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Abstract

We investigate the evolution of memory usage in environ-
ments where information about past experience is required
for optimal decision making. For this study, we use digital
organisms, which are self-replicating computer programs that
are subject to mutations and natural selection. We place the
digital organisms in a range of experimental environments:
simple ones where environmental cues indicate that a specific
action should be taken (e.g., turn left to find food) as well as
slightly more complex ones where cues refer to prior expe-
rience (e.g., repeat the action indicated by the previous cue).
We demonstrate that flexible behaviors evolve in each of these
environments, often leading to clever survival strategies. Ad-
ditionally, memory usage evolves only when it provides a sig-
nificant advantage and organisms will often employ surpris-
ingly successful strategies that do not use memory. However,
the most powerful strategies we found all made effective use
of memory.

Introduction
Organisms must be able to respond to their environment to
maximize their chances of survival. They must be able to
vary their reactions based on differences in time, place, or
circumstance. Evolution has produced many mechanisms
that allow such flexible responses, including simple reflex-
ive behavioral routines, such as the response of bacteria like
Escherichia coli(E. coli) to move toward food, or innate be-
havioral preferences and patterns, as observed in many in-
sects (Dukas and Bernays, 2000). In well-defined, stable
circumstances, a repertoire of innate, fixed behaviors may
be sufficient to allow organisms to be successful. How-
ever, when circumstances can vary due to dependencies on
time, place, previous experiences or environmental changes,
then more dynamic and flexible behavioral mechanisms are
needed. In such cases, memory and learning may allow indi-
viduals to more effectively adjust behavior according to the
local world state (Dukas, 2008).

How do environment, memory, and learning interact in an
evolutionary context? This question is of great interest to
both biologists and computer scientists who study the evo-
lution of intelligence. We present early results in our ex-
ploration of this interplay in the context of the evolution of

navigation. Our experimental environments are inspired by
maze-learning experiments with honey bees (described be-
low). By using these types of environments, we maintained
a strong connection between our experiments and their bio-
logical motivation, and we were able to probe specific issues
relating to the evolution of memory use. Situated at the in-
tersection of biology and computer science, our approach
aims to provide insight for both disciplines.

Motivation from insect navigation
Insects are ideal subjects for the study of navigation behav-
iors. Ants, bees, and other insects use an array of innate
strategies to navigate, includinglandmark tracking, where
the insect refers to a visual marker (Graham et al., 2003), and
path integration(Müller and Wehner, 1988), which is the
continual internal monitoring of distance and direction rela-
tive to a reference location (e.g., the nest). Studies of maze
learning in insects are of particular interest, since many bees
and ants often follow fixed routes from the nest to a forag-
ing site (Collett et al., 2003). In learning a maze, an in-
sect is learning to follow a well-defined path (Collett et al.,
1993). Bees have been trained to fly through mazes of vary-
ing complexity. Studies by Collett and colleagues (Collett
and Baron, 1995; Collett et al., 1993) used small mazes to
investigate bees’ ability to learn motor or sensorimotor se-
quences. One study (Collett et al., 1993) forced bees to fly
along prescribed routes and through obstacles in a large box
and concluded that bees can remember sensory and motor
information that allows them to reproduce a complex route.

A study by Zhang and colleagues (1996) demonstrated
that honey bees could use specific visual cues to learn to fly
through structurally complex mazes. Another study (Zhang
et al., 2000) probed whether bees learn and recognize struc-
tural regularity in the mazes. For these experiments, bees
were trained and tested in four different types of mazes:
constant-turn, where turns are always in the same direc-
tion; zig-zag, where each turn alternates direction; irregular,
which has no apparent pattern of turns; and variable irreg-
ular, where bees had to learn several irregular mazes at the
same time. The bees performed best in constant-turn mazes,
somewhat poorer in zig-zag mazes, still worse in irregular
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mazes, and poorest of all in variable irregular mazes. The
authors concluded that the bees’ performance in the vari-
ous configurations depends on the structural regularity of the
mazes, and the ease with which the bees can recognize and
learn that regularity.

Computational approaches
Evolutionary robotics has dealt extensively with several
facets of evolving memory and learning. One aspect is phe-
notypic plasticity, the ability of a genotype to express dif-
ferently in different environments. Nolfi et al. (1994) stud-
ied this topic by evolving neural network “brains” for vir-
tual robots in environments that alternated between light and
dark. Individuals that evolved under these conditions were
able to tune their behavior appropriately for both kinds of en-
vironments, adapting within an individual “lifetime” to en-
vironmental changes.

Evolution and learning employ different mechanisms and
occur at differing time scales making their interaction, and,
indeed, the evolutionof learning, a topic of intense study
(Nolfi and Floreano, 2002). A study by Floreano and Urzelai
(2000) is a strong example of the latter. They evolved neural
networks with local synaptic plasticity and compared them
to fixed-weight networks in a two-step task. The networks
evolved to turn on a light and then move to a grey square.
The results showed that local learning rules helped networks
alter functionality quickly, facilitating moving from onetask
to the other. Blynel and Floreano (2003) explored the ability
of continuous time recurrent neural networks (CTRNNs) to
solve reinforcement learning problems in the context of T-
Maze and double T-Maze navigation tasks, where the robot
had to find and “remember” the location of a reward zone.
The learning in this case occurred without modification of
synapse strengths, coming about instead from internal net-
work dynamics.

Methods
Avida: Overview
Digital evolution (Adami et al., 2000) is a form of evolution-
ary computation in which a population of self-replicating
computer programs, or “digital organisms,” is placed in a
computational environment where they compete and mu-
tate. Digital evolution can be used both for understanding
biological processes and for applying insights from biol-
ogy to computational problems. The Avida software system
(Lenski et al., 2003; Ofria and Wilke, 2004) is a widely used
platform for digital evolution. Avida provides a separate in-
stance of real evolution useful for experimental studies (Pen-
nock, 2007).

The “world” in which evolution takes place in Avida is
a discrete two dimensional grid containing a population of
digital organisms (or “Avidians”), with at most one Avid-
ian per grid cell. The individual organism consists of its
“genome,” which is a circular list of assembly language-like

instructions, and its virtual CPU. The CPU contains three
general purpose registers, several heads, and two stacks. The
instructions in the organism’s genome execute by acting on
the components of the virtual CPU, and execution of instruc-
tions incurs a cost in virtual CPU cycles. An Avida organ-
ism accomplishes all tasks (e.g., replication and movement)
by executing Avida instructions.

An Avida organism replicates by copying its genome into
a block of memory that will be its offspring’s genome. The
copying process is sometimes imperfect, leading to differ-
ences between the genomes of parent and offspring. These
differences are mutations, and may occur as a substitution,
insertion or deletion of an instruction. The Avida instruction
set is robust to mutations, so that any program will be syn-
tactically correct even when mutations occur (Ofria et al.,
2002). Upon replication, an organism’s offspring is placed
in a random grid cell, terminating any organism that previ-
ously occupied that cell. Thus, organisms in the population
compete for the limited space in the set of grid cells, and or-
ganisms that replicate more quickly will have a greater num-
ber of descendants. An organism can increase its metabolic
rate (the relative speed it executes instructions) by perform-
ing user-specified tasks. We measure the fitness of an or-
ganism as its metabolic rate divided by the number of CPU
cycles it requires to replicate.

Experimental environments

Each Avidian was placed in an environment containing a
path (inspired by the maze-learning experiments discussed
earlier (Zhang et al., 1996, 1999)) that it could gain nutri-
ents by following. To follow a path, an organism must sense
cues in the environment that tell it how to stay on the path,
and react appropriately to those cues. In some cases, this
task necessitated evolving the ability to store and reuse ex-
perience. Sensing and movement in the virtual grids were
accomplished by executing experiment-specific Avida in-
structions. The movement instruction moves the organism
into the grid cell that it is currently facing. Movement oc-
curs only one step at a time. In the virtual environments of
the current study, each organism has its own virtual grid,
so organisms do not interact during movement. Orienta-
tion changes require additional instructions, one for turning
right 45 degrees and another for turning left 45 degrees. Or-
ganisms had to combine the different instructions—sensing,
movement, and orientation—in order to successfully follow
more complex paths.

An organism must navigate its environment to find
sparsely distributed “food”. Movement requires energy, so
each step depletes the organism’s energy store. When an or-
ganism encounters food, the food gives it more energy than
the amount lost through movement. Locations that are off
the path are “empty”, containing no food. When an or-
ganism moves into an empty location, the organism loses
a small amount of energy, without regaining any energy.
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Figure 1: Example experimental environment, using all
cues.

Movements into empty locations are detrimental to the or-
ganism: continued energy depletion will impair the organ-
ism’s ability to replicate. Organisms that move along the
food-rich path build up their energy, and are able to execute
at an accelerated rate. Each environment contained some
combination of the following cues (e.g., Figure 1):

1. Nutrient: A cue that indicates the path, and provides en-
ergy (the “food” on the path).

2. Directional cue: A cue that indicates to turn either right
or left (45 degrees in the specified direction) to remain on
the path. Directional cues also act as a nutrient.

3. Repeat-last: A special directional cue to repeat the last
turn direction, and acting as a nutrient.

4. Empty: A cue that indicates cells that are off of the path.
The net loss of energy from a step into an empty cell
equals the net gain of energy from a nutrient.

All paths used only 45-degree turns, so that a turn could be
accomplished with a single, unmodified Avida instruction.

An organism that travels the entire path without a mis-
step receives the maximum possible bonus. The bonus is
based on the count of unique path cells that the organism

encountered less the total count of movements into cells that
are off the path, without allowing the value to become nega-
tive. Organisms were not penalized for taking extra steps on
the path. Conceptually, the path cells are analogous to food
patches. The organism consumes most of the food in the
patch the first time it moves into a path cell. Subsequent vis-
its to a previously visited location supply only enough food
to offset the energy lost in moving to the location. On the
other hand, empty cells are always empty, and movement
always requires energy. Each step into an empty location
results in a net loss of energy, because the organism can-
not replenish its energy stores at that location. We used the
value of the count of path cells traversed to determine the
organism’s metabolic rate bonus. Our approach delivered an
exponential reward, doubling the organism’s metabolic rate
bonus for each step on the path that is not counteracted by a
step off the path into an empty cell.

Experiments and results
We conducted experiments using multiple environment
types. Each environment type placed different memory use
and decision-making demands on the organisms. In all
cases, an organism could sense the contents of a cell by using
a sense instruction; each cue (nutrient, right turn, left turn,
repeat last, empty) had a unique sensed value. The sense
instruction provided the sensory information from the envi-
ronment, but the organism had to decide what, if anything,
to do with that information.

Environment 1: Evolving reflex actions. This environ-
ment type contained turns in a single direction (i.e., one path
instance contained only right turns, while another path in-
stance had only left turns; see Figure 3 below). The single-
direction paths had a spiral shape and contained three cues:
nutrient, empty, and only one type of directional cue (right
or left). This environment presented organisms with all in-
formation required to make turn decisions at the time and
place that it was needed.

It is reasonable to believe that reflexive responses evolved
before learning (Todd and Miller, 1990), and these types
of responses are well known as the basis for conditioning
(Rescorla, 1988). From a practical standpoint, if an organ-
ism cannot evolve to perform an action correctly when it
always should, it will never be able to effectively decide to
act selectively.

Environment 2: Evolving volatile memory. In the first
environment type, the organisms could sense a directional
cue at each turn; a right turn and a left turn have different
sensed values. In that setup, past cues never had to be stored
in order to make an informed decision about the current ac-
tion. In the second set of experiments, the organism can
remain on the path only if it remembers the most recent turn
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direction. In this environment, if a turn is in the same direc-
tion as the preceding turn, the sense value is different from
the sense values of a right turn and a left turn. This new
cue signals an organism to “repeat the last turn direction”.
This arrangement of information along the path means that
an Avidian must be able to change the remembered sense
cue value an arbitrary number of times in its lifetime, and at
irregular intervals. Thus, this memory isvolatileas opposed
to the unchanging reflex memory needed for the first exper-
imental environment. The arrangement of cues in the sec-
ond environment type necessitates flexible use of informa-
tion from an increasingly complex environment. An organ-
ism must remember a binary value (turn right or turn left),
or one bit of information in information theory terms.

To provide environmental variation and discourage the
evolution of brute-force solutions, organisms were presented
(at random) with one of four different paths of each environ-
ment type during the course of evolution. Thus, any individ-
ual organism had a0.25 probability of being born into the
same environment as its parent.

For each experimental environment, we ran 50 replicate
populations capped at 3600 organisms for 250,000 updates
(a unit of time in Avida), or a median of approximately
33,000 generations. Each experiment seeded the population
with an organism capable only of replication. This simple
self-replicator ancestor’s genome consists of 100 instruc-
tions, comprising a short copy loop and a large number of
no-operation instructions. Any other instructions and capa-
bilities can appear through mutations. All experiments used
a 0.085 genomic mutation rate for a length-100 organism
(a 0.0075 copy-mutation probability per copied instruction,
and insertion and deletion mutation probabilities of 0.05 per
divide) (Ofria and Wilke, 2004).

Results and discussion

To evaluate the success of different experimental treatments,
we used both quantitative performance measures and behav-
ioral tests of evolved organisms. For the quantitative mea-
sures of performance, we examined fitness and task quality
over time. These values are tracked and recorded during
the course of an Avida experiment. For behavioral tests, we
traced execution and trajectory of evolved organisms on dif-
ferent path configurations, including paths that were never
experienced during the course of evolution.

We use task quality to measure how well an organism per-
forms in a given environment. For this study, task quality
measures the fraction of the path an organism traversed, less
any movement into empty cells; an organism that traversed
the full path without moving into any empty squares would
have a task quality of1.0. Because overall metabolic rate
for these experiments was associated solely with the path
traversal task, task quality and fitness track closely. The
overall performance of a population is shown by the aver-
age task quality for that population; the maximum task qual-
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Figure 2: Distribution of average maximum task quality
(AMTQ), individual Experiment 1 paths. Paths 1 and 2 are
right-turn-only paths, Paths 3 and 4 are left-turn-only paths.
There is no significant difference in the AMTQ distributions
for each path (Kruskal-Wallis Test,p = 0.287).

ity quantifies the performance of the best-performing organ-
isms from each population, and the Average Maximum Task
Quality (AMTQ) averages this population maximum task
quality over all 50 replicate experiments of each environ-
ment type.

To test the behavior of evolved organisms, we ran exe-
cution traces for selected final dominant genotypes (most
abundant genotype at the end of an evolution experiment) in
different environments. With each environment, we tested
organisms (1) on the same virtual grids that the organisms
experienced during evolution, to observe their behavior in
those “ancestral” environments, and (2) in novel environ-
ments,i.e., paths that no organism experienced during evolu-
tion, to demonstrate the generality of the evolved solutions,
or uncover solutions that had been tuned specifically to the
ancestral environments.

Evolving reflex actions. Figure 2 shows the distributions
of AMTQ values for each of the four single-direction paths.
There was no significant difference between the AMTQ dis-
tributions for each path, as measured by the AMTQ at the
end of evolution (Kruskal-Wallis Test,p = 0.287). Figure 3
shows trajectories of the final dominant with the highest end-
ing metabolic rate among all 50 replicate single-direction
path experiments, on a right-turn-only path (Figure 3a) and
on a left-turn-only path (Figure 3b). The organism’s tra-
jectories on the other two evolutionary environment paths
are qualitatively identical to those shown. The organism’s
evolved strategy performed well in both turn environments.
The organism did some “backtracking” on the right-turn
grid, i.e., it turned around and retraced some of its steps on
the path. This behavior did not reduce the organism’s task
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(a) Right-turn Path

 

 

Organism Trajectory
Org. Initial Location
Org. Final Location
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(b) Left-turn Path

Figure 3: Trajectories of an example evolved organism from Experiment 1 on paths that were experienced during evolution
(“ancestral” paths).

quality as the calculation does not penalize an organism for
multiple traversals of a path cell. The risk of such behavior
is that the organism wastes CPU cycles, thus reducing fit-
ness, although this particular organism still evolved to bethe
most fit individual in its population. This organism was able
to navigate the entire right-turn path without entering any
empty cells. The organism also successfully followed the
left-turn-only path, stopping after it encountered one empty
cell.

To understand this organism’s algorithm, we analyzed its
execution while traversing each of these two paths. Most of
the path-following and replication code of this organism’s
genome is organized into two modules. The first module,
“Module 1A,” is mostly concerned with moving on a right-
turn path while the second module, “Module 1B,” focuses on
left-turn paths and contains a copy loop. These code sections
are both executed, regardless of whether the organism is on a
right-turn or left-turn path, but the behavior that the modules
produce differs according to the path type. In general, Mod-
ule 1A is a “counting” routine. When the organism is on a
right-turn path, Module 1A counts the organism’s steps. On
a left-turn path, Module 1A counts the number of rotations
the organism executes. Module 1B allows the organism to
travel to the end of a left-turn path and then replicate. When
the organism is on a right-turn path, the organism uses Mod-
ule 1B to “backtrack” on the path, retracing some of its steps,
while it finishes its replication process.

Evolving volatile memory. The irregular path environ-
ment was more challenging than the environments of Exper-
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Figure 4: Distribution of average maximum task quality
(AMTQ), individual Experiment 2 paths. There is no sig-
nificant difference in the AMTQ distributions for each path
(Kruskal-Wallis Test,p = 0.238).

iment 1. The AMTQ for these experiments shows a weaker
performance than in the other environment. The difference
in AMTQ at the end of 250,000 updates was significantly
different in the irregular path experiments compared to the
other environment (Kruskal-Wallis Test,p < 0.05). There
was, however, no significant difference in the performance
on each path, measured by the AMTQ at the end of evolu-
tion (Kruskal-Wallis Test,p = 0.238). Figure 4 shows the
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Figure 5: Trajectories of an evolved organism from Experiment 2 irregular path experiments. In both (a) and (b), the organism
stops moving after encountering one empty cell.

distributions of AMTQ values for each of the four ancestral
irregular paths.

Despite the generally inferior performance of the evolved
populations in this environment, some highly effective
strategies evolved. Figure 5 shows the trajectories of the fi-
nal dominant organism from the population with the highest
AMTQ at the end of the 250,000 update evolution run. This
organism has an excellent solution for following these paths,
stopping after taking one step off the end of the path into an
empty cell. The evolved algorithm is equally effective on
novel paths, as shown in Figure 6.

The execution of this organism’s genome is somewhat
complicated, and shows an impressive degree of flexibil-
ity. In general, this organism operates by moving its exe-
cution to different parts of its genome based on the sensed
environmental cue. The organism accomplishes all of its
path-following with two loops, one for moving through left-
turn path sections, “Module 2A,” and the other for moving
through right-turn path segments, “Module 2B.” Unlike the
other organisms that we have examined in detail, this or-
ganism has well-defined functional and structural modular-
ity for handling right-turn and left-turn path sections. Mod-
ule 2A appears before Module 2B in the organism’s genome.
Module 2A can perform an arbitrary number of consecutive
left turns, and any number of forward steps. Using Mod-
ule 2B, the organism can maneuver through right-turn path
sections. Module 2B functions with arbitrary numbers of

forward steps and repeated right turns. If a left turn cue is
sensed, Module 2B terminates and execution jumps to the
beginning of the genome, eventually reaching Module 2A
again. If an empty cell is sensed while execution is in Mod-
ule 2B, the module terminates and execution continues with
the instructions after the module. In addition to the move-
ment modules, the organism has a tight copy loop near the
end of its genome that accomplishes almost all the copying
for the organism’s replication.

There are two features of this organism that are particu-
larly interesting. The first is the organization of the genome.
The sections of the genome that do the bulk of the work
for this organism—the two movement modules and the copy
loop—are functionally and spatially modular. For all three
of these loops, very little happens within them apart from the
main function of the loop. The loops are also spatially mod-
ular: they are located in different sections of the genome.
Example organisms from the preceding experiments also
demonstrate structural modularity, but their functional mod-
ularity is generally less defined. The second feature of spe-
cial interest is the flexibility of execution flow between code
modules. The execution flow enables the organism to clev-
erly handle all the contingencies of the environment. For
example, even though Module 2A (left-turn module) is en-
countered first in the sequential execution of the genome, ifa
right turn is encountered first, the flow moves easily through
Module 2A and into Module 2B (right-turn module). The
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Figure 6: Trajectory of an evolved organism from Experi-
ment 2 irregular path experiments, traversing a novel path.

algorithm evolved to deftly maneuver along the paths, using
environmental cue information to alter its execution.

By analyzing the execution of evolved genomes from both
environment types, we found that memory use involved both
the organization of the genome and volatile states of the or-
ganisms’ virtual CPUs. The organization of the genomes
provided functional modularity, while different environmen-
tal information created different states of the virtual CPU
that lead to differential behavior based on the current state
in the environment. The resulting behaviors formed a sim-
ple set of behavioral repertoires that could be used flexibly
in response to environmental stimuli.

Conclusions and Future Work
Through these results, we illustrate that memory and flexi-
ble behavior can evolve in simple environments. Evolution
capitalizes on both environmental change and regularity to
construct these solutions. The experiments presented here
suggest, not surprisingly, that it is more difficult to evolve
volatile memory than to maintain “evolutionary memory”
(reflexes).

Results such as those we present here may inform inves-

tigation in both biology and computer science. Insights into
the evolution of behavioral characteristics of natural organ-
isms must rely on studies of extant species, since the fossil
record provides little information about an animal’s behav-
ior. Our results may help provide additional insights by al-
lowing detailed analysis of the evolutionary transitions that
led to intelligent behavior. Those insights can, in turn, be
used in the context of computer science to produce artificial
systems that exhibit the behavioral flexibility of natural sys-
tems. The current work is an early step in this direction.

Natural evolution produced many impressive navigation
abilities in animals. These capabilities are made up of inter-
woven strategies, which are themselves made up of simpler
underlying mechanisms. Memory is undoubtedly one such
underlying mechanism. We witnessed memory evolve even
when not required in the single-direction path experiments;
the “step-counter” organism based part of its strategy on
tracking its progress along its path. This organism possesses
a simple odometry mechanism, like those found in many an-
imal navigation systems. This same organism was also able
to count its rotations to orient itself in the correct direction.
Self-referential compasses are another component of animal
navigation. The results from our study hold promise of fu-
ture insights into questions surrounding the evolution of nav-
igation. For example, the environments used in the current
study can be adjusted so that organisms need to explore the
environment to find resources, and then return to their ini-
tial location as efficiently as possible. This situation sets up
investigating the evolution of path integration. There is a
rich collection of evidence of this ability in many animals,
and different models of the mechanism have been presented
(e.g., Mittelstaedt (1985), Müller and Wehner (1988), Hart-
mann and Wehner (1995)). How evolution produced such
a capability is, however, an open question. Some interest-
ing work has explored this issue, such as Vickerstaff and
DiPaolo (2005), who used a genetic algorithm approach to
evolve neural network models of path integration. Experi-
ments such as those in the current work have the potential
to contribute to that discussion, by allowing detailed exami-
nation of both the evolution and the evolved algorithms that
are not possible in network based approaches.

The path-following environments can be used to study
the evolution of associative memory, the process by which
animals learn about cause-and-effect relationships between
events and then behave appropriately (Rescorla, 1988; Shet-
tleworth, 1998). We can simulate the arbitrary stimulus, im-
portant for associative learning, by generating random num-
bers for signpost cues each time a particular path is assigned
to an organism, changing the values for the organism’s off-
spring. For true associative memory, the organisms should
be able to associate arbitrary features of their surroundings
with their desired goal. We plan to vary the relationship be-
tween the cue and the target, so the cue might be prompting a
turn in the paths, or it might indicate that the food source isa
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certain distance ahead, regardless of what else the organisms
have seen in the interim.

The experimental results that we present here demonstrate
the evolutionary origin of simple intelligence and behavioral
flexibility. Organisms from these experiments were capable
of gathering information from the environment, storing that
information, and using the information for decisions. More-
over, organisms that succeeded in the irregular path environ-
ments were able to use a past individual life experience to
guide future decision-making.
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