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Abstract

Computational properties of gene regulatory networks
(GRNs) are of great interest in the field of systems biology
and, increasingly, in the field of artificial life. Understanding
how GRNs work and evolve may help in elucidating the prop-
erties of real biological networks and in designing new bio-
logical networks for practical applications. Here we investi-
gate the possibility to evolve artificial GRNs that can generate
or process continuous signals represented by concentrations
of artificial substances. We use a biologically-inspired model
of regulatory networks. The way the nodes in the GRN (reg-
ulatory units) are connected and the weights of connections
are encoded in a linear genome. A genetic algorithm is used
to obtain GRNs that can solve problems with increasing dif-
ficulty. Some of these problems require performing simple
mathematical operations and sustaining memory. We analyse
if the solutions are general by presenting the GRNs with in-
put patterns that were not used for fitness evaluation during
evolution. We also briefly discuss the advantages of using
biologically-inspired GRN-like systems for control problems
and compare them with systems inspired by neural networks.

Introduction
The genes in the genomes (DNA) of all organisms encode
indirectly 3-dimensional structures of complex chemical
polymers (RNA, proteins). When the genes are expressed,
these polymers are produced in the cell. Cells consist of a
genome, gene products, and the chemical substances these
products help to construct (by chemical reactions) and/or
transport into the cell from the outside environment. Chem-
ical substances in the cell are a part of an intricate control
mechanism. The presence of particular gene products and
chemical substances in the cell at a particular moment de-
termines what genes will be expressed at the next moment,
and thus what will be produced. The regulation of gene ex-
pression occurs first of all at the level of transcription: for-
mation of RNA molecules with the sequence corresponding
to the DNA sequence in the genome. Some of these RNA
molecules later determine the sequence of proteins. Some
proteins (called transcription factors, TFs) have chemical
affinity to particular regions in the DNA. Binding of such
proteins to DNA may lower or increase the expression of

the genes nearby. This is just one example of chemical in-
teractions that regulate gene expression, but others follow
similar rules.

A network of such regulatory processes is known as a
gene regulatory network (GRN). GRNs can be thought of as
life’s primary computers, organizing all cellular processes.
The regulatory properties of such networks and their use for
control of artificial and biological systems are of great inter-
est for the Artificial Life and the Systems/Synthetic Biology
research community. Biological GRNs are robust to exter-
nal interferences and to damages caused by mutations. They
are able to control the development of an organism consist-
ing of billions of cells. In a developing or adult multicellular
organism, each cell is controlled by a GRN with essentially
the same structure. It is the state of the network (concentra-
tion of substances) that makes the cells behave differently,
depending on their local environment.

Artificial models of GRNs were previously used to inves-
tigate statistical properties of GRNs, such as the small world
property or the dominant motifs (Kuo et al., 2006; Nicolau
and Schoenauer, 2009). Network dynamics and evolution of
networks with certain patterns of gene expression has also
been explored to some extent (Banzhaf, 2003; Knabe et al.,
2006; Kuo et al., 2004; Reil, 1999). So was the application
of artificial GRNs for control problems, such as animat con-
trol (Bentley, 2004; Taylor, 2004; Quick et al., 2003) and
artificial multicellular development. Indeed, we have origi-
nally formulated the GRN model used in this work to control
multicellular patterning of 3-dimensional artificial embryos
(Joachimczak and Wróbel, 2009), inspired by the model pre-
sented by Eggenberger (1997). Similar models have been
proposed (e.g. Schramm et al., 2009; Andersen et al., 2009),
so it is interesting to explore the computational properties of
such networks.

GRN topology in our model is encoded in a linear genome
which consists of genetic elements forming regulatory units
(nodes in the network). Connections between nodes are de-
fined by interactions between artificial TFs and regulatory
regions (“promoters”). The concentrations of TFs increase
and decrease in a continuous manner. There is no limit on
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the number of nodes, number of connections per node or to-
tal number of connections. Defining such limits would be
beneficial from the engineering point of view (it would de-
crease the vast search space of possible solutions). However,
we are not interested here in solving a particular engineering
problem, but rather in investigating the computational prop-
erties and evolvability of artificial but biologically realistic
regulatory networks.

In this paper we will aim to evolve systems in which the
expression of genes marked as the GRN output follows a
predefined target pattern. In most of the experiments the
target will depend on the input to the network. From the
biological point of view the input can be understood as a
concentration of a chemical substance in the environment.
From the engineering point of view, the input is a contin-
uous signal. In other words, we will describe networks
evolved to generate or process signals, in particular, signals
in which information is encoded in chemical pulses: coupled
increases/decreases of substance concentration.

Artificially designed regulatory networks that can per-
form desired tasks and react to external input are of re-
cent interest of the field of Synthetic Biology. Biologi-
cal GRNs in which gene expression oscillates and GRNs
created to count subsequent external signals (Elowitz and
Leibler, 2000; Friedland et al., 2009) are a step towards en-
gineering networks to produce proteins or RNAs in an in-
telligent and designed manner, for therapeutic or industrial
purposes.

In the following section, our model is briefly described.
The evolvability in various signal processing tasks and the
generality of the solutions is then discussed for each task
separately. General conclusions and the perspectives for fu-
ture work follow.

The model
Genome and genetic elements
Genomes are composed of a list of genetic elements. Several
genetic elements form a regulatory unit, which corresponds
to a node in a regulatory network. Genetic elements fall into
three classes. “Genes” are elements that code products (tran-
scription factors, TFs). Products can bind to “promoters”
(a generic term for regulatory regions). “Special elements”
code for either external inputs or outputs of the regulatory
network.

The genome is parsed sequentially and divided into reg-
ulatory units whenever a series of promoters followed by a
series of genes is found (Fig. 1). In other words, each reg-
ulatory unit can be composed of one or several regulatory
elements and one of several genes encoding TFs. In the next
step, special elements are assigned to inputs or outputs, ac-
cording to their type. The first special element of type one
is assigned to the first input, and so on. The same goes for
special elements of type two and the outputs. The number
of inputs/outputs depends on the particular experiment. If

there are more special elements of a particular type than in-
puts/outputs, they are ignored.

By computing affinities between all products and all pro-
moters, connections between regulatory units are formed.
This is how a gene regulatory network (GRN) emerges, with
each regulatory unit becoming a single node.
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output product (1) 
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additive (2)
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a gene:
transcription factor (4)
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Figure 1: The genome and the structure of a single genetic
element. Each element consists of a type field, a sign field,
and a sequence of N real values used to determine affinity
to other elements (N = 2 was used in this paper).

Each genetic element in our system encodes a point in N -
dimensional space (Fig. 1). This allows to calculate product-
promoter affinity, based on the Euclidean distance between
these points (the affinity is high when the distance is small).
If the distance is larger than a cut-off value, there is no affin-
ity. This prevents full connectivity in the network. The prod-
uct of sign fields of the two elements determines the sign of
the connection (which can be activatory or inhibitory). The
coordinates coded in genetic elements can mutate, so as the
genomes evolve, the points in N -dimensional space that cor-
respond to the elements approach one another or move away.
Neutral mutations result in a random walk in this space, so
only selection limits spreading of the points over time.

The activation of a promoter is a sum of the concentration
of all products that bind to it, weighted by their affinities.
Promoters in our systems can be either additive or multi-
plicative. The presence of a multiplicative promoter in a
regulatory unit results in a strict requirement for the presence
of a binding product, otherwise the unit is not expressed. To
compute expression of a given regulatory unit, the sum of
activations of its additive promoters is multiplied by the ac-
tivation of its every multiplicative promoter. The result (A)
allows to calculate the synthesis/degradation rate of all prod-
ucts in a given regulatory unit: dL

dt = fA(A) − L, where L
is the current concentration, and fA(A) = 2

1+e−(A−1) . This
sigmoid function can give positive or negative values. The
concentration will increase if synthesis rate is higher than
that of spontaneous degradation. Otherwise, the degradation
will be slowed down or indeed increased (when the fA(A)
is negative). Fig. 2 provides an overview of the time scale of
spontaneous product degradation in our system.

Special elements in our system, as any other genetic ele-
ments, are associated with points in N -dimensional abstract
space. If a particular special element corresponds to an in-
put, it means that the concentration of this artificial chemi-
cal substance is driven externally. Apart from that, the sub-
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Figure 2: Time scale of product
degradation. The product concentra-
tions are in the range < 0, 1 >. The
intrinsic degradation can increase if
a gene is negatively regulated.

stance behaves as any other TF in the system and regulates
other genes, with one exception: it cannot directly control
the output node of the network. Although this could be ben-
eficial for some problems, we decided to prevent trivial so-
lutions by requiring all signals to be processed by at least
one internal node. For all the experiments presented here,
at least one external special substance was provided in this
manner, having a fixed concentration of “1”. This is because
it is necessary to have a substance with a non zero concen-
tration to start the GRN activity. For networks evolved to
react to changing concentrations of external substances, ad-
ditional input elements were provided.

If an input element can be seen as a regulatory unit with
one gene and zero promoters (its concentration is driven ex-
ternally), an output element is treated as a regulatory unit
with only one promoter and a gene that does not code for
a TF. The concentration of the output gene product is thus
a clearly defined exit point for all information processing in
the system, even though the fact that connections between
the output node and the internal nodes are not permitted is
expected to have a minor detrimental effect on evolvability.
Only one output was allowed.

Genetic algorithm
Genetic operators can act on the level of single elements or
multiple elements. On the level of single elements, partic-
ular fields can be mutated, changing element type, sign bit,
or disturbing the coordinates of an associated point in space.
Single or multiple elements can be deleted or duplicated. A
series of duplications and deletions can lead to changes in
the order of the elements. Changes in the order of promoters
within a regulatory unit are neutral, the same goes for the
changes in the order of genes. Changing the order of regu-
latory units does not lead to changes in the topology of the
network so it is also neutral. Any type change is permitted.
In particular, new input and output elements can be created
from other elements (genes, promoters) when the type field
of an element is changed by mutation. Type mutations can
in principle lead to the loss of inputs or outputs. Obviously,
in the experiments described here, such loss would be highly
deleterious.

The results shown in this work were obtained using a
fairly standard genetic algorithm with a population size of
300, elitism, tournament selection, and multipoint crossover
for sexual reproduction (for 30% of the individuals in each
generation). Evolutionary runs were initiated with individ-
uals consisting of 5 randomly created regulatory units. The

runs were terminated after no improvement over the last 500
generations was detected (typically, after 2500−10000 gen-
erations). Shorter runs would often indicate lower evolvabil-
ity (genetic algorithm stuck in a local optimum rather than
continuously improving the network).

Fitness function
The target for evolution was to obtain desired expression
patterns as a response to particular input signals. A straight-
forward approach would be to aim to minimize the differ-
ence between the desired (dt) and obtained (ot) expression
levels over time:

∑
t
|ot − dt|. However, this often lead us to

unsatisfying, suboptimal solutions. This is because many of
the target patterns require keeping output product expression
at 0 for some time, so lack of expression during the whole
time results in higher fitness than, for example, a pattern that
is shifted but otherwise correct. Once such trivial solution is
reached, little can be improved by evolution: there is no reg-
ulation that can be fine tuned. We alleviated this problem by
including the terms that give higher weight for correctly ex-
pressing output product when its concentration is expected
to be higher and for the correct number of oscillations in
periodic expression patterns:

L∑
t=p

|ot − dt|(1 + kdt)
1

1 + S
(1)

where L is the number of GRN simulation steps (between
600 and 1000 clock ticks, depending on the experiment), and
k increases the weight of properly expressed high concentra-
tions (k = 2 was used). Parameter p (“propagation time”)
allows to set the number of simulation steps after which the
activity of the output is evaluated. Because some time is
needed to build up TF concentrations, it is not reasonable to
penalize the network whatever its activity during this time.
Propagation time was set to 50 clock ticks: this is a rough
estimate of the time needed to form a response. The last
term promotes evolution of oscillatory patterns. S was set to
1 when the desired number of oscillations was obtained or
to 0 when there was no oscillations or too many (more than
twice the desired number). Imperfect matches resulted in
intermediate values. To keep the matters simple, the num-
ber of events when the expression crosses the level of 0.5
was counted (the events when dt−10 < 0.5 and dt ≥ 0.5 or
dt−10 ≥ 0.5 and dt < 0.5). The minimum distance between
countable events was set to 10 clock ticks to prevent trivial
fluctuations around 0.5. Inclusion of this term in the error
function promotes the correct number of oscillations from
the very beginning, even if not timed correctly.

Calculated error was further normalized, so that a per-
fect match in expression pattern would result in individual
scoring 0 and the worst possible would score 1. For ex-
periments where multiple training pairs were used, the final
fitness would be an average of every test case.
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Figure 3: Behaviour of an evolved network that gives a sine
wave expression pattern lasting for five periods (the best net-
work in 10 runs); dashed line: the desired response.

Results
Internally induced oscillations
We have first analysed if our system allows for evolution of
networks in which an output product level oscillates. Oscil-
lating gene expression has been previously investigated in
somewhat similar artificial GRN models (Kuo et al., 2004;
Knabe et al., 2006). This task can be made easier by pro-
viding the network with a periodically changing input of the
same frequency as the target. However, no such input was
made available in our experiments: the only external signal
was a special product with a constant maximum concentra-
tion, so the obtained dynamics was internally induced.

It proved very easy to evolve oscillating expression with
almost perfect match to the target pattern (sine waveforms)
in a large range of frequencies and amplitudes. The oscil-
lations were stable: they persisted also when the number of
simulation steps was increased beyond the network lifespan
used at the evaluation stage during evolution.

In a more challenging task, the target was a sine wave
starting at a certain time point and ending after 5 periods.
The oscillations in the best networks found in 9 independent
runs out of 10 had proper frequency but did not terminate.
Only in one run a good solution was obtained (Fig. 3), even
though the phase of the output signal does not match the
target phase. This is penalized by the error function, but the
solution is rewarded because the number of pulses is correct
(Eq. 1). Perhaps the difference in fitness between a solution
in which oscillations terminate and a solution in which they
do not is too small and this is why most runs got stuck in
a local minimum. If so, simple extension of the lifespan
beyond 600 clock ticks would improve evolvability.

Doubling the input frequency
Apart from the task described above, all the others involved
processing continuously changing input signals. In the first
such task, the networks were expected to double the fre-
quency of the input oscillations (sine wave). Three train-
ing inputs were provided at the evaluation stage in the GA:
two sinusoidal curves with different frequencies and an in-
put in which the signal was kept at 0 (requiring an empty
response). The “no signal” input was included to facilitate
emergence of solutions that are active only when external
signal is present.

In 10 out of 10 runs the evolved networks displayed the
correct behaviour for the training set. Fig. 4ab shows the

behaviour of the best network obtained. The solutions were
general: intermediate frequencies were also doubled. Even
very low frequencies posed no problem (Fig. 4c, note that
the time scale is different in different panels). Indeed, for
the best individuals we were not able to find a frequency
that would be too low to elicit the proper response. Gen-
eralizing to frequencies above the range in the training set
proved more challenging. The networks did not behave as
desired when the frequency was increased more than about
40% (Fig. 4d); interestingly, the best GRN in an experiment
in which the frequencies in the training examples were two
times lower had about the same relative upper limit.

The behaviour of the best GRN was tested using an in-
put pattern in which frequency changed multiple times (in
the training patterns, frequency was constant). The network
showed correct behaviour: matching the output frequency to
the input frequency (not shown). However, less general so-
lutions were obtained in some runs: these GRNs would lock
their outputs to the frequency present at the beginning of a
complex input pattern.

It is difficult to analyse how exactly the output of the
best GRN is calculated because of the high density of the
networks, about 0.5-0.6 (30-50 regulatory units linked with
about 1000 edges, encoded with roughly 250 genetic ele-
ments). However, a hint on inner mechanics can be obtained
by replacing the sinusoidal input with a trapezoid waveform
and changing its duty cycle. It can be seen (Fig. 4e) that
a spike of the output expression is generated for each rais-
ing and each falling edge in the input. This suggests that
the poor generalization for higher frequencies may result
from the fact that the rate of output product accumulation
and degradation is adjusted to the rates used in the training
set. If so, concentrations will increase and decrease too fast
when the frequency is low; indeed, this can be observed in
Fig. 4c).

Low pass frequency filter
Filtering input frequency is a problem well suited for regu-
latory networks: limited speed of accumulation and degra-
dation of TFs will work as an RC circuit. In this task the
networks were expected to regenerate in the output the fre-
quency of the input sinusoid, but only if this frequency was
below a certain threshold. Five inputs were provided in the
training set: two with frequencies below the threshold, two
with frequencies above it, plus the “no signal” input which
was again expected to give no output signal. It was easy
to obtain networks with correct behaviour that generalized
for frequencies higher and lower than those in the training
set. However, providing these network with a sum of two
sinusoids with only one frequency below the threshold (an
example of such input is provided in Fig. 5cd) would result
in no output signal. This suggests that these networks sim-
ply detected the high rising slope in the input and blocked
the output if it was too high.
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Figure 4: Behaviour of the network evolved to double the
frequency of the input signals (the best solution in 10 evolu-
tionary runs, obtained after 6191 generations): (ab) the re-
sponse for the inputs in the training set (the correct response
for the “no signal” input is not shown), (c) this network be-
haves correctly for an input with much lower frequency than
in the training set (note that the time scale was changed), but
fails to generalize for inputs with slightly higher frequency
(d), the response for the signal in panel (e) hints on the way
in which the output is calculated. Dashed lines in (a-d): the
desired ideal response.

.

To improve generality of the solutions, we have added
such inputs to the training set, requiring the network to fil-
ter out just the higher frequency component. Fig. 5e shows
the behaviour of a network that correctly if imperfectly fil-
ters the high frequency component even for an input not in
the training set. This network shows correct behaviour also
when another input not in the training set was used (Fig. 5f),
adjusting “on the fly” the output signal to the changing fre-
quency in the input. However, such behaviour was observed
for the best GRNs only in some of the runs. The best net-
works in other runs failed to generalize and locked to the
frequency present at the beginning of a complex input pat-
tern. This is similar to what was observed in the previous
task.

Doubling the pulse length
In the tasks described above, obtaining the solution did not
require the explicit memory of the input signal. This is not
the case for the task in which the networks were expected to
respond with a square pulse twice the length of the square
pulse in the input after 50 simulation steps. Three input pat-
terns plus the “no signal” input were used in the training set
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Figure 5: Behaviour of a GRN (the best individual in 10
evolutionary runs, obtained in generation 8839) acting as a
low pass filter for the inputs in the training set (a-d; only half
of the training examples is shown) and the inputs for which
the network was not evaluated during the genetic algorithm
(ef). The dashed lines correspond to the desired response.

(Fig. 6a-c). Good solutions were obtained in all 10 evolu-
tionary runs. The best network (Fig. 6a-c) behaved correctly
also when the square pulses in the inputs occurred at dif-
ferent times than in the inputs used in the training set. It
also behaved as expected when the input pattern consisted
of subsequent square pulses.

Good generalization was observed for pulses with other
(intermediate) lengths than the pulses in the training set.
Pulses up to 50% shorter (Fig. 6d-f) than the shortest training
pulse gave the desired response, but pulses longer than the
longest training pulse gave responses shorter than desired
(Fig. 6e), exposing leaky nature of the GRN-based memory.
When the pulses in the input had half the height of those
in the training set (Fig. 6f), the length of the output pulse
would be close to that of the input pulse. This suggests that
the network acts as a simple integrator (e.g. by slowly build-
ing up some concentrations) instead of reacting to raising
and falling edge of the input signal like frequency doubling
networks.

When the networks were required to output a square pulse
with doubled length after 300 time steps instead of 50, the
behaviours were less accurate, though proper generalization
was still observed. The average value of error function (con-
sidering only the best individuals in each independent run
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Figure 6: Behaviour of the network evolved to double the in-
put pulse length (the best individual in 10 evolutionary runs,
obtained in generation 7295): (a-c) the responses for the in-
puts in the training set (the response to the “no signal” input
was not shown) and (d-f) for the inputs used when testing
for generality. Dashed lines correspond to the desired ideal
response.

out of 10) was worse: 0.054 for 300 steps vs. 0.017 for
50. The values were also more variable (standard deviation
was 0.027 and 0.002, respectively). This further demon-
strates the leaky nature of evolved GRN-based memories:
the longer the networks have to store the information, the
more degraded it becomes.

Doubling the number of input pulses
From the biological point of view, the GRNs discussed thus
far could be seen as responding to continuously raising and
falling concentration of chemical substance (pulses in the in-
put). What was relevant was the frequency or the length of
the pulses. In the next two problems, the number of pulses
will be important. The first task, doubling the number of
pulses, can be seen as more difficult than the previous prob-
lem. The response still requires performing multiplication,
but the number of subsequent pulses needs to be counted,
not the pulse length.

Fig. 7a-c shows that the best network obtained in 10 runs
correctly doubles the number of pulses in the training set in-
puts when this number is one or two. The solution when the
expected number of subsequent oscillations is six is almost
correct. However, the generalization is imperfect: seven in-
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Figure 7: Behaviour of a GRN that doubles the number of
spikes (the best individual in 10 evolutionary runs, obtained
in generation 2794): (a-c) the network behaves correctly or
almost correctly for the training set input, but (d) responds
with less spikes than expected when the generality of the
solution is tested with a higher number of spikes in the input.

stead of eight pulses for four pulses in the input (Fig. 7d), a
response shorter than expected. This reminds the behaviour
of GRNs evolved to double pulse lengths when presented
with input pulses longer than the longest in the training set.

Integrating information from two separate signals:
counting pulses
The experiment described above indicates that a task that in-
volves processing concentration pulses allows to approach
the limits of our system in terms of searching for networks
with desired signal processing properties. To make the task
even more difficult, the networks were required to process
signals from two inputs instead of one. The task was to re-
spond with the number of output pulses equal to the number
of pulses on both inputs within a certain time window (see
Fig. 8a-e for the training set). No response was expected
when no input pulses were present in the pattern. Fig. 8
shows the behaviour of the best GRN in 10 runs. This net-
work is able not only to count correctly the pulses in the
training set but is also general enough to work in a continu-
ous manner (Fig. 8f).

Modifying the system time step
Product accumulation and degradation in our system is sim-
ulated in discrete steps. Changes in concentration are com-
puted with every iteration with a time step dt = 0.1. The
step size is a compromise between accuracy and computa-
tion cost. In principle, it would be possible for some of the
evolved networks to exploit inaccuracies that would occur
if some concentrations were to change rapidly due to over-
regulation and wrongly chosen dt. To test if this is an issue
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Figure 8: Behaviour of the GRN evolved to count the pulses
in two inputs (the best individual in 10 evolutionary runs,
obtained in generation 2168): (a-e) the network gives an ex-
pected output for the the inputs in the training set and the (f)
inputs used to test for generality.

we decreased dt by an order of magnitude and increased 10-
fold the number of simulation steps. This increased simula-
tion accuracy but did not affect the behaviour of any of the
networks discussed above.

The importance of continuous TF
accumulation/degradation

In the GRN model used here the TF concentration at a par-
ticular time point is determined by its synthesis and degra-
dation rates and its concentration at the previous time step.
In order to test if this GRN property is important for sig-
nal processing tasks, we have modified the model so that the
gene expression was determined only by the activation of
associated promoters in the previous time step. More pre-
cisely, the function fA(A), instead of being treated as cur-
rent product synthesis level (with the range < −1, 1 >),
would be shifted right and scaled to < 0, 1 > so that it
could be treated as a new expression level for the given time
step. This allows genes to change its activity instantly. In
this model GRNs behave similarly to recurrent networks of
perceptron-like neurons (similar regulatory networks were
used by us Joachimczak and Wróbel (2008) and other re-
searchers, e.g. Eggenberger (1997). To see if this change
affects evolvability, we compared the average fitness for the
best individuals in 10 runs using the problem of doubling
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Figure 9: The best individual obtained in 10 evolutionary
runs using a modified model in which product built-up and
degradation is not simulated (response to one of the training
signals is shown).

the input frequency. The behaviour of the best individual for
a non-continuous model Fig. 9 can be compared with that
observed in Fig. 4. Even though a good solution was found,
the evolvability itself was clearly worse. Average error for
10 runs with a modified model was 0.075 (sd: 0.025). For
the model with continuous TF synthesis/degradation the er-
ror was 0.026 (sd: 0.005).

Discussion
The goal of this work was to investigate in a qualitative and
exploratory manner the possibility to evolve artificial GRN
that can generate or process continuous signals provided as
externally driven concentrations of chemical substances. We
have tested if the way we have formulated the encoding of
the structure of the networks in a linear genome and the ge-
netic algorithm allows for evolvability in several problems
of various difficulty. Several attempts have been made previ-
ously by us and other researchers to employ artificial GRNs
for various tasks (such as development). It is thus interest-
ing to investigate what kind of information processing can
be performed by single cells equipped with such networks.

In general, given enough simulation steps, artificial GRNs
can be expected to be similar to perceptron-like artificial
neural networks (ANNs) with recurrent connections in terms
of computational properties, even though the biological in-
spiration is different. Perhaps the most important differ-
ence between the GRN model used here and commonly used
ANN models is that here the state of a regulatory node, rep-
resented by the concentration of associated products (tran-
scriptional factors) is influenced by the rate of product syn-
thesis and degradation. This limits the response time of the
network. On the other hand, smoothness of gene expres-
sion provides an advantage for generating gradually chang-
ing outputs, such as sine waves (compare Fig. 4b and Fig. 9).
One could also expect that such inherent dynamics of each
node could be exploited by biological GRNs when dealing
with noisy external signals and with the inherent noisiness of
gene expression itself. Obviously, “no free lunch” theorem
applies: GRNs may provide an advantage in a certain class
of problems, but one should not expect them to universally
outperform other approaches.

In particular, computations that required counting pulses
of input substance concentration proved more difficult than
other tasks (which also involved simple mathematical cal-
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culations and memory). Processing information encoded
in pulses is superficially similar to information processing
in spiking neural networks. However, in GRN-based sys-
tems the pulses result from simulated product accumulation
followed by degradation not by simulation of ion transport
through the membrane, often extremely simplified (so that a
spike results when a threshold potential is reached). It is rea-
sonable to assume that this kind of information encoding is
far from optimal for processing signals with regulatory net-
works. In other words, problems that require pulse counting
can help to find the limit of what can be evolved using GRN-
based systems such as ours.

Introducing more realistic molecular dynamics could
make evolving artificial GRN models a useful tool for ob-
taining synthetic regulatory networks (see e.g. Friedland
et al., 2009; Elowitz and Leibler, 2000). Such networks
might find applications for example in intelligent delivery of
therapeutic chemical substances (small molecules, proteins,
regulatory RNAs), regulated by external signals. Artificial
evolution would allow to design such networks and optimize
them by various criteria, such as the number of regulatory
elements and genes or robustness to noise.

The evolvability in signal processing tasks could be also
improved by changes in the error function or reformulation
of the tasks themselves. For example, it would probably help
to look for the best match of the output expression pattern
within a certain range of allowable response times instead
of requiring the pattern to appear after a predefined response
delay.

Although it would be very interesting to further explore
the areas hinted above, the next step in our work will be
to investigate the statistical properties of evolving artificial
GRNs and to employ the model described here in other con-
trol problems, for example, animat navigation.
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