
mainly mimic the behaviour of simple electronic compo-
nents, such as logic gates, oscillators, toggle switches and
counters (Gardner et al., 2000; Elowitz and Leibler, 2000;
Guet et al., 2002). However, when attempting to increase
the complexity of these engineered genetic systems, certain
limitations of the components are likely to hamper their con-
struction. Thus, there is an urgent need for an extensive anal-
ysis of the biophysical limits of the elementary components.

Synthetic biologists showed that binary logic gates can be
engineered in living cells using transcriptional logic (Guet
et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
Cox III et al., 2007; Anderson et al., 2007; Sayut et al.,
2009). Transcriptional logic gates are genes which can in-
tegrate multiple signals at the level of cis-regulatory tran-
scription control using various binary logic functions (AND,
OR, NAND, NOR, XOR, etc.). To implement binary logic,
both the input and the output of these genes needs to have
two abundance levels corresponding to the two logical lev-
els, a high and a low abundance level. Biological mod-
ellers successfully identified and described various designs
of these logic gates (Weiss et al., 2003; Buchler et al., 2003;

Hermsen et al., 2006; Schilstra and Nehaniv, 2008; Silva-
Rocha and deLorenzo, 2008). However, what is still miss-
ing is a complete analysis of how these logic gates can be
used as building blocks for more complex logical systems
and what are the parameters which ensure optimal design in
terms of speed and accuracy under limited (constant) ener-
getic resources.

There are three properties of a genetic system that we use
in our analysis: speed, accuracy and cost. We define the
propagation timeas the time required by the output species
in a logical system to reach the new steady state after an in-
stantaneous change of the inputs. This is directly connected
with speedin the sense that fast system are described by
short propagation times and conversely. Due to low copy
number and slow chemical reactions, genetic systems are
stochastic and, thus, they are affected bynoise(Kaern et al.,
2005). The noise reduces the ability to distinguish between
different logical outputs of a gate and, because of that, it re-
ducesaccuracy. Finally, themetabolic costis usually mea-
sured as the required number of ATP molecules. We are in-
terested in the scaling properties of this measure, rather than
in the exact value. Hence, we measure cost as the maximum
synthesis rate of a gene.

Recently we investigated speed and accuracy in the case
of single binary genes (genes with two expression levels,
high and low) (Zabet and Chu, 2010). The analysis revealed
that these genes display a trade-off curve between switching
time and noise under fix metabolic cost, i.e., lower noise is
achieved at lower speeds and conversely. This trade-off is
controlled by the decay rate, in the sense that higher decay
rate means higher speed but also lower accuracy.

In this contribution, we extend this analysis to gene net-
works by considering a specific binary logic system, the full-
adder. The full-adder is a system able to perform binary ad-
dition (to produce both the sum and the carry) for three bi-
nary inputs, two of which are the two operands and the third
allows plugging in the carry from a previous full-adder mod-
ule. We constructed the required logic gates by considering
genes that can be regulated by two proteins in an indepen-
dent fashion, i.e., binding of any of the inputs does not alter



Proc. of the Alife XII Conference, Odense, Denmark, 2010 187

the binding of the other input. Moreover, these logic gates
need to ensureinterconnectivity. Assuming that the two in-
puts that regulate a gene can have two possible abundance
levels, high (Hin) and low (Lin), then, in order to connect
an arbitrary number of logic gates, the output has to have
two possible abundance levels (Hout andLout) with at least
the same signal strength,(Hin − Lin) ≤ (Hout − Lout)
(Magnasco, 1997). Usually the output levels are identical
with the input one or very close to them,Hout ≥ Hin and
Lout ≤ Lin. Based on these requirements, we found the
set of parameters which ensures interconnectivity of the re-
quired logic gates and then we constructed the full-adder
showing the correct functioning of the system.

Gene regulation is usually modelled by a Hill function
(Ackers et al., 1982; Bintu et al., 2005; Chu et al., 2009).
The Hill function is a sigmoid function described by two pa-
rameters: the thresholdK (which represents the input abun-
dance required for half activation of the gene) and the Hill
coefficientl (which determines the steepness of the func-
tion). The results show that, for step-like regulation func-
tions (l → ∞), the system displays an optimal position of
the threshold in terms of speed and accuracy, while, for fi-
nite Hill coefficients, there is a trade-off between these two
properties and the trade-off is controlled by the position of
the threshold.

Model
We selected a design for the full-adder with five logic gates:
two XOR gates, two AND gates, and one OR gate (see Fig.
1).

Figure 1: Full-adder. The logic gate diagram of the full
adder.

To construct this full-adder from genes, we need first to
construct transcriptional logic gates. We model a transcrip-
tional logic gate as a geneGz , which synthesises proteinz,
the output of the gate. This gene is regulated by two pro-
teinsx andy, which are considered as the inputs of gate.
Speciesz is described by the following deterministic differ-
ential equation

dz

dt
= α + βf(x, y) − µz (1)

whereα is the basal synthesis rate,α + β the maximum
synthesis rate,f(x, y) is the regulation function of geneGz,
andµ is the decay rate.

Although there are many scenarios for promoter regula-
tion that mimic the behaviour of different logic gates, we
selected independent binding (binding of one TF does not
influence in any way the binding of the other TF). In this sce-
nario there are two operator sitesOx andOy, each of them
havingl binding sites. On each operator site only molecules
of a specific transcription factor can bind, and they do this in
a homo-cooperative maner. The probabilities that an opera-
tor site is full is described by a Hill function (Ackers et al.,
1982; Bintu et al., 2005; Chu et al., 2009)

px(x) =
xl

xl + K l
, py(y) =

yl

yl + K l
(2)

whereK is the regulation threshold (the required input value
for half activation of the gene) andl is the Hill coefficient
(indicates steepness of the function). We assumed that the
two operator sites (Ox and Oy) have identical parameters
(K andl).

Assuming that the gene is turned on when any of the two
TF are present, then the regulation function will mimic the
behaviour of an OR gate. Analogously, assuming that a gene
can be turned on only when both of the transcription factors
are present, then the regulation function will mimic the be-
haviour of an AND gate. Finally, if the gene is turned on
when any of the TF is present, but when both of them are
present their effects cancels out and the gene is turned off,
then the gene will behave as an XOR gate. The correspond-
ing forms of the regulation functions are

fAND =
(xy)l

(xy)l + (Kx)l + (Ky)l + K2l
,

fOR =
(xy)l + (xK)l + (yK)l

(xy)l + (Kx)l + (Ky)l + K2l
, (3)

fXOR =
(Kx)l + (Ky)l

(xy)l + (Kx)l + (Ky)l + K2l
.

Fig. 2 confirms that these regulation functions display the
desired behaviour.

Using these three logic gates, the full-adder, can be con-
structed as a set of chemical reactions. Since the full-adder
contains five logic gates, then we need five species to im-
plement this system (e, f , g, sum and carry). The chemical
reactions which describe all these species are given by

∅
αe+βefXOR(a,b)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µe

e, ∅
αf+βf fAND(c,e)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µf

f,

∅
αg+βgfAND(a,b)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µg

g,

∅
αs+βsfXOR(e,c)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µs

sum, ∅
αco+βcofOR(f,g)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

µco

carry

wherea, b andc are three input species.
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Figure 2:Regulation functions that mimic logic gate behaviour. The threshold was set toK = 0.5 [µM ] and we considered a
Hill coefficient ofh = 3.

Results
First we need to identify the sets of parameters which allow
interconnection of gates and then we need to identify the
sub-set of parameters which allows optimal functioning of
the full-adder in terms of speed and accuracy under fixed
metabolic cost. We will apply these two analyses for two
cases: (i) step-like regulation functions (l → ∞) and (ii)
finite Hill coefficients.

To keep the mathematics tractable, and without losing too
much generality, we consider identical gates, i.e., all genes
are affected by the same decay rate (µ), have the same syn-
thesis rates (α andβ) and the same Hill parameters (l and
K). The only thing that differentiates the gates is the regu-
lation function, which, in the case case of the full-adder, can
befAND, fOR or fXOR.

Step Regulation Functions
We start our analysis by considering the ideal case, the sys-
tem where the regulation functions have infinite Hill coeffi-
cient.

The interconnectivity property can be met by consider-
ing the output signal strength to be kept constant,Hout =
Hin = H andLout = Lin = L. In the case of the OR gate,
the system has the following steady state behaviour

L =
1

µ
[α + βfOR(L, L)] ,

H =
1

µ
[α + βfOR(L, H)] , (4)

H =
1

µ
[α + βfOR(H, H)] .

For infinite Hill coefficient the solution is given byα = L
andβ = (H − L). Analogously, it can be shown that the
solution is the same for all gates. This synthesis rates ensure
a correct steady-state behaviour of the full-adder (see Fig.
3(a)).

System Performance We investigate two properties of a
logic system, namely speed and accuracy, under the con-
straint of fix metabolic cost. The metabolic cost of a gene

Z can be defined as the maximum synthesis rate of that
gene,ζz = α + βfH

z , wherefH
z is the highest value which

f(x, y) takes. Thus, by keeping the synthesis rate fixed
the metabolic cost is kept constant. Note that this is just
an approximation to the actual metabolic cost, and that the
metabolic cost of the maintenance of the entire machinery
was not included in it. However, this measure indicates how
the metabolic costs scales with different parameters.

The propagation time, Tgene, of a gene is the time re-
quired to reach the steady state to within a fractionθ of
H − L. Assuming instant change of the input, Eq. (1) can
be solved analytically and the time to reachL + (H − L)θ
or H − (L − H)θ can be computed as

Ti = τ · ln

(
1

1 − θ

)

(5)

where τ = 1/µ represents the average life time of the
species.

The propagation time through a single gate can only be
reduced by reducing the average life time of the protein (τ ).
In the case when the two logical steady states are kept con-
stant (so the signal strength is not reduced) and the synthesis
rate is kept constant (so we do not increase the metabolic
cost) then also the decay rate is kept constant. Thus, there is
no optimization that one could attempt to perform on indi-
vidual gates under fix metabolic cost without reducing sig-
nal strength. However in the case of logic gates systems,
like the case of the full-adder, the input is not changed in-
stantaneously in all gates and the position of the threshold
influences the propagation time.

The threshold is located between the low and the high
state,K = L + (H − L)λ, (λ ∈ [0, 1]). λ indicates the
position of the threshold; forλ < 0.5, K is closer toL and
for λ > 0.5, K is closer toH . Note that by consideringK
to be outside the interval[L, H ] the regulation is removed,
i.e., the gene is always in the same state no matter whether
the input isL or H . In order for a gene to change state, one
of the inputs, has to cross over or underK. Using Eq. (5)
one can compute the time it takes one species to move from
low state to the threshold (L → K) and from the high state
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Figure 3:Full-adder with step-like regulation function. (a) The output abundance based on the input abundance for step-like
regulation functions. (b) We plotted the propagation time when switching between(L, L, H) to (H, L, H). The following set
of parameters have been used:µ = 1 min−1, l = 50, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM , α = 0.2 µM · min−1,
β = 1.0 µM · min−1 andθ = 0.9.

to the threshold (H → K) as

tLK = τ · ln

(
1

1 − λ

)

, tHK = τ · ln

(
1

λ

)

. (6)

Assuming that the longest cascade in the system hasn
gates, then a general formula for the propagation time is
given by

T =

n−1∑

i=1

tiK + Tn (7)

wheretiK is equal totLK if speciesith was in low state be-
fore changing the input in the system, andtiK is equal to
tHK if speciesith was in high state before changing the in-
put in the system. Hence, the propagation time in a cascade
equals a sum oftLK and tHK terms and a fix time repre-
senting the last gene in the cascadeTn.

Fig. 4 confirms that based on the threshold position, the
system can be faster when switching in one direction and
slower in the opposite direction. When the switching direc-
tion is not important, the problem of optimizing propagation
time becomes a minimax problem, i.e., minimize the max-
imum time to switch. In the context of step-like regulation
functions, the optimum threshold, according to Eq. (6), re-
sides at the midpoint between high and low states,λT = 0.5
(see Fig. 4).

Analysing the circuit diagram of the full-adder 1 one can
notice that the longest path through the circuit consists of
three gates, and this is used when computing the carry .
This path is followed, for example, when switching between
(L, L, H) and (H, L, H). Fig. 3(b) confirms that the op-
timum threshold, in the case of step-like regulation func-
tion, resides at the midpoint between high and low state

 0
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T
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Figure 4: The time to reach the threshold. The protein av-
erage life time toτ = 1 [min]. The two steady states are
L = 0.2 [µM ] andH = 0.8 [µM ], and the corresponding
synthesis rates were considered. Both switching directions
were consider.
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(λ = 0.5). Also note, that Eq. (7) and Eq. (6) correctly
predict the propagation time in the full-adder in the case of
high Hill coefficients.

Next, we need to investigate the accuracy of the system.
At steady state thevarianceof the outputz of a logic gate,
which has two inputsx andy, can be written as (van Kam-
pen, 2007; Elf and Ehrenberg, 2003; Paulsson, 2004)

σ2
z = z

︸︷︷︸

intrinsic

+

Γzx
︷ ︸︸ ︷
[

βz

∂f(x, y)

∂x
τz

]2
Tzx

︷ ︸︸ ︷
τx

τx + τz

σ2
x

︸ ︷︷ ︸

upstream fromx

+

Γzy

︷ ︸︸ ︷
[

βz

∂f(x, y)

∂y
τz

]2

Tzy

︷ ︸︸ ︷
τy

τy + τz

σ2
y

︸ ︷︷ ︸

upstream fromy

(8)

The intrinsic component is generated by the randomness
in the birth-death processes and it can be approximated by
a Poisson process (Bar-Even et al., 2006; Newman et al.,
2006). The upstream component is the noise transmited
from the upstream species (the species that regulate the
gene) (Pedraza and van Oudenaarden, 2005). The upstream
noise is composed of three terms: the regulation factor (Γzx

and Γzy), the time average factor (Tzx and Tzy), and the
variance of the upstream species (σ2

x andσ2
y).

In this contribution, we are interested in how noise af-
fects our ability to distinguish between the two known out-
put states,H andL. To get a meaningful measure of this,
we will normalise the variance by the square of the signal
strength,ηz

.
= σ2

z/(H − L)2, rather than by the square of
the mean (which is often used as a definition of noise).

ηz =
z

(H − L)2
+

[

βzτz

∂f(x, y)/∂x

(H − L)

]2

Tzxσ2
x

+

[

βzτz

∂f(x, y)/∂y

(H − L)

]2

Tzyσ
2
y (9)

For step-like regulation function the derivatives in (9) will
be zero, and the only contribution to the noise is the intrinsic
component. Thus, the noise of the output depends only on
the steady state abundance (high and low), but is indepen-
dent of the number of gates in the system or of the threshold
position. However, if the threshold is close enough to one
of the steady states (H or L), then small fluctuations in the
input generates high fluctuations in the output and the an-
alytical method is not accurate any-more. Assuming that
the threshold is positioned at the midpoint (optimum posi-
tion for speed) and the two steady states are far enough from
each other, then the noise will be determined only by the in-
trinsic component. Hence, in the case of step-like regulation

functions, the system displays an optimum threshold posi-
tion (λ = 0.5) which ensures optimality both for speed and
accuracy.

Finite Hill Coefficients
Due to the fact that Hill coefficients are bounded above by
the number of regulatory binding sites (Chu et al., 2009),
and genes have a small number of binding sites (Hermsen
et al., 2006), biologically realistic Hill coefficients arefinite
and have low values.

For low Hill coefficients, Eq. (4) has only one solu-
tion, H = L. This is not a useful solution because it re-
moves the binary logic. Therefore, we search for param-
eters which ensure that the signal strength is not reduced,
(Hout − Lout) ≥ (Hin − Lin), and this can be achieved by
solving only the first two equations in Eq. (4):

αOR

µ
=

LfOR(L, H) − HfOR(L, L)

[fOR(L, H) − fOR(L, L)]
,

βOR

µ
=

H − L

[fOR(L, H) − fOR(L, L)]
. (10)

Note that not for all sets of parameters (l, K, µ, H, L) the
synthesis rates will have positive values. Interestingly,in-
creasing the Hill coefficient increases the space of allowed
parameters, and in the limit case of a step function (l → ∞)
any values of the other parameters will generate positive
synthesis rates. For Hill coefficient less than or equal to1
there is no solution for this system. Analogously one could
use the same mechanism to determine the synthesis rates for
all the other gates. For AND and XOR gates the solution is
given by

αAND

µ
=

LfAND(H, H) − HfAND(L, H)

[fAND(H, H) − fAND(L, H)]

βAND

µ
=

H − L

[fAND(H, H) − fAND(L, H)]
(11)

αXOR

µ
=

LfXOR(L, H) − HfXOR(H, H)

[fXOR(L, H) − fXOR(H, H)]

βXOR

µ
=

H − L

[fXOR(L, H) − fXOR(H, H)]

(12)

Fig. 5(a) confirms that the signal is not decreased and
shows that in two cases the actual output low state (Lout) is
lower than the desired one (L).

System Performance For low Hill coefficients the op-
timum threshold in terms of speed in not positioned any
more at the midpoint between high state and low state (see
Fig. 5(b)). This is a consequence of the fact that for
low Hill coefficient the Hill function loses the symmetry
around the threshold. Hence, when designing a specific
system, one could use numerical solutions to determine the
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Figure 5:Full adder with low Hill coefficients. (a) The output abundance based on the input abundance for low Hill coefficients.
(b) We plotted the propagation time when switching between(L, L, H) to (H, L, H) for low Hill coefficient. The following
set of parameters have been used:µ = 1 min−1, l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM andθ = 0.5.

optimal threshold position for any specific set of parame-
ters. Also, one can notice that decreasing the Hill coeffi-
cient increases the propagation time due to the fact that a
gene is not instantly turned on/off when an input species
crosses over/under the threshold (compare Fig. 3(b) and Fig.
5(b)). Increasing the Hill coefficient asymptotically reduces
the propagation time to the one of the step-like regulation
function and, thus, the optimal threshold asymptotically ap-
proaches the midpoint,λT = 0.5 (data not shown).

Next, we investigated the accuracy of the full-adder. The
output sum for the input(H, L, L) produces the highest
noise levels independent of the threshold position. Consider-
ing this case we determined the dependence of noise on the
threshold position. The mathematical formula of the noise
is too complicated to give any information about the sys-
tem, but we can use it to generate numerical solutions. Fig.
6(a) shows that there is an optimal position of the thresh-
old in terms of noise which differs from the optimal position
in terms of speed,λη 6= λT . However, around the optimal
threshold position in terms of noise (λη) the noise does not
vary significantly (see Fig. 6(a)).

The system displays two optimal threshold positions, one
for speed (λT ) and one for noise (λη). If these two positions
coincide (λT = λη) then the system has on optimal set of
parameters and the engineer needs to set up the threshold to
this position.

However, it is most likely, that these two threshold posi-
tions will differ, as it is the case with our full-adder. In this
case, there is an optimal trade-off curve when the threshold
resides between these two optimal positions (λT andλη). In
addition any other trade-off curve is suboptimal comparing
to this one.

In our example of the full adder0.5 ≤ λη ≤ λT . Fig. 6(b)

graphically represents the trade-off between noise and time
based on the threshold position. We identified the optimal
trade-off curve determined byλη ≤ λ ≤ λT . Any threshold
in this interval can optimize the system either in speed or in
accuracy, but never in both. However, for threshold positions
outside this interval the system display sub-optimal trade-off
curves; forλ < λη or λ > λT both the propagation time
and the noise are worst compared to the ones in the optimal
trade-off curve.

Discussion

In this contribution, we presented a general method for con-
structing arbitrarily large logical systems based on binary
genes. For exemplification purpose, we designed a full-
adder system formed of five genes. The approach modelled
logic gates constructed using two cis-regulatory transcrip-
tion control regions. This type of logic gates has been al-
ready synthetically engineered by synthetic biologists (Guet
et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
Cox III et al., 2007; Anderson et al., 2007; Sayut et al.,
2009). We propose the tuning of the synthesis/decay rates
in such a way that will permit interconnectivity of different
gates/genes. This tuning represents basic requirement fora
correct functioning of the logic system.

Recently we showed that leak free systems are optimal
in terms of speed and noise (Zabet and Chu, 2010). How-
ever, Eq. (10) and Eq. (11) indicate that basal vanishing
leak rates are very difficult to obtain. This suggests that leak
free systems, although optimal in speed and noise are not al-
ways desirable, because they are likely to reduce the signal
strength when thinking about interconnecting genes.

We also presented here an approach for selecting the set
of parameters which optimizes the system in terms of speed
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Figure 6:OptimumK for noise. (a) The noise dependence on the threshold. The following set of parameters have been used:
V = 8 × 10−16 l, µ = 1 min−1, l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM andλ = 0.5. We assumed a Poisson noise
of the three input species.

and accuracy under constant metabolic cost. Increasing the
Hill coefficient will optimize both the speed and the accu-
racy, but this is not usually at the direct reach of synthetic
biologists. However, the threshold can be altered by muta-
tions of the regulatory binding sites (Buchler et al., 2005).
We show that the threshold position, for a fixed Hill coeffi-
cient, influences both the speed (see Fig. 5(b)) and the noise
(see Fig. 6(a)).

In an ideal system, a system with gates that display
step-like regulation functions (infinite Hill coefficients), we
found that the system has an optimal set of parameters
(threshold positioned at the midpoint between the two steady
states). This set of parameters maximizes both speed and ac-
curacy for a fix cost. Moreover, the speed and the accuracy
achieved in this type of system is the asymptotic limit that
any biological real system can aim towards.

Real genes have finite low Hill coefficients and, in this
case, a logic system will display two optimal sets of param-
eters: one in speedλT and another one in noiseλη. We
found that there is a trade-off curve between speed and ac-
curacy which is bounded by these optimal sets of parameters
(λT andλη) and any point between these two can optimize
the system in either speed or accuracy. Nevertheless, any
other set of parameters (the threshold outside this interval)
is sub-optimal with respect to accuracy or speed.

This analysis showed that for finite low Hill coefficients
there are two sets of parameters, one optimizing in terms of
speed and the other on in terms of noise, when the metabolic
cost is not increased. However, this analysis addressed only
logic gates formed of individual genes. It was widely recog-
nized, that network motifs can play a significant role in both
speed and noise (Alon, 2007). Thus, further optimization

can be achieved by considering logic gates built from more
than one genes that form a network motif. Nevertheless, the
details of this analysis need to be left for further research.
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