
Proc. of the Alife XII Conference, Odense, Denmark, 2010 241

Solving Mazes using an Artificial Developmental Neuron

Gul Muhammad Khan1 and Julian F. Miller2

1NWFP UET Peshawar, Pakistan, gk502@nwfpuet.edu.pk
2University of York, UK
jfm7@ohm.york.ac.uk

Abstract

An agent controlled by a single computational neuron is used
to solve maze problems. The neuron has activity and time-
dependent computational and topological structure. The be-
haviour of a neuron is controlled by a collection of seven
evolved programs that are loosely analogous to aspects of bi-
ological neuron (dendrites, soma, axons, synapses, electrical
and developmental behaviour). The programs are represented
using Cartesian Genetic Programming. Our aim is to show
that it is possible to evolve programs that develop a single
neuron so that it is able to learn how to solve maze problems
purely by experience.

Introduction
Although many techniques have been introduced to develop
Artificial Neural Networks (ANNs) using genetic program-
ming, we found no evidence that an attempt has been made
to develop the functional model of real neurons with bio-
logical morphology. We have attempted to do this by de-
vising an abstraction of real neurons which captures many
important features. Various studies have shown that ”den-
dritic trees enhance computational power” (Koch and Segev
(2000)). Neurons communicate through synapses which are
not merely the point of connection between neurons (Kandel
et al. (2000)). They can change the strength and shape of the
signal over various time scales. We have taken the view that
the time dependent and environmentally sensitive variation
of morphology and many other processes of real neurons
is very important and richer models are required that incor-
porate these features. In our model a neuron consists of a
soma, dendrites, axons with branches and dynamic synapses
and synaptic communication. Neurite branches can grow,
shrink, self-prune, or produce new branches. This allows
it to arrive at a network whose structure and complexity is
related to properties of the learning problem.

Our aim is to find a set of computational functions that
encode neural structures with an ability to learn through ex-
perience. Such neural structure would be very different from
conventional ANN models as they are self-training and con-
stantly adjust themselves over time in response to external

environmental signals. In addition they could grow new net-
works of connections when the problem domain required it.

From our studies of neuroscience, we have identified
seven essential computational functions that need to be in-
cluded in a model of a neuron and its communication mech-
anisms. From this analysis we decided what kind of data
these functions should work with and how they should inter-
act, however we cannot design the functions themselves. So
we turned to a well established and efficient form of Genetic
Programming called Cartesian Genetic Programming (CGP)
(Miller and Thomson (2000)).

We have tested the learning capability of this developmen-
tal system on maze problems. A maze is a complex tour puz-
zle with a number of passages and obstacles (impenetrable
barriers). It has a starting point and an end point. The job
of the agent is to find a route from starting point to the end
point. The agent starts with a limited energy that increases
and decreases as a result of interaction with the paths and the
obstacles in the maze environment. We show that the agent
is able to solve the maze a number of times in a single life
cycle. The agents start a maze with a single neuron having
random structure. However, the branching structure of the
neuron can grow and shrink during the game environment.

In previously work, we evaluated the effectiveness of this
approach on a classic AI problem called wumpus world
(Khan et al. (2007)). There we used a number of neu-
rons to solve the wumpus world. We have also tested the
network of CGP neurons for playing Checkers (Khan and
Miller (2009)). We found that the agents improved with ex-
perience and exhibited a range of intelligent behaviours. In
this paper we have turned our attention toward a single neu-
ron. The motivation for this was to explore the capability of
a single neuron in this model.

Biology of Neuron
Neurons are the main cells responsible for information pro-
cessing in the brain. They are different from other cells in
the body not only in term of functionality, but also in bio-
physical structure (Kandel et al. (2000)). They have differ-
ent shapes and structures depending on their location in the



Proc. of the Alife XII Conference, Odense, Denmark, 2010 242

brain, but the basic structure of neurons is always the same.
They have three main parts.

• Dendrites (Inputs): Receive information from other neu-
rons and transfer it to the cell body. They have the form
of a tree structure, with branches close to the cell body.

• Axons (Outputs): Transfer the information to other neu-
rons by the propagation of a spike or action potential. Ax-
ons usually branch away from the cell body and make
synapses (connections) onto the dendrites and cell bodies
of other neurons.

• Cell body (Processing area or Function): This is the main
processing part of neuron. It receives all the information
from dendrite branches connected to it in the form of elec-
trical disturbances and converts it into action potentials,
which are then transferred through axon to other neurons.
It also controls the development of neurons and branches.

Neural modeling
A number of techniques are used for simulation of neu-
ral development either in the form of construction algo-
rithms or biologically-inspired growth processes. One ap-
proach aims to reproduce the geometrical properties of real
neurons and does not consider the actual biological pro-
cesses responsible for neural growth that could be used in an
electrophysiology simulator (Stiefel and Sejnowski (2007)).
Lindenmayer-System have been used to invent the proce-
dure for modeling plant branching structures (Lindenmayer
(1968)) and later has been successfully applied to develop
neural morphologies (Ascoli et al. (2001)). A number of
other methods such as probabilistic branching models (Klie-
mann (1987)), Markov models (Samsonovich and Ascoli
(2005)) and Monte Carlo processes (da Fontoura Costa and
Coelho (2005)) are also proposed as construction algorithm
for neural development. Although these methods produce
interesting neuronal shapes, they do not provide any in-
sight into the fundamental growth mechanisms for neuronal
growth. Growth models on the other hand provide the bio-
logical mechanisms responsible for generation of neuronal
morphology. A number of interesting agent-based simula-
tions are produced that highlights various aspects of biolog-
ical development, such as cell proliferation (Al-Musa et al.
(1999)), polarization (Samuels et al. (1996)), neurite exten-
sion (Kiddie et al. (2005)), growth cone steering (Krottje and
van Ooyen (2007)) synapse formation (Stepanyants et al.
(2008)) and axon guidance and map formation (de Gennes
(2007)).

Although these methods introduce various interesting
techniques to model the neuronal growth which is the early
stage of development of brain, they have not consider the
signal processing aspects and its effect on the growth dur-
ing interaction with the world via sensory mechanisms. We

introduce the method of evolving the functions that are re-
sponsiple for neuronal growth, signalling and synapse for-
mation during the lifetime of the agent as explained in later
sections.

Computational Development
In biology, multicellular organisms are built through devel-
opmental process from ’relatively simple’ gene structures.
The same technique could be used in computational devel-
opment to produce complex systems from simpler systems
that are capable of learning and adapting (Stanley and Mi-
ikkulainen (2003)).

Quartz and Sejnowski proposed a powerful manifesto for
the importance of dynamic neural growth mechanisms in
cognitive development (Quartz and Sejnowski (1997)). Mar-
cus emphasized the importance of growing neural structures
using a developmental approach (Marcus (2001)).

Parisi and Nolfi suggested that if neural networks are
viewed in the biological context of artificial life, they should
be accompanied by genotypes which are part of a popula-
tion and inherited from parents to offspring (Parisi and Nolfi
(2001)). They have used a growing encoding scheme to
evolve the architecture and the connection strengths of neu-
ral networks. The network consists of a collection of ar-
tificial neurons distributed in 2D space with growing and
branching axons. The genetic code inside them specifies the
instructions for axonal growth and branching in neurons.

Cangelosi proposed a neural development model, which
starts with a single cell that undergoes a process of cell divi-
sion and migration until a collection of neurons arranged in
2D space is developed (Cangelosi et al. (1994)). At the end,
neurons grow their axons to produce connection among each
other until a neural network is developed. The rules for cell
division and migration are stored in genotype, for a related
approach see (Dalaert and Beer (1994)). Gruau also pro-
posed a similar method (Gruau (1994)). The genotype used
in Gruau’s model is in the form of a binary tree structure as
in GP (Koza (1992)).

Rust and Adams have used a developmental model cou-
pled with a genetic algorithm to evolve parameters that grow
into artificial neurons with biologically-realistic morpholo-
gies (Rust et al. (2000)). Jakobi created an impressive ar-
tificial genome regulatory network, where genes code for
proteins and proteins activate (or suppress) genes (Jakobi
(1995)). The proteins define neurons with excitatory or in-
hibitory dendrites. The individual cell divides and moves
due to protein interactions causing a complete multicellular
network to develop. Federici presented an indirect encod-
ing scheme for development of a neuro-controller and com-
pared it with a direct scheme (Federici (2005)). He imple-
mented the system on a Khepera robot and tested it using
direct and indirect encoding schemes, finding that the latter
reached high fitness faster.

Downing favors a higher abstraction level in neural de-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 243

velopment to avoid the complexities of axonal and den-
dritic growth while maintaining key aspects of cell signal-
ing, competition and cooperation of neural topologies in na-
ture (Downing (2007)). He tested it on a simple movement
control problem known as starfish. The task for the k-limbed
animate is to move away from its starting point as far as pos-
sible in a limited time, producing encouraging preliminary
results.

One of the major difficulties in abstracting neuroscience
is that one can lose the essential aspects required to make a
powerful learning system. However the evidence of impor-
tance of time-dependent morphological processes in learn-
ing is highly compelling and we have thus included many of
these aspects in a model of an artificial neuron.

The Neuron Model
This section describes the Cartesian Genetic Programming
(CGP) and details the structure and processing inside the
CGP Neuron and the way inputs and outputs are interfaced
with it.

Cartesian Genetic Programming (CGP)
CGP is a well established and effective form of Genetic Pro-
gramming. It represents programs by directed acyclic graphs
(Miller and Thomson (2000)). The genotype is a fixed length
list of integers, which encode the function of nodes and the
connections of a directed graph. Nodes can take their in-
puts from either the output of any previous node or from
a program input (terminal). The phenotype is obtained by
following the connected nodes from the program outputs to
the inputs. The function nodes used here are variants of bi-
nary if-statements known as 2 to 1 multiplexers (Miller et al.
(2000)).

In CGP an evolutionary strategy of the form 1 + λ, with
λ set to 4 is often used (Miller et al. (2000)). The parent, or
elite, is preserved unaltered, whilst the offspring are gener-
ated by mutation of the parent. If two or more chromosomes
achieve the highest fitness then newest (genetically) is al-
ways chosen. We have used this algorithm in the work we
report here.

Health, Resistance, Weight and Statefactor
Four variables are incorporated into the CGP Neuron, repre-
senting either fundamental properties of the neuron (health,
resistance, weight) or as an aid to computational efficiency
(statefactor). The values of these variables are adjusted by
the CGP programs.

The health variable is used to govern replication and/or
death of dendritic and axonal connections. The resistance
variable controls growth and/or shrinkage of dendrites and
axons. The weight is used in calculating the potentials in
the network. Each soma has only two variables: health and
weight. The statefactor is used as a parameter to reduce

computational burden, by keeping neuron and branches in-
active for a number of cycles. Only when the statefactor is
zero are the neuron and branches are considered to be ac-
tive and their corresponding program is run. Statefactor is
affected indirectly by CGP programs.

Inputs, Outputs and Information Processing inside
CGP Neuron

The signal is transferred to and taken from this neuron us-
ing virtual axon and dendrite branches by making synaptic
connections.

The signal from the environment is applied to CGP neu-
ron using five virtual input axo-synaptic connections. Five
virtual output dendrite branches are used to decide the move-
ment of the agent. The virtual axo-synaptic branches are al-
lowed to not only transfer signals to the dendrite branches
of processing neuron (CGP Neuron) but also to the output
virtual dendrite branches which decide the movement of the
agent. The CGP Neuron transfers signals to the virtual out-
put dendrite branches using the program encoded in the axo-
synaptic chromosome.

Information processing in the CGP Neuron starts by se-
lecting the list of dendrites and running the electrical den-
drite branch program. The updated signals from dendrites
are averaged and applied to the soma program along with
the soma potential. The soma program is executed to get
the final value of soma potential, which decides whether a
neuron should fire an action potential or not. If soma fires,
an action potential is transferred in forward direction using
axo-synaptic branch programs.

Functionality of CGP Neuron

The CGP Neuron is placed at a random location in a two
dimensional spatial neural grid (as shown in figure 1). It is
initially allocated a random number of dendrites, dendrite
branches, one axon and a random number of axon branches.
Neurons receive information through dendrite branches, and
transfer information through axon branches to neighbouring
dendrite branches. The branches may grow or shrink and
move from one neural grid location to another. They can
produce new branches and can disappear. Axon branches
transfer information only to dendrite branches in their prox-
imity. Electrical potential is used for internal processing of
neurons and communication between neuron and is repre-
sented by an integer (32 bit).

Neural functionality is divided into three major cate-
gories: electrical processing, life cycle and weight process-
ing. These categories are described in detail below.

Electrical Processing The electrical processing part is re-
sponsible for signal processing inside neuron and commu-
nication between neurons. It consists of dendrite branch,
soma, and axo-synaptic branch electrical chromosomes.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 244

External output

External Input

Figure 1: On the top left a neural grid is shown contain-
ing a single neuron. The rest of the figure is an exploded
view of the neuron is given. Electrical processing parts: den-
drite (D), soma (S) and axo-synapse branch (AS) are shown
as part of neuron. Developmental programs responsible for
the life-cycle of neural components are also shown (shown
in grey). These are dendrite branch life (DBL), soma life
(SL) and axo-synaptic branch life (ASL). The weight pro-
cessing program (WP) is used to adjusts synaptic and den-
dritic weights.

The dendrite program D, handles the interaction of den-
drite branches belonging to a dendrite. It take active dendrite
branch potentials and soma potential as input and updates
their values. The Statefactor is decreased if the update in
potential is large and vice versa.

If any of the branches are active (statefactor equal to zero),
their life cycle program (DBL) is run, otherwise D continues
processing the other dendrites.

The soma program S, determines the final value of soma
potential after receiving signals from all the dendrites. The
processed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If it fires, it is kept
inactive (refractory) for a few cycles by changing its state-
factor, the soma life cycle chromosome (SL) is run, and the
firing potential is sent to the other neurons by running the
AS programs in axon branches.

AS updates neighbouring dendrite branch potentials and
the axo-synaptic potential. The statefactor of the axosynap-
tic branch is also updated. If the axo-synaptic branch is ac-
tive its life cycle program (ASL) is executed.

After this the weight processing program (WP) is run
which updates the Weights of neighbouring (branches shar-
ing same neural grid square) branches.

Life Cycle of Neuron This part is responsible for repli-
cation, death, growth and migration of neurite branches. It
consists of three life cycle chromosomes responsible for the

neurites development. The two branch chromosomes update
Resistance and Health of the branch. Change in Resistance
of a neurite branch is used to decide whether it will grow,
shrink, or stay at its current location. The updated value of
neurite branch Health decides whether to produce offspring,
to die, or remain as it was with an updated Health value. If
the updated Health is above a certain threshold it is allowed
to produce offspring and if below certain threshold, it is re-
moved from the neurite. Producing offspring results in a new
branch at the same neural grid square connected to the same
neurite (axon or dendrite). The soma life cycle chromosome
produces updated values of Health and Weight of the soma
as output.

Maze
A maze is a term used for complex and confusing series of
pathways. It is an important subject for autonomous robot
navigation and route optimization (Tani (1996); Blynel and
Floreano (2003)). The idea is to teach an agent to navi-
gate through an unknown environment and find the optimal
route without having prior knowledge. A simplified version
of this problem can be simulated by using a random two-
dimensional synthetic maze. The pathways and obstacles in
a maze are fixed.

Experimental Setup
In our experiments an agent is provided with CGP Neuron
as its computational network. The job of the agent is to
find routes from a starting point toward an end point of a
maze as many times as it can in a single life cycle. We have
used a 2D maze representation for this experiment as shown
in figure 2. The 2D Maze representation is explored in a
number of scenarios (Werbos and Pang (1996); Ilin et al.
(2007)). We have represented the maze as a rectangular ar-
ray of squares with obstacles and pathways (As shown in the
figure 2). A square containing an obstacle cannot be occu-
pied. Movement is possible up or down on squares on the
outside columns. Movement is either left or right on rows,
unless there is a pathway, in which case downward motion
is possible. This is inspired by the clustering approach used
to improve learning capabilities of an agent (Mannor et al.
(2004)). We used different sizes of mazes to test the ability
of the agent. The location of the obstacles, pathways and
exit are chosen randomly for different experimental scenar-
ios.

Energy of Agent The agent is assigned a quantity called
energy, which has an initial value of 50 units. If an agent
attempts to penetrate an obstacle its energy level is reduced
by 5 units. If it encounters a pathway and moves to a row
closer to the exit, its energy level is increased by 10 units. If
it moves a row further away from the maze exit, its energy
is reduced by 10 units. This is done to enhance the learning
capability of agent by giving it a reward signal. If the agent



Proc. of the Alife XII Conference, Odense, Denmark, 2010 245

Figure 2: The left figure shows a 10x10 maze with impenetrable obstacles (black), downward pathways (arrows), start (S) and
exit point (E), and their corresponding signals. On the neighbouring squares of an obstacle (north, south, east and west) and the
exit there is a signal detectable by the agent indicating whether the agent is on a square neigbouring an obstacle (radial shading)
or exit(linear shading). The figure on the right shows the path of an evolved agent.

reaches the exit, its energy level is increased by 50 units and
it is placed back at the starting point and allowed to solve
the maze again. Finally, if the agent arrives home, without
having reached the exit, the agent is terminated. For each
single move, the agent’s energy level is reduced by 1 unit,
so if the agent just oscillates in the environment and does
not move around and acquire energy through solving tasks,
it will run out of energy and die.

Fitness Calculation The fitness value, which is used in
the evolutionary scheme, is accumulated while the agent’s
energy is greater than zero as follows:

• For each move, increase fitness by one. This is done, to
encourage the agents to have ’brain’ that remains active
and does not die.

• Each time the agent reaches the exit, its fitness is in-
creased by 100 units.

Inputs to neuron The maximum allowed neural potential
is M = 232−1. The agent’s input axo-synapses can perceive
input potentials, I , depending on the circumstances in the
following way. Note that the agent can perceives only one
signal on a maze square, even if there are more than one.

• I = 0 default.

• I = M/60 finds a pathway to a row closer to exit.

• I = M/120 tries to land on obstacle.

• I = M/200 on exit square.

• I = M/100 adjoining square north of an obstacle.

• I = M/110 adjoining square east of an obstacle.

• I = M/130 adjoining square south of an obstacle.

• I = M/140 adjoining square west of an obstacle.

• I = M/180 approaches exit from north direction

• I = M/190 approaches exit from east direction

• I = M/210 approaches exit from south direction

• I = M/220 approaches exit from west direction

• I = M/255 home square (starting point)

Agent movement and termination When the experiment
starts, the agent takes its input from the starting point (on the
top left corner as shown in figure 2). This input is applied to
the computational network (CGP Neuron) of the agent using
input axo-synapses. The network is then run for five cycles
(one step). During this process it updates the potentials of
the output dendrite branches. After the step is complete the
updated potentials of all output dendrite branches are noted
and averaged. The value of this average potential decides the
direction of movement for the agent. If there is more than
one direction the potential is divided into as many ranges as
possible movements. For instance if two possible directions
of movement exist, then it will take one direction if the po-
tential is less than (M/2) and the other if greater. The same
process is then repeated for the next maze square. The agent
is terminated if either its energy level becomes zero or if it
returns home.

CGP Neuron Setup The various parameters of CGP neu-
ron are chosen as follows. The neuron’s branches are con-
fined to 3x3 CGPN neural grid. Inputs and outputs to the
network are located at five different random squares. The
maximum number of dendrites is 5. The maximum branch
statefactor is 7. The maximum soma statefactor is 3. The
mutation rate is 2%. The maximum number of nodes per
chromosome is 100. Maximum number of dendrite and axon
branches are hundred and twenty respectively. These param-
eters have not been optimized and have largely been chosen
as they work reasonably well and do not incur a prohibitive
computational cost.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 246

Difficulty of the problem
It is important to appreciate how difficult this problem is.
The agents starts with a single neuron with random connec-
tions. Evolution must find a series of programs that build
a computational neural structure that is stable (not lose all
branches etc.). Secondly, it must find a way of processing in-
frequent environmental signals (pathway, blocks, exit, home
etc) and understand their meaning (beneficial and deleteri-
ous). Thirdly, it must navigate in this environment using
some form of memory. Fourthly, it must confer goal-driven
behaviour on the agent. The agent performance is deter-
mined by its capability to solve the maze as many times as it
can during a single life cycle.

The maze environment we produced is much more com-
plex than the traditional mazes, as the agent in this environ-
ment can only sense the signal from the maze square it is
occupying, not from neighbouring squares. So in order to
solve the maze the agent must develop a memory of each
step it makes and the direction of movement, and use this
memory to find a route toward the exit. As the structure
and weights of branches changes at runtime while solving
the maze, the learned information is stored both in weights
and the structure of the neuron. The capability to learn and
transformation of learned information into memory in the
form of update in weights and structure is stored in geno-
type.

Results and Analysis
Figure 3 shows a number of mazes in first column. Fitness
improvement during evolution is shown in the second col-
umn. The third column in figure 3 shows the energy varia-
tion of the best maze solving agent. The small continuous
drop in energy is due to an agent losing its energy after every
step. Large decreases occur through encounters with an ob-
stacle or going away from the exit by following the pathway
in opposite direction. Small increases shows the result of
following the pathway and moving toward the exit and large
increases happen when the agent finds the exit. The fourth
and the last column shows the variation in neuron branch-
ing structure over the agent lifetime, while it is solving the
maze.

The agent is able to solve the maze four to five times dur-
ing a single life cycle in all the cases as shown in the second
column of figure 3. During this process the structure of the
neuron also changes in terms of the number of dendrite and
axon branches. The fourth column of the figure 3 shows
that although agents start with a minimal structure they soon
achieve a structure that is most advantageous.

In traditional methods that train an agent to solve the maze
and find a path, the network characteristics are fixed once
it is trained to solve the maze. So if they are allowed to
start the maze again they would always follow the same path.
As the CGP Neuron continues to change its architecture and
parameter values it also continues to explore different paths

on future runs. This makes it possible for it to obtain (or
forget!) a global optimum route. The networks is not trained
to stabilize on a fixed structure, that it does so, seems to
be because it has found a suitable structure for the desired
task. The best architecture does not necessarily have to have
the most neurite branches. This is evident from the varied
characteristics in the last column of figure 3.

It is interesting to note that as the task become bigger and
bigger the structure of the neuron grows in response to it.
This is evident from the last column of the figure 3. For an
8x8 maze (first and second maze) the agent structure grows
and stabilizes on a fairly small structure whereas for a 10x10
maze (3rd, 4th and 5th mazes) the number of dendrite and
axon branches grows into a fairly large structure (the max-
imum allowed value is 100 in this case). Further investiga-
tion reveals that as the route toward the exit becomes more
and more complex, the network structure become richer in
terms of branches. This is evident from the second 10x10
maze (4th row) where the number of blocking paths are 10
(with each obstacle providing four walls in all the four di-
rections, 40 walls), and number of pathways are 20. Ten on
the sides (first and last column) with possibility to move in
both upward and downward directions and ten that are only
open toward the exit in downward direction). In this case the
agent was able to solve the maze three times, as is evident
from the rises in the energy level diagram. However, it dies
on the fourth run when it tried to escape through the start-
ing point. In next case, when we have reduced the number
of obstacles to six (24 walls) while keeping the number of
pathways the same as shown in the in fourth row of figure
3. This time the agent was able to solve the maze four times
and its axon branch structure is improved during its run but
the dendrite structure is stabilized on a low value. The final
maze is a variant of 10x10 maze in third row with similar
characteristics. In 8x8 mazes when the environment is sim-
ple, the agent was able to solve the maze a number of times
even though it stabilized on a fairly small branch structure.
This strongly suggests that the complexity of the CGP Neu-
ron structure increases with increase in the complexity of the
task environment.

Conclusion

We have described a neuron-inspired developmental ap-
proach to construct a new kind of computational neural ar-
chitectures which has the potential to learn through expe-
rience. We found that the neural structure controlling the
agents grows and changes in response to their behaviour,
interactions with the environment, and allow them to learn
and exhibit intelligent behaviour. We found that the network
complexifies itself in response to the environmental com-
plexity. The eventual aim is to see if it is possible to evolve
a network that can learn by experience.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 247

0 500 1000 1500
0

500

1000

F
itn

es
s

Number of Generations

0 100 200 300
−200

0

200

400

A
ge

nt
 E

ne
rg

y

Number of steps

0 500 1000 1500
0

5

10

15

B
ra

nc
he

s

Number of cycles

3000 3100 3200 3300
0

500

1000

F
itn

es
s

Number of Generations

0 200 400 600
−50

0

50

100

150
A

ge
nt

 E
ne

rg
y

Number of steps

0 1000 2000 3000
0

5

10

15

B
ra

nc
he

s

Number of cycles

0 500 1000 1500
0

200

400

600

F
itn

es
s

Number of Generations

0 50 100 150 200
−100

0

100

200

300

A
ge

nt
 E

ne
rg

y

Number of steps

0 500 1000
0

50

100

B
ra

nc
he

s
Number of cycles

0 500 1000 1500
0

200

400

600

800

F
itn

es
s

Number of Generations

0 100 200 300 400
−100

0

100

200

A
ge

nt
 E

ne
rg

y

Number of steps

0 500 1000 1500 2000
5

10

15

20

B
ra

nc
he

s

Number of cycles

0 500 1000 1500
0

500

1000

F
itn

es
s

Number of Generations

0 200 400 600
−100

0

100

200

A
ge

nt
 E

ne
rg

y

Number of steps

0 1000 2000 3000
0

50

100

B
ra

nc
he

s

Number of cycles

Figure 3: Mazes, Fitness, Best Run and Variation in Branch Structure

References
Al-Musa, S., Abu Fara, D., Badwan, A., Ryder, E., Bullard,

L., Hone, J., Olmstead, J., and Ward, M. (1999).
Graphical simulation of early development of the cere-
bral cortex. Computer Methods and Programs in
Biomedicine, 59(2).

Ascoli, G. A., Krichmar, J. L., Scorcioni, R., Nasuto, S. J.,
and Senft, S. L. (2001). Computer generation and quan-
titative morphometric analysis of virtual neurons. Anat.
Embryol., 204.

Blynel, J. and Floreano, D. (2003). Exploring the t-maze:
Evolving learning-like robot behaviors using ctrnns. In
EvoWorkshops, pages 593–604. Springer Berlin / Hei-
delberg.

Cangelosi, A., Nolfi, S., and Parisi, D. (1994). Cell divi-
sion and migration in a ’genotype’ for neural networks.
Network-Computation in Neural Systems, 5:497–515.

da Fontoura Costa, L. and Coelho, R. C. (2005). Growth-
driven percolations: the dynamics of connectivity in
neuronal systems. Eur. Phys. J. B Condens Matter
Complex Syst., 47.

Dalaert, F. and Beer, R. (1994). Towards an evolvable model
of development for autonomous agent synthesis. In
Brooks, R. and Maes, P. eds. Proceedings of the Fourth
Conference on Artificial Life. MIT Press.

de Gennes, P.-G. (2007). Collective neuronal growth and
self organization of axons. In Proc. Natl. Acad. Sci.
U.S.A., page 49044906.

Downing, K. L. (2007). Supplementing evolutionary devel-
opmental systems with abstract models of neurogene-
sis. In GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
pages 990–996.

Federici, D. (2005). Evolving developing spiking neural net-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 248

works. In Proceedings of CEC 2005 IEEE Congress on
Evolutionary Computation, pages 543–550.

Gruau, F. (1994). Automatic definition of modular neural
networks. Adaptive Behaviour, 3:151–183.

Ilin, R., Kozma, R., and Werbos, P. (2007). Efficient learn-
ing in cellular simultaneous recurrent neural network
the case of maze navigation problem. In IEEE In-
ternational Symposium on Approximate Dynamic Pro-
gramming and Reinforcement Learning, pages 324–
329. IEEE Press.

Jakobi, N. (1995). Harnessing Morphogenesis, Cognitive
Science Research Paper 423, COGS. University of Sus-
sex.

Kandel, E. R., Schwartz, J. H., and Jessell, T. (2000). Prin-
ciples of Neural Science, 4rth Edition. McGraw-Hill.

Khan, G., Miller, J., and Halliday, D. (2007). Coevolution of
intelligent agents using cartesian genetic programming.
In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 269 – 276.

Khan, G. M. and Miller, J. F. (2009). Evolution of cartesian
genetic program capable of learning. In Proceedings
of Genetic and Evolutionary Computation Conference
(GECCO’09), pages 707–714. ACM.

Kiddie, G., McLean, D., Ooyen, A. V., and Graham, B.
(2005). Development,dynamics and pathology of neu-
ronal networks: from molecules to functional circuits,
progress in brain research 147. In Biologically Plausi-
ble Models of Neurite Outgrowth.

Kliemann, W. (1987). A stochastic dynamical model for
the characterization of the geometrical structure of den-
dritic processes. Bull. Math. Biol., 49.

Koch, C. and Segev, I. (2000). The role of single neurons in
information processing. Nature Neuroscience Supple-
ment, 3:1171–1177.

Koza, J. (1992). Genetic Programming: On the Program-
ming of Computers by Means of Natural selection. MIT
Press.

Krottje, J. K. and van Ooyen, A. (2007). A mathematical
framework for modeling axon guidance. Bull. Math.
Biol., 69.

Lindenmayer, A. (1968). Mathematical models for cellular
interactions in development. parts 1 and 2. J. Theor.
Biol., 18.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004).
Dynamic abstraction in reinforcement learning via

clustering. In ICML ’04: Proceedings of the twenty-
first international conference on Machine learning,
page 71.

Marcus, G. F. (2001). Plasticity and nativism: towards a
resolution of an apparent paradox. pages 368–382.

Miller, J. F. and Thomson, P. (2000). Cartesian genetic pro-
gramming. In Proc. of the 3rd European Conf. on Ge-
netic Programming, volume 1802, pages 121–132.

Miller, J. F., Vassilev, V. K., and Job, D. (2000). Principles in
the evolutionary design of digital circuits-part i. genetic
programming. volume 1:1/2, pages 7–35.

Parisi, D. and Nolfi, S. (2001). Development in Neural
Networks. In Patel, M., Honovar, V and Balakrishnan,
K.eds. Advances in the Evolutionary Synthesis of Intel-
ligent Agents. MIT Press.

Quartz, S. and Sejnowski, T. (1997). The neural basis of
cognitive development: A constructivist manifesto. Be-
hav. Brain. Sci, 20:537–556.

Rust, A., Adams, R., and H., B. (2000). Evolutionary neural
topiary: Growing and sculpting artificial neurons to or-
der. In Proc. of the 7th Int. Conf. on the Simulation and
synthesis of Living Systems (ALife VII), pages 146–150.
MIT Press.

Samsonovich, A. V. and Ascoli, G. A. (2005). Statisti-
cal determinants of dendritic morphology in hippocam-
pal pyramidal neurons: a hidden markov model. Hip-
pocampus, 15.

Samuels, D. C., Hentschel, H. G., and Fine, A. (1996). The
origin of neuronal polarization: a model of axon for-
mation. philos. trans. r. soc. lond., b. Biol. Sci., 351.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130.

Stepanyants, A., Hirsch, J. A., Martinez, L. M., Kisvrday,
Z. F., Ferecsk, A. S., and Chklovskii, D. B. (2008). Lo-
cal potential connectivity in cat primary visual cortex.
Cereb. Cortex., 18.

Stiefel, K. M. and Sejnowski, T. J. (2007). In biologically
plausible models of neurite outgrowth mapping func-
tion onto neuronal morphology. J. Neurophysiol, 98.

Tani, J. (1996). Model-based learning for mobile robot nav-
igation from the dynamical systems perspective. IEEE
Trans. on Systems, Man, and Cybernetics, 26:421–436.

Werbos, P. and Pang, X. (1996). Neural network design
for j function approximation in dynamic programming.
Math’l Modeling and Scientific Comp., 2.


