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Abstract 
The role of aneuploidy (the cellular state of having an abnormal 
number of chromosomes) in cancer is not well understood. A 
recent theory suggests that aneuploidy may be an initial step 
towards the generation of variation in cancer. This theory 
however is very difficult to test in biological experiments. To 
address this theory and explore the role that aneuploidy has on 
the development of cancer, a computational model of cancer 
evolution has been developed. Results show that, depending on 
the arrangement of tumour suppressors, proto-oncogenes and 
regulators of chromosome segregation in the genome, 
aneuploidy induces distinct pathways for the generation of 
novel genotypes leading to emergent cancer-like behaviour. 

1 Introduction 
Cancer is a disease through which a group of cells proliferate 
beyond the normal limits of division, destroying adjacent 
tissue and sometimes spreading to other locations in the body. 
Tumours evolve in the body behaving almost like infecting 
pathogens with the cells undergoing a sequence of genetic 
mutations until they are able to proliferate almost without 
limit. Cancer affects people of all ages and ethnicities, with 
risk increasing with age. Cancer is one of the leading causes 
of death worldwide, with cancer deaths projected to continue 
rising (Parkin et al. 2005). To tackle this disease, efforts are 
being made to generate knowledge about the causes of cancer 
and the management of the disease. Cancer research, a field 
ranging from molecular bioscience to clinical trials, seeks to 
increase our understanding of the fundamental principles of 
cancer. Through this kind of research, we have been able to 
identify many of the key factors that influence cancer and the 
development of treatments and prevention strategies. Because 
of the complexity of cancer development, which involves the 
evolution of somatic clones with increasingly aggressive 
behaviour that eventually undergo metastasis, computational 
modelling has become a very valuable tool for refuting or 
supporting theories that explain the underlying individual cell 
behaviour in tumours (Nagl et al. 2007).   
 
In the field of Artificial Life, efforts are being made to 
simulate and understand the properties of cancer systems. 
These contributions are an important part in the development 
of a more general theory of cancer (Abbott et al. 2006). They 

have inspired new ways of thinking and revolutionized the 
way we explore, describe and explain complex biological 
phenomena.  One such phenomenon, aneuploidy, has recently 
gained much interest in the cancer community.  
 
In the absence of sexual recombination, the path to cellular 
evolution is through mutation, the generation of chromosome 
aberrations and aneuploidy– the cellular state of having an 
abnormal number of chromosomes. Evolutionary pressure 
selects for genetic changes that enable cells to avoid death and 
over proliferate. This can be achieved by the overexpression 
of growth signals, adaptation to hypoxia and evasion of 
reproductive limits amongst others (Gibbs 2003). 
Unfortunately it is extremely difficult to devise biological 
experiments to isolate the effects of aneuploidy in cancer 
(Weaver and Cleveland 2007). Because of the extreme 
difficulties encountered when trying to devise this kind of 
biological experiment, in this work we propose a 
computational model to address some of the fundamental 
questions of tumour formation and help further guide 
experiment and theory.  
 
The aim of this work is investigate the role of aneuploidy and 
its effect on the dynamics in cancer. By making abstractions 
of current biological knowledge, data and theories that 
describe the behaviour of cancer, a computational model that 
addresses this theory is presented. The model explores the role 

Figure 1- Schematic of normal cell division (top) and the 
missegregation of chromosomes during mitosis (bottom). 
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that aneuploidy plays as a main driver for the origin and the 
subsequent stages of cancer. It is an individual-based 
evolutionary model, similar to models used in ALife work for 
other population-based simulation studies (Gras et al. 2009). 
 
In the next section, the essential theories of the origins of 
cancer are summarised. Section 3 presents the details of the 
computational model. Section 4 continues with a discussion of 
the different simulations carried out. Conclusions and future 
work are provided in the final section.  

2 Background 
What we currently consider to be cancer includes, in reality, a 
very broad spectrum of diseases known as malignant 
neoplasms. Biological systems are complex, and cancer in 
particular may be best described as an emergent behaviour of 
a complex system (Nagl et al. 2007). Because it is very 
difficult to understand a complex system by examining only 
its components, the exact mechanisms by which cancer can 
arise are a matter of heated debate (Basanta and Deutsch 
2008).  

 
There are two predominant theories regarding the origins of 
cancer. The first theory suggests that DNA damage over 
decades leads to many thousands of random mutations in the 
cell’s genome that confers on the cell new proliferative 
capabilities (Chin et al. 2006). Chemical carcinogens such as 
ionizing radiation (x-rays, etc) may cause chromosomal 
breaks and translocations that contribute to cancer 
development. This kind of damage is largely stochastic and 
raises the question of how can such a comprehensive genome 
reprogramming be carried out so consistently for the 
development of a cancer genotype by means of random 
mutations. 
 
The second theory suggests that damage to a few “cancer 
genes”, such as those depicted in Table 1, would activate 
pathways that would lead to tumourigenesis by means of 
accumulative changes (Hanahan and Weinberg 2000). This 
theory suggests that the accumulation of very particular 
alterations (also known as “gate-keeper” mutations) in proto-
oncogenes (genes that contribute to cancer because of their 
increased expression) and tumour suppressor genes (genes 
that contribute to cancer when its function is reduced) could 
be a main driver for many cancers (Gatenby et al. 2007). This 
theory does not directly address the underlying evolutionary 
and selective forces that play an important role in cancer 
development, nor the interaction with a particular 
microenvironment in which phenotype selection takes place.  
 
A third theory, proposes that an abnormal number of 
chromosomes, or aneuploidy (described in Figure 1), in a cell 
may be a first step towards generating malignant genotypes 
(Gibbs 2003). This theory (as first proposed by Boveri in 
1914) has recently gained support due to many recent articles 
that describe the presence of aneuploidy and chromosomal 
instability in many types of cancers (Rajagopalan and 
Lengauer 2004). More significantly, mutations leading to 
chromosome instability lead to a genetic predisposition to 

cancer (Hanks et al. 2004). The high number of different 
cellular states that are considered as aneuploid and the 
different behaviours and interactions that these cells may 
exhibit make it difficult to trace an evolutionary pathway 
through this complex system. Because of a lack of a clear 
pathway, the contribution of aneuploidy as a cause or a 
consequence of malignant transformation, remains unknown 
(Holland and Cleveland 2009).  

3 The Model 
In order to investigate the theory of aneuploidy as a driver for 
the development of malignant cancer, a model was created. 
The computational model consists of individual agents that 
are abstractions of individual cells, incorporating a set of 
biologically-inspired features dealing with cell division and 
more specifically chromosome segregation.  
 
The model abstracts biological behaviour at the genetic level, 
and studies the behaviour at a tissue level that emerges 
through the interaction of the individual cells under diverse 
conditions. In the model, abstractions of genes known to play 
a relevant role in tissue homeostasis are considered. This kind 
of model could not only provide us with an insight as to the 
origins and the evolution of cancer, but also with a new tool 
for developing new cancer therapies. 
 

Gene Role in Cancer Biological Function 
BUB1 Aneuploidy Chromosome segregation 
MYC Proto-oncogene Promotes growth 
PTEN Tumour suppressor Inhibits growth 

RAS Proto-oncogene 
Promotes growth, cell cycle 
progression 

RB1 Tumour suppressor Inhibits cell cycle progression 
P53 Tumour suppressor Promotes cell death 
NF2 Tumour suppressor Regulates contact inhibition 

Table 1- Known human cancer genes considered. The function of 
the genes as given is a broad summary and approximation of their 
true behaviour, which is still the subject of research. 

 
3.1 Biological Abstractions 
In order to develop a computational model to study the 
biological phenomenon of aneuploidy, it was decided to 
investigate the behaviour of a few known cancer genes 
(Futreal et al. 2004), as seen in Table 1. Although alterations 
in these cancer genes may account for specific cellular 
misbehaviours, the genetic evolutionary pathway that cells 
follow when they become cancerous remains unknown. To 
address this question, behaviour was abstracted from genes 
that regulate cell death, proliferation, and fidelity during 
chromosome segregation.  
 
The core of the model is an abstraction of individual cells and 
their genomes. Each simulated genome is composed of 3 
types of genes in diploid chromosomes (pairs of 
chromosomes, the chromosomes of each pair having identical 
genes) as the normal state within cells, as seen in Figure 2. 
The collection of individual cells comprises a simulated 
tissue, whose population size is determined for each 
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experiment through an allocated space parameter, whose 
dynamics are determined by the gene expression of the 
individual cells across time. Although the effects of 
differences in chromosome number on gene expression 
patterns in biological systems are only beginning to be 
assessed (Huettel et al. 2008), the model assumes the up and 
down regulation of behaviour to be proportional to the number 
of copies of genes available.  Each of the three genes code for 
corresponding actions at a cellular level, inspired by 
biological systems. The genes present and their functions, 
described below, are: 
• Tumour Suppressors- Apoptosis Regulatory Genes (A) 
• Proto-oncogenes- Cell Division Regulatory Genes (D) 
• Aneuploidy- Chromosome Segregation Regulatory 

Genes (S) 
 

Apoptosis regulatory genes are an abstraction of tumour 
suppressor genes that regulate cell death by mechanisms such 
as contact inhibition. Contact inhibition is the natural process 
by which, when two or more cells come into contact with each 
other, there is an arrest of the cell growth and division, which 
is used by the system to maintain homeostasis. (Zeng and 
Hong 2008). The abstracted genes are used to compare a 
measurement of the overall number of cells and, if this 
number exceeds the carrying capacity of the tissue 
(predefined by the initial conditions of the simulation), it stops 
proliferation and raises the probability of cell death. 
Malignant cells usually have lost this important homeostatic 
property (Carmona-Fontaine et al. 2008). Although based on 
global cell counts, this model is not spatially explicit, but 
rather of the “well-stirred” kind, akin to the more abstract 
theoretical models used to describe artificial chemistries 
(Dittrich et al. 2001). 
 

To balance cellular death and maintain homeostasis, cell 
division regulatory genes provide an abstraction of proto-
oncogenes that promote growth and progression through the 
cell cycle. Apoptosis regulatory genes and cell division 
regulatory genes together maintain a constant population of 
cells close to the carrying capacity of the simulated tissue 
(homeostasis).  
 
The inclusion of the concept of aneuploidy generates variation 
amongst the cell population (no other form of mutation is 
modelled in the system). Inspired by genes that limit 
chromosome missegregation events, chromosome segregation 
regulatory genes, when up regulated, help maintain 
homeostatic conditions for a prolonged period of time. The 
role that the up or down regulation of these kinds of genes has 

in cancer progression is currently unknown (Rajagopalan and 
Lengauer 2004).  
 
The model contains a population of individual cells, where 
each cell is initialized with 2 copies of each gene, within 
diploid chromosomes, as shown in Figure 2. When dividing, 
the genome of each cell is duplicated and one set of genes 
then segregated into a daughter cell. It is during this stage that 
chromosome missegregation events can occur. The behaviour 
generated by the gene expression is dependent on the number 
of copies of a given gene within the genome of each 
individual cell. The algorithm is described in the following 
section. 

3.2 The Algorithm 
Inspired by the processes in biological cellular behaviour 
through which homeostasis is maintained in organisms, the 
algorithm is as follows:  
 
1. An initial population of 100 cells is created, each with 

diploid chromosomes, each chromosome with 1 copy of 
each type of gene (Figure 2). The normal carrying 
capacity of the tissue is fixed at 200 cells. 

2. For each time step, the total number of cells is measured 
and is not updated until the next time step. 

3. For each cell during each time step, if the cell has less 
than 2 chromosomes in its entire genome, the cell dies.  

4. If the cell has not died and if the measurement of the 
number of cells is greater than the predefined tissue’s 
carrying capacity, then the probability of cell death is 
calculated. The probability of death is dependent on the 
number of available copies of the apoptosis regulatory 
genes, NA, within each cell’s genome. The probability of 
apoptosis, PA, is determined by: 

PA =NA / rA  
Where rA is a parameter for the rate of apoptosis. The cell 
is then killed with a probability of PA. 

5. If the cell has not died, it has a chance to divide. The 
probability of division depends on the number of 
available copies of the division regulatory genes, ND, and 
a parameter that determines the rate of division, rD. The 
probability that a cell divides, PD, is: 

PD =ND / rD  
6. If dividing, the probability of chromosome 

missegregation is calculated. The probability of 
chromosome missegregation, PS, in the model is: 

PS = rS / (NS +1) 
 
Where NS is the number copies of the chromosome 
segregation regulatory genes within the cell’s genome, 
and rS is a parameter for the rate of chromosome 
missegregation.  
 

If there is no chromosome missegregation, the genome is 
duplicated and copied with fidelity, thus generating two 
identical daughter cells. Otherwise, one chromosome chosen 
at random is misseggregated during cell division. As the 
mother cell divides into two daughter cells, this results in two 
daughter cells with a different number of chromosomes, as 
seen in Figure 1. 

Chromosome 
1 

A Gene 

D Gene 

Chromosome 
1 

A Gene  

D Gene!

Chromosome 
2 

S Gene 

Chromosome 
2 

S Gene 

Figure 2- Abstracted Genes in Diploid Chromosomes for 
Gene Configuration A. 
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4 Experiments 
To investigate the properties and the dynamics of the system, 
and specifically the role that chromosome segregation 
regulatory genes have, three genome configurations were 
considered. The parameter settings were determined through a 
series of preliminary experiments, in order to ensure that the 
behaviour of the system was both biologically plausible and 
computationally feasible. Simulations were carried out with 
the following initial parameters: 
 

• Initial population: 100 cells 
• Carrying capacity of the tissue: 200 cells 
• Number of time steps: 100 
• rA =10, rD =10, rS =0.03 

 
For the analysis of the simulations, the emergent genotypes 
were assessed. By quantifying the number of chromosomes 
that a cell has at a given time, a genotype state GT is defined 
as: 

GT=(NA, ND, NS) 
 

Where NA, ND and NS are the number of copies of Apoptosis 
Regulatory Genes, Cell Division Regulatory Genes and 
Chromosome Segregation Regulatory Genes respectively. The 
initial genotype consists of two functional copies of each 
chromosome: genotype state (2, 2, 2). 
 
Three different gene configurations (Figure 2, 5 and 7), 20 
simulations were investigated for each experiment. As will be 
shown, although the systems tended to converge on similar 
results, the evolutionary trajectories were usually different. 
For this reason a representative simulation for each 
configuration is given in the results sections rather than an 
average. Future work will investigate an appropriate statistical 
analysis of the distribution of evolutionary pathways across 
simulations. 

4.1 Gene Configuration A 

4.1.1.Objective and Setup 
To investigate the role of the chromosome segregation 
regulatory genes, the following configuration was used:  
 
• Chromosome 1: apoptosis regulatory genes (A) and cell-

division regulatory genes (D) 
• Chromosome 2: chromosome segregation regulatory 

genes (S) 
 

This gene configuration, as seen in Figure 2, isolates the 
effects of the loss or gain of Chromosome 2 to those caused 
by the loss or gain of the chromosome segregation regulatory 
genes.  
 

4.1.2.Results 
Homeostatic behaviour can be observed in Figure 3. In normal 
conditions this kind of homeostatic behaviour provides the 
tissue with robustness if there were a sudden loss of cells 
(wound-healing capabilities), maintaining the total number of 
cells close to that of the carrying capacity of the tissue (200 
cells). For 20 simulations of Configuration A, the average 

total number of cells at the last time step (t=100) was 210 
cells, with a standard deviation of 17. 
 
 
4.1.3 Analysis 
As expected, a comparison of the plot of the total number of 
cells across the simulations of Configuration A reveals the 
high variability of the simulation outcomes, as seen in Figure 
4. Thus, it is difficult to distil meaningful information with 
traditional statistical methods. Despite the stochastic nature of 
the final cell number across experiments, an invariant 
qualitative behaviour can be observed for each configuration. 
Although the actual evolutionary pathway exhibits a high 
degree of variation, a representative simulation captures 
qualitatively the kind of evolutionary pathway that most of the 
simulations follow.  

 
The initial genotype, genotype state (2, 2, 2), contains 2 
functional copies of each gene. For there to be cancer-like 
behaviour, oncogenes need to have their function reduced and 
tumour suppressor genes in turn must have an increase in their 
expression. Because the abstracted genes that model the role 
of oncogenes and tumour suppressor genes are found in the 
same chromosome, they become self-regulated. As the system 
evolves however, novel genotypes emerge but, because of the 
self-regulation of the cancer genes, the overall behaviour 
generated by the new genotypes is not dissimilar to that of the 
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Figure 3- Total number of cells in a 100-time step 
simulation with Gene Configuration A. 

Figure 4- Distribution of the total amount of cells of 5 100-
time step simulations with Gene Configuration A. 
Variability across experiments can be observed. 
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original cell population, as depicted in Figure 9a. This leads to 
a micro diversity of homeostatic genotypes. However, it is of 
interest that the more successful genotypes naturally acquire 
more resistance against chromosome missegregation.  In this 
representative simulation, genotype state (2, 2, 3) accounts for 
more than 30% of the population at the last time step (t=100), 
as seen in a quantification of the distribution of genotypes  
(Table 2).  
 
 

Genotype 
t=0 
(%) 

t=25 
(%) 

t=50 
(%) 

t=75 
(%) 

t=100 
(%) 

(2, 2, 2) 100 93.56 79.90 70.76 58.88 
(2, 2, 3) 0 1.72 8.76 20.34 31.47 
(3, 3, 2) 0 0 4.12 4.66 0.51 
(1, 1, 2) 0 0.43 3.09 2.97 5.58 
(2, 2, 1) 0 3.00 2.06 0 0.51 
(1, 1, 1) 0 0.43 1.55 0.42 1.02 

(2, 2, >3) 0 0 0.52 0.85 1.02 
(1, 1, 3) 0 0.86 0 0 0 

(>3, >3, 2) 0 0 0 0 1.02 

Table 2- Distribution of genotypes at 4 time intervals (0, 25, 50, 
75 and 100) for a representative simulation of Gene 
Configuration A.  

 

4.2 Gene Configuration B 

4.2.1.Objective and Setup 
To better understand the role of the distribution of the genes in 
the chromosomes, the initial configuration was modified to:  
 
• Chromosome 1: apoptosis regulatory genes (A) 
• Chromosome 2: cell-division regulatory genes (D) and 

chromosome segregation regulatory genes (S)  
 
This gene distribution is depicted in Figure 5. 
 
4.2.2.Results 
During the 100-time step experiment, a stable homeostatic 
behaviour can be observed for a period of time. After that 
homeostatic period however, an uncontrolled proliferative 
behaviour follows. The total number of cells increases 
exponentially, reaching the values of the order of thousands in 
a very short period of time, as shown in Figure 6. This kind of 
behaviour is obtained across simulations. For 20 simulations 
of Configuration A, the average total number of cells across 
simulations at the last time step (t=100) was 59,388 cells, with 
an expected high standard deviation of 87,215. The 

representative simulation shown, ignoring the limits set by 
carrying capacity of the tissue, had a final number of 49,765 
cells.   
 
4.2.3 Analysis 
An analysis of the emergent genotypes reveals that a newly 
evolved genotype takes over the population: Genotype state 
(1, 2, 2). From this novel genotype, two different kinds of 
genotypes are further evolved: an apoptosis-resistant genotype 
(0, 2, 2) and an over-proliferative genotype (1, 3, 3), which 
can be appreciated on Figure 9b.  
  
The loss of function of the tumour suppressor-inspired 
Apoptosis regulatory genes through chromosome 
missegregation leads to the generation of a niche of these 
mutants. However, because of the low levels of chromosome 
missegregation, this population remains relatively homeostatic 
until the emergence of two cancer-like genotypes, as 
described by Table 3. 

 

Table 3- Genotype distribution (percentage) for a representative 
simulation of Gene Configuration B. 

 
The evolution of the system with low levels of aneuploidy 
resulted in the generation of few very successful mutants that 
quickly dominated the entire population as seen in Table 3, 
suggesting a counterintuitive pathway for cancer-like 
behaviour with low aneuploidy. This kind of mutations are 
seen in leukemias, lymphomas and some mesenchymal 
tumours, where there are simple, disease-specific 
abnormalities (Johansson et al. 1996). 

Genotype 
t=0 
(%) 

t=25 
(%) 

t=50 
(%) 

t=75 
(%) 

t=100 
(%) 

(2, 2, 2) 100 75.85 9.74 0.72 0.14 
(1, 2, 2) 0 19.81 88.24 88.50 44.42 
(0, 2, 2) 0 0 0.41 4.50 24.14 
(1, 3, 3) 0 0 0 4.90 21.23 
(2, 3, 3) 0 2.42 1.42 0.72 0.15 
(0, 3, 3) 0 0 0 0.17 9.04 
(3, 2, 2) 0 0.97 0 0 0 
(1, 1, 1) 0 0 0.20 0.49 0.36 
(2, 1, 1) 0 0.97 0 0 0 
(1, >3, >3) 0 0 0 0 0.36 
(0, >3, >3) 0 0 0 0 0.14 
(0, 1, 1) 0 0 0 0 0.02 
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Figure 5- Distribution of Genes in Gene Configuration B 

Figure 6- Total number of cells in a 100-time step 
simulation with Gene Configuration B. 
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4.3 Gene Configuration C 

4.3.1.Objective and Setup 
To further study the role of the distribution of the genes in the 
chromosomes in a third configuration (Figure 7): 
• Chromosome 1: cell-division regulatory genes (D) 
• Chromosome 2: and apoptosis regulatory genes (A) and 

chromosome segregation regulatory genes (S)  
 

 

 

 

 

4.3.2.Results 
Although this new genetic configuration yields a similar over-
proliferative behaviour to that obtained through the 
simulations with Gene Configuration B, as seen in Figure 8, 
there are significant differences. The emergence of novel 
genotypes is less gradual, as can be appreciated in Figure 9c. 
In the representative simulation presented for this 
configuration, the total number of cells obtained at the last 
time step was 61,836 cells. The average final number of cells 
of the simulations carried out was 74,201, with a standard 
deviation of 114,736. 

 

 

4.3.3 Analysis 
An analysis of the genotype evolution sheds some light onto 
the emergence of the proliferative, cancer-like genotypes, as 
depicted in Figure 9c. Although the behaviour is similar to 
that of Gene configuration B, the evolution of a genotype that 
produces the cancer-like behaviour is significantly different. 
The analysis of the emergent genotypes reveals that the first 
mutation leads to an increase in the function of genes that 
model proto-oncogenes, increasing proliferation. However, 
contact inhibition induced cell death (the tumour suppressor 
genes) heavily restrict the mutant genotype from dominating 
the entire population. By acquiring mutations that reduce the 

contact inhibition forces, chromosomal instability is also 
induced. This instability leads to an explosion of genotypic 
diversity, as seen in Table 4, making it easier for cells to 
acquire mutations that lead to cancer-like behaviour. 
 
This pathway may help shed some light on the reports of 
increasing levels of chromosome instability during 
premalignant neoplastic progression (Lai et al. 2007) and the 
development of tumours characterized by multiple and 
nonspecific aberrations, similar to most epithelial tumour 
types (Johansson et al. 1996) 
 
 

Genotype 
t=0 
(%) 

t=25 
(%) 

t=50 
(%) 

t=75 
(%) 

t=100 
(%) 

(2, 2, 2) 100 92.38 40.88 3.43 0.11 
(2, 3, 2) 0 6.19 40.25 31.17 2.22 
(1, 2, 1) 0 1.43 16.35 31.93 6.82 
(2, >3, 2) 0 0 2.31 17.71 24.70 
(1, 3, 1) 0 0 0.21 13.90 21.71 
(1, >3, 1) 0 0 0 1.09 24.80 
(0, 3, 0) 0 0 0 0.22 7.44 
(0, >3, 0) 0 0 0 0 11.22 
(0, 2, 0) 0 0 0 0.11 0.65 
(1, 1, 1) 0 0 0 0.33 0.05 
(3, >3, 3) 0 0 0 0 0.27 
(3, 3, 3) 0 0 0 0.11 0.02 
(0, 1, 0) 0 0 0 0 0.00 

Table 4- Genotype distribution at different time intervals for 
Gene Configuration C. 

 

5 Conclusions and Future Work 
In this a work a computation model was created in order to 
investigate the role of chromosome missegregation in tumour 
evolution. By integrating the concept of chromosome 
missegregation in an otherwise homeostatic model, new 
genotypes were evolved. From the resulting novel genotypes, 
those that had acquired mutations that enabled them to express 
higher levels of cell division and lower levels of cell death 
quickly spread through the population. This gave rise to even 
more malignant genotypes exhibiting emergent cancer–like 
behaviour. 
 
Although the model makes a number of assumptions 
including the assumption that the number of copies of a gene 
has a direct effect on the up or down regulation of that gene, 
the interactions and results can be interpreted in terms of 
actual biological behaviour (i.e, the up or down regulation of 
an oncogene or a tumour suppressor gene). The model 
suggests that through chromosome missegregation, the 
arrangement of genes on chromosomes has a profound effect 
on genetic diversity, giving rise to different kinds of cancer-
like behaviours, which resemble key differences observed in 
real cancers (Cahill et al. 1999).  
 
The role that chromosome segregation regulatory genes play 
in this model is largely determined by its position with respect 
to the other genes in the chromosomes. The model suggests 
that high levels of chromosome missegregation lead to a 
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Figure 8- Total number of cells in a 100-time step Simulation 
with Gene Configuration C. 
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 a) 

b) 

c) 

Figure 9. Genotype state population analysis for a) Gene Configuration A b) Gene Configuration B c) Gene Configuration C. The 
genotypes populations are stacked for each time step according to the percentage of the total population that they account for. 
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genetic diversity that help cells overcome the low probability 
of oncogenic mutations, as shown in the analysis of Gene 
Configuration C. Surprisingly, low levels of chromosome 
missegregation may also give rise to a different kind of 
cancer-like behaviour, as shown in the simulations of Gene 
Configurations B. By maintaining a relatively uniform 
population, specific mutations are conserved and spread 
throughout the population until a cancer-like genotype is 
reached. To determine the precise role of that chromosome 
segregation regulatory genes have in cancer systems, the 
development of appropriate tools for statistical analysis and 
further experiments are needed.  
 
It is of interest to consider the real locations of known cancer 
genes to incorporate in an extension of the model. This could 
yield more realistic behaviour and may better inform theory 
and experiment. Mutations in oncogenes or tumour suppressor 
genes are not the only key players in real cancer systems 
though. Because microenvironment selection may also 
cooperate with aneuploidy to promote tumour progression 
(Anderson et al. 2006), it is also of interest to incorporate a 
more realistic version of the environment into the model. 
 
Through computational models such as the one presented in 
this article, we anticipate that we may gain a deeper 
understanding of the effects of aneuploidy on cancer 
initiation. Identifying the key events in cancer progression 
may help us devise new cancer treatments that account 
aneuploidy and its dynamics. 
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