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ABSTRACT

Minimization of reconstruction error (squared-error) leads to prin-
cipal subspace analysis (PSA) which estimates scaled and rotated
principal axes of a set of observed data. In this paper we introduce
a new alternative error, so called,integrated-squared-error, the
minimization of which determines the exact principal axes (with-
out rotational ambiguity) of a set of observed data. We consider
the properties of the integrated-squared-error in the framework
of coupled generative model, giving efficient EM algorithms for
integrated-squared-error minimization. We revisit the generalized
Hebbian algorithm (GHA) and show that it emerges from integrated-
squared-error minimization in a single-layer linear feedforward
neural network.

1. INTRODUCTION

Principal component analysis (PCA) is a widely-used linear di-
mensionality reduction technique. Its common derivation is in
terms of a linear orthogonal projection that minimizes the squared
reconstruction error. Principal axes of a set of observed variables
can also be determined through maximum likelihood estimation of
parameters in a latent variable model. Along this line, probabilis-
tic PCA (PPCA) [7] and EM-PCA [5] were proposed. However,
these methods find the scaled androtatedprincipal axes (principal
subspace analysis rather than PCA), hence some postprocessing is
required to compute exact principal directions (which corresponds
to the orthogonal eigenvectors of the data covariance matrix)

In this paper we introduce a new error measure which inte-
grates squared errors in a hierarchical fashion, hence called an
integrated-squared-error. We consider the integrated-squared-error
as a limiting case of the coupled generative model [2]. We show
that exact principal axes of a set of observed variables emerge from
the minimization of the integrated-squared-error and give simple
EM algorithms for estimating exact principal directions iteratively.
In addition, we revisit the generalized Hebbian algorithm (GHA)
[6] and show that the minimization of the integrated-squared-error
using the gradient descent method leads to the GHA.

2. PROBABILISTIC PCA

The probabilistic PCA (PPCA) [7] considers a linear generative
model which assumes that the observed datax ∈ IRd is generated
by

x = As + µ + v, (1)

where the parameter matrixA ∈ IRd×q contains the factor load-
ings, the latent variabless ∈ IRq have a unit isotropic Gaus-
sian distribution, andµ is a constant corresponding to the mean
of the data (d > q). The noisev is also isotropic Gaussian,
v ∼ N (0, σ2I). It was shown in [7] that the maximum likeli-
hood estimatorAML is the matrix whose columns are thescaled
and rotated principal eigenvectorsof the sample covariance ma-
trix of the data, even when the covariance model is approximate.
The maximum likelihood estimatorAML is given byAML =
U q(Λq − σ2I)1/2R, whereU q ∈ IRd×q containsq eigenvec-
tors of the sample covariance matrix of the observed data with
corresponding eigenvalues in the diagonal matrixΛq ∈ IRq×q,
R ∈ IRq×q is an arbitrary orthogonal rotation matrix, andI is
the d × d identity matrix. The true principal axes can be recov-
ered when the columns ofRT are equal to the eigenvectors of the
matrixAT A matrix.

PCA can be viewed as a limiting case of the linear Gaussian
model (1) as the noise varianceσ2 becomes infinitesimally small.
Along this line, the EM-PCA algorithm was derived by taking zero
noise limit into account [5]. In the case of zero noise limit, the
linear generative model can be rewritten asX = AS where the
centered data matrixX ∈ IRd×N is defined by

X =
[
x(1) − µ · · · x(N) − µ

]
=
[
x̃(1) · · · x̃(N)

]
.

andS ∈ IRq×N is the latent variable matrix.

Algorithm Outline: EM-PCA [5]

E-step

S =
(
A

T
A
)−1

A
T
X (2)

M-step

Â = XS
T
(
SS

T
)−1

(3)

As pointed out in [5], in the zero noise limit, the likelihood of
a data pointx is dominated solely by the squared distance between
it and its reconstructionAs. In such a case, ML estimation of both
A ands becomes a separable LS minimization problem [3]. The
LS estimates,A andS are computed by

Â, Ŝ = min
A,S

‖X −AS‖2 . (4)

The separable LS minimization is carried out in two steps. Mini-
mizing (4) with respect toA with S being fixed, leads to the M-
step updating (3). The estimatêA is substituted back into (4), then



we obtain a new criterion which is a function ofS only

min
S

∥∥∥XP
⊥
S

∥∥∥
2

F
, (5)

whereP ⊥
S is the orthogonal projection matrix given by

P
⊥
S = I − S

T
(
SS

T
)−1

S. (6)

The minimization of (5) leads to the E-step updating (2).

3. INTEGRATED-SQUARED-ERROR

In this section we introduce the integrated-squared-error and con-
sider its properties, giving EM algorithms for estimating exact
principal directions iteratively.

Definition 1 (Integrated-Squared-Error) Given matricesX ∈
IRd×N , S ∈ IRq×N , and A ∈ IRd×q, the integrated-squared-
error betweenX andAS is defined by a linear sum (with posi-
tive coefficients,ci > 0, i = 1, . . . , q) of squared errorsJ i =
‖X −AIiS‖

2, i.e.,

J ISE (A, S) =

q∑

i=1

ciJ i =

q∑

i=1

ci ‖X −AIiS‖
2 , (7)

whereIi ∈ IRq×q is a diagonal matrix, so called,factor selection
matrix with Ii(j, j) = 1 for j = 1, . . . , i and Ii(j, j) = 0 for
j = i + 1, . . . , q.

Theorem 1 (Main Theorem) A andS are globally minimal points

ofJ ISE (A, S) if and only if ai

‖ai‖
= ϕi and

~si

‖~si‖
= ξi for i =

1, . . . , q where{ϕi} are the normalized eigenvectors ofXXT

and{ξi} are the normalized eigenvectors ofXT X with associ-
ated eigenvalues ofXXT (or XT X ), λ1 ≥ · · · ≥ λq.

Proof: The proof is left out due to the space limitation. The de-
tailed proof can be found in [1].
Remarks

• The integrated-squared-error (7) is minimized if and only
if individual squared errors{J i} are minimized since the
integrated-squared-error is a linear sum of squared errors
with positive coefficients{ci}. Hence theA andS that
minimize the integrated-squared-error, also minimizeJ q =
||X −AS| |2. However, theA andS which minimizeJ q,
does not necessarily minimize the integrated-squared-error.

• The reconstruction error which is just squared error,‖X −
AS‖2 is invariant an orthogonal transformR ∈ IRq×q be-
causeAR−1 andRS contributes the same reconstruction
error asA andS. In contrast, the integrated-squared-error
is not invariant under an orthogonal transformation because
R−1IiR 6= Ii, ∀i 6= q.

The integrated-squared-error (7) is iteratively minimized by a
simple EM algorithm, so called,EM-ePCA(exact principal direc-
tions are emphasized by a letter ”e”) which is summarized below:

Algorithm Outline: EM-ePCA

E-step

S =
[
L

(
A

T
A
)]−1

A
T
X , (8)

M-step

Â = XS
T
[
U

(
SS

T
)]−1

, (9)

where the operatorL is defined by

L (yij) =

{
yij for i ≥ j

yij

∑q
k=j

ck∑q
k=i

ck
for i < j

, (10)

for an arbitrary square matrixY = [yij ] andU(Y ) = L(Y T )T .
It is shown in next section that these rules are derived from a cou-
pled generative model.

We consider two limiting cases:

• In the limit of ci+1

ci
→ 0, i = 1, . . . , q − 1, the operators

L andU become usual lower/upper triangularization opera-
torsLT andUT where

LT (yij) =

{
yij for i ≥ j
0 for i < j

. (11)

The EM-updates (8) and (9) are further simplified as (EM-
ePCA (limiting case))

S =
[
LT

(
A

T
A
)]−1

A
T
X , (12)

Â = XS
T
[
UT

(
SS

T
)]−1

. (13)

Note that EM-ePCA (limiting case) algorithm is involved
with the triangular matrix inversion, hence, computational
complexity is greatly reduced, especially for the case of
high-dimensional data.

• The EM-PCA algorithm [5] is a special limiting case of our
model asci → 0, i = 1, . . . , q − 1. Under this limit, the
inference in (8) reduces to simple least squares projection.
The M-step update (9) becomes Wiener filtering.

4. COUPLED GENERATIVE MODEL

A main motivation of the integrated-squared-error (7) came from
the coupled linear generative model [2] where a set of linear Gaus-
sian model shares the same latent variabless ∈ IRq and parame-
tersA ∈ IRd×q with different factor selection matrices{Ii} . The
q-coupled generative model is described by





x1 = AI1s + µ1 + v1,
x2 = AI2s + µ2 + v2,

...
...

xq = AIqs + µq + vq,

(14)

whereIi ∈ IRq×q is a diagonal matrix withIi(j, j) = 1 for
j = 1, . . . , i andIi(j, j) = 0 for j = i + 1, . . . , q.

The coupled linear generative model shares the same latent
variabless and factor loading matrixA, but takes different isotropic
Gaussian noise models{vi ∼ N (0, σ2

i I)} and factor selection
matrices{Ii}. The factor selection matrixIi is designed in such
a way that firsti principal directions are selected when each model
observes the same data, i.e.,x1 = · · · = xq = x.

For mutually independent isotropic Gaussian noise models,
the joint probability distributionp(x1 = x, · · · , xq = x|s) over



q-coupledx spaces, conditioned on latent variabless is factorized
as

∏q
i=1 p(xi = x|s; i)

=
∏q

i=1(2πσ2
i )−d/2 exp

{
− 1

2σ2
i

‖ x −AIis − µ ‖2
}

,

wherep(xi = x|s; i) is the conditional density for theith genera-
tive model and

∫
p(x, · · · , x|s)dx 6= 1.

The expected complete-data log-likelihood〈LC〉 is given by
(see [2] for more details)

〈LC〉 = −
N∑

n=1

q∑

i=1

{
d

2
log σ2

i +
1

2q
tr
(〈

s(n)s
T
(n)

〉)

+
1

2σ2
i

‖ x̃(n) ‖
2 −

1

σ2
i

〈
s(n)

〉T
I

T
i A

T
x̃(n)

+
1

2σ2
i

tr
(
I

T
i A

T
AIi

〈
s(n)s

T
(n)

〉)}
, (15)

where tr(·) denotes the trace operator, and〈·〉 denotes the statistical
expectation taken with respect top

(
s(n)|x(n), · · · , x(n); A, σ2

i

)
.

The terms irrelevant to parameters were left out.
In E-step, sufficient statistics are computed:

〈
s(n)

〉
= M

−1
Q

T
A

T
x̃(n),〈

s(n)s
T
(n)

〉
= M

−1 +
〈
s(n)

〉 〈
s(n)

〉T
. (16)

In M-step, parameters
{
A, σ2

i

}
are updated by

Â =

[
N∑

n=1

x̃(n)

〈
s(n)

〉T

]
Q

T

[
q,N∑

i,n=1

Ii

〈
s(n)s

T
(n)

〉

σ2
i

I
T
i

]−1

σ2
i =

1

Nd

N∑

n=1

{
‖ x̃(n) ‖

2 −2
〈
s(n)

〉T
I

T
i Â

T
x̃(n)

+tr
(〈

s(n)s
T
(n)

〉
I

T
i Â

T
ÂIi

)}
. (17)

where the posterior model covariance matrixM ∈ Rq×q and the
matrix Q are defined byM =

∑q
i=1 IT

i AT AIi/σ2
i + I and

Q =
∑q

i=1 Ii/σ2
i .

Now we consider a limiting case of the coupled linear genera-
tive model (14) as

σ2
q → 0, σ2

q/σ2
i = ci, i = 1, . . . , q. (18)

In this case, maximizing the log-likelihood is practically identical
to minimizing the integrated squared error. This is confirmed by
computinglim{σ2

i
→0} σ2

q 〈LC〉 and omitting constants. The EM-
updates (16) and (17) reduce to the EM-ePCA algorithm described
in (8) and (9).

5. A LINK WITH GENERALIZED HEBBIAN
ALGORITHM

The generalized Hebbian algorithm (GHA) [6] is one of well-known
PCA neural network algorithms. The convergence behavior of
GHA was well studied in [6], however, an optimality criterion for
GHA is not clear yet. Here we show that the minimal integrated-
squared-error in a single layer linear feedforward net leads to the
GHA by equalizing the weights in the recognition model to the
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Fig. 1. Our proposed EM algorithms, EM-ePCA and its limiting
case, show a slightly different convergence behavior in terms of
only squared errorJ q, compared to the EM-PCA algorithm. It
seems that our EM algorithms are slightly slower than the EM-
PCA algorithm in a first few iterations, since our EM algorithms
tries to minimize the integrated-squared-error rather than just sin-
gle squared errorJ q. However, it takes almost same number of
iterations for all the algorithms to achieve the final convergence.
In this simulation,ci = 0.8i were used.

weights in the generative model. Under this, hidden variabless

are estimated bys = AT x. The gradient descent method (for
integrated-squared-error minimization) gives the updating rule for
AT which has the form

A
T ← A

T + η

(
q∑

i=1

2ciIi

){
SX

T − L

(
SS

T
)

A
T
}

. (19)

In order for each row vector ofAT to be updated with identical
learning rate, we take a learning rateη as

η = η0

(
q∑

i=1

2ciIi

)−1

, (20)

to obtain an updating rule forAT :

A
T ← A

T + η0

{
SX

T − L

(
SS

T
)

A
T
}

. (21)

In the limit ci+1/ci → 0 for i = 1, . . . , q − 1, the operatorL
becomesLT . Hence the algorithm (21) reduces to the GHA [6].

The converged weightsAT minimizes the integrated-squared-
error under the constraintsS = AT X :

J =

q∑

i=1

ci ‖ X −AIiA
T
X ‖2 (22)

Reversely, the weightsAT that minimizes the integrated-squared-
error satisfyAT A = I and AT XXT A = U(AT XXT A).
The error function really gives the normalized principal axes of
XXT .

The derivation of the GHA has been already treated in [4]
where they proposed a criterion to be maximized in the general-
ization of variance maximization. It uses the recognition model
and the weights are constrained to be orthogonal via the Lagrange
multipliers. In our method, however, the orthogonality emerges
from the minimal integrated-squared-error without orthogonality
constraint and we use the alternating model of recognition and
generation with the same weights.
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Fig. 2. Our EM-ePCA algorithm estimates the orthogonal eigen-
vectors of the data covariance matrix. Angles between the first
and second principal directions are plotted with respect the num-
ber of iterations. The convergence is not monotonic, however, after
some iterations our EM-ePCA algorithm find exact two principal
directions which are orthogonal each other. Here three different
realizations of data were considered.

6. NUMERICAL EXAMPLES

We investigate the convergence behavior and the performance of
our EM algorithms: (1) EM-ePCA in Eqs. (8) and (9); (2) EM-
ePCA (limiting case) in Eqs. (12) and (13), compared to the EM-
PCA algorithm in Eqs. (2) and (3). These three algorithms were
tested using USPS data whose dimension is 256. Fig. 1 shows
the convergence behavior of all these three algorithms. In terms
of only squared errorJ q (for the case ofq = 20), it takes almost
same number of iterations for all three algorithms to reach the fi-
nal convergence. However, note that our EM algorithms find exact
principal directions (without rotation ambiguity), whereas the EM-
PCA finds the principal subspace. Fig. 2 shows the time evolution
of angle between first two directions estimated by our EM-ePCA
algorithm. The convergence is not always monotonic, but, the or-
thogonality is always guaranteed. We also applied our EM-ePCA
algorithm to a non-Gaussian data (see Fig. 3) in order to show that
our algorithm does not get stuck in a local minimum even for the
non-Gaussian data.

7. CONCLUSION

We have introduce a new error measure, the integrated-squared-
error, as an alterative to the conventional reconstruction error for
PCA. We have shown that exact principal directions of a set of
observed data emerged through the integrated-squared-error min-
imization and have presented simple but efficient EM algorithms.
In fact our EM-ePCA algorithm and its limiting case become more
efficient when the extraction of a few principal components from
very high-dimensional data is required. We have also revisited
GHA, showing that it could be derived using the gradient descent
method by minimizing the integrated-squared-error.
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Fig. 3. A scatter plot of some exemplary non-Gaussian data is
shown in the upper panel. The dashed lines indicate the directions
of the two leading eigenvectors of the sample covariance matrix
whose diagonal components are very close to each other. In the
lower pannel, the convergence in terms ofJ 1 (left pannel) and
the angle between first two principal directions (right pannel) is
shown. Notice that the difficult learning does not get stuck in a
local minimum, although it does take more than 100 iterations to
converge, which is unusual for Gaussian data [5].
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