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Extended Abstract

Homeostasis is a critical property of living beings that involves the ability to self-regulate in response to changes in the
environment in order to maintain a certain dynamic balance affecting form and/or function. The importance of homeostasis
is pronounced in multi-cellular organisms where function and structure needs to be regulated at ever increasing levels of
organisation (Cunliffe, 1997).

In this talk we will address the evolution of homeostasis in a computational framework and investigate structural home-
ostasis in the simplest of cases, a tissue formed by a mono-layer of cells. To this end, we made use of a 3-d hybrid cellular
automaton, an individual-based model in which the behaviour of each cell depends on its local environment (Gerlee and
Anderson, 2009). This was implemented by using a response network, which for each cell takes extra-cellular cues as
input, and whose output determines the phenotype or behaviour of the cell (cell division, movement, death).

Instead of dictating a given mapping from environment to phenotype, we made use of an evolutionary algorithm (EA) to
evolve cell behaviour which gives rise to a homeostatic tissue (Streichert et al., 2003; Stanley and Miikkulainen, 2003;
Andersen et al., 2009). The fitness of a genotype (response network) was evaluated by running the cellular automaton
seeded with a single cell for given number of time steps. Cell types which can fill the domain with a mono-layer of cells
are given the highest fitness, while those which either over-grow or fail to fill the domain are punished. We made use of
two different fitness functions, one which uses a constant fitness evaluation where each cell type is tested for 200 time steps
(constant), and another which increases the evaluation time for each successive generation (incremental). An example of
run with a constant fitness evaluation scheme is shown in fig. 1.

Analysis of the solutions provided by the EA shows that the two evaluation methods gives rise to different types of solutions
to the problem of homeostasis. The constant method leads to almost optimal solutions, which rely on a very high rate of
cell turn-over, and this is achieved by fine-tuned balance between cell birth and death. The solutions from the incremental
scheme on the other hand behave in a more conservative manner, only dividing when necessary, and generally have a lower
fitness.

In order to test the robustness of the solution we subjected them to environmental stress, by wounding the tissue, and to
genetic stress, by introducing mutations. The cell types with high turn-over were more robust with respect to wounding,
healing faster and more accurately. The sensitivity to genetic perturbations depends on what type of mutations we con-
sider. Copy mutations, which only occur when the cells divide, affect the tissues with a high turn-over, while cosmic ray
mutations, which occur at a constant rate, are more detrimental to the conservative cell types.

The two evolved cell types analysed present contrasting mechanisms by which tissue homeostasis can be maintained. This
compares well to different tissue types found in multi-cellular organisms. For example the epithelial cells lining the colon
in humans are shed at a considerable rate (Podolsky and Babyatsky, 2003), while in other tissue types, which are not as
exposed, the conservative type of homeostatic mechanism is normally found (Hooper, 1956).

These results will hopefully shed light on how multi-cellular organisms have evolved and what might occur when home-
ostasis fails, as for example in the case of cancer (Preston-Martin et al., 1990).
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Figure 1: Time evolution of the EA. (a) shows the most fit genotypes at different generations in the run, where the process
converges on a genotype which predominately proliferates. The time evolution of the average and maximum fitness is shown
in (b), which, because of a weighted multi-objective fitness function, does not necessarily increase over time (Bentley and
Wakefield, 1998). The cell density of the final genotype (T = 19) is shown in (c), and reveals that the solution arrived upon by
the EA forms a mono-layer, and thus satisfies our criteria for a homeostatic genotype.
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