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A Rank-One Update Algorithm for Fast Solving
Kernel Foley–Sammon Optimal Discriminant Vectors

Wenming Zheng, Member, IEEE, Zhouchen Lin, Senior Member, IEEE, and Xiaoou Tang, Fellow, IEEE

Abstract—Discriminant analysis plays an important role
in statistical pattern recognition. A popular method is the
Foley–Sammon optimal discriminant vectors (FSODVs) method,
which aims to find an optimal set of discriminant vectors that
maximize the Fisher discriminant criterion under the orthogonal
constraint. The FSODVs method outperforms the classic Fisher
linear discriminant analysis (FLDA) method in the sense that
it can solve more discriminant vectors for recognition. Kernel
Foley–Sammon optimal discriminant vectors (KFSODVs) is a
nonlinear extension of FSODVs via the kernel trick. However,
the current KFSODVs algorithm may suffer from the heavy
computation problem since it involves computing the inverse of
matrices when solving each discriminant vector, resulting in a
cubic complexity for each discriminant vector. This is costly when
the number of discriminant vectors to be computed is large. In
this paper, we propose a fast algorithm for solving the KFSODVs,
which is based on rank-one update (ROU) of the eigensytems. It
only requires a square complexity for each discriminant vector.
Moreover, we also generalize our method to efficiently solve a
family of optimally constrained generalized Rayleigh quotient
(OCGRQ) problems which include many existing dimensionality
reduction techniques. We conduct extensive experiments on sev-
eral real data sets to demonstrate the effectiveness of the proposed
algorithms.

Index Terms—Dimensionality reduction, discriminant analysis,
kernel Foley–Sammon optimal discriminant vectors (KFSODVs),
principal eigenvector.

I. INTRODUCTION

D ISCRIMINANT analysis is a very active research topic
in statistical pattern recognition community. It has been

widely used in face recognition [1], [30], image retrieval [2],
and text classification [3]. The classical discriminant analysis
method is Fisher’s linear discriminant analysis (FLDA), which
was originally introduced by Fisher [4] for two-class discrimina-
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tion problems and was further generalized by Rao [5] for multi-
class discrimination problems. The basic idea of FLDA is to find
an optimal feature space based on Fisher’s criterion, namely the
projection of the training data onto this space has the maximum
ratio of the between-class distance to the within-class distance.
For -class discriminating problems, however, there always ex-
ists a so-called rank limitation problem, i.e., the rank of the be-
tween-class scatter matrix is always bounded by , where
is the number of classes. Due to the rank limitation, the maximal
number of discriminant vectors of FLDA is . However, the

discriminant vectors are often insufficient for achieving
the best discriminant performance when is relatively small.
This is because some discriminant features fail to be extracted,
resulting in a loss of useful discriminant information.

To overcome the rank limitation of FLDA, Foley and
Sammon [6] imposed an orthogonal constraint of the discrim-
inant vectors on Fisher’s criterion and obtained an optimal
set of orthonormal discriminant vectors, to which we refer as
the Foley–Sammon optimal discriminant vectors (FSODVs).
Okada and Tomita [7] proposed an algorithm based on subspace
decomposition to solve FSODVs for multiclass problems, while
Duchene and Leclercq [8] proposed an analytic method based
on Lagrange multipliers, denoted by FSODVs/LM for sim-
plicity. Although the multiclass FSODVs method overcomes
the rank limitation of FLDA, this method can only extract the
linear features of the input patterns, and may fail for nonlinear
patterns. To this end, in the preliminary work, we have proposed
a nonlinear extension of the FSODVs method, called the KF-
SODVs/LM method for simplicity, by utilizing the kernel trick
[9]. We have shown that the KFSODVs method is superior to
the FSODVs method in face recognition. However, the current
KFSODVs algorithm may suffer from the heavy computation
problem since it involves computing the inverse of matrices
when solving each discriminant vector, resulting in a cubic
complexity for each discriminant vector. This is costly when
the number of discriminant vectors to be computed is large.

To reduce the computation cost, in this paper, we propose
a fast algorithm for the KFSODVs method. The proposed
algorithm is fast and efficient by making use of a rank-one
update (ROU) technique, called KFSODVs/ROU algorithm for
simplicity, to incrementally establish the eigensystems for the
discriminant vectors. To make the ROU technique possible, we
elaborate to reformulate the KFSODVs/LM algorithm to an
equivalent formulation and further apply the QR decomposition
of matrices. Compared with the previous KFSODVs/LM algo-
rithm [9], the new algorithm only requires a square complexity
for solving each discriminant vector. To further reduce the com-
plexity of KFSODVs/ROU algorithm, we adopt the modified
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kernel Gram–Schmidt orthogonalization (MKGS) method [10]
to replace the kernel principal component analysis (KPCA)
[12] method in the preprocessing stage of solving KFSODVs.
Moreover, we also extend our algorithm to solve a family of
optimally constrained generalized Rayleigh quotient (OCGRQ)
problems. Many current dimensionality reduction techniques,
such as uncorrelated linear discriminant analysis (ULDA) [13],
orthogonal locality preserving projection (OLPP) [14], and
those methods in [15]–[19], can be unified into the framework
of OCGRQ, hence can be efficiently solved by our algorithm.

The remainder of this paper is organized as follows. In
Section II, we briefly review the KFSODVs/LM method. In
Section III, we present the fast KFSODVs/ROU algorithm.
In Section IV, we propose the fast algorithm for solving the
OCGRQ problems. The experiments are presented in Section V.
Finally, Section VI concludes our paper.

II. BRIEF REVIEW OF KFSODVS

Let be a set of -dimensional samples
and be the class label of , where and

is the number of classes. Denote the number of the th class
samples by . Let be a nonlinear mapping which maps the
input space into a high-dimensional feature space , that is

Then, the between-class, the within-class, and the total-class
scatter matrices in the feature space are defined as

(1)

respectively, where is the mean of
the th class, is the mean of all sam-
ples, and , , and are, respectively, defined as shown
in the equation at the bottom of the page. Then, the Fisher’s dis-
criminant criterion in the feature space can be expressed as

(2)

The basic idea of the KFSODVs method is to find an optimal
set of discriminant vectors, denoted by , that
maximize under the orthogonal constraints

(3)

More specifically, the optimal set of discriminant vectors of the
KFSODVs method can be successively computed by solving the
following sequence of optimization problems:

(4)

In [9], we have proposed the KFSODVs/LM algorithm to
solve the KFSODVs by using the Lagrangian multipliers, where
we divide the whole feature space into three subspaces, i.e.,

, , and , in which is
the null space of and is the orthogonal complement of .
Because the subspace contains no useful discriminant in-
formation [9], we solve the discriminant vectors in the later two
subspaces. The solution procedures of the KFSODVs/LM algo-
rithm can be expressed as follows.

1) Solve the orthonormal basis of the subspace via
KPCA and denote as the KPCA transform ma-
trix.

2) Project the input data onto , that is,
.

3) In the data set , compute the within-
class scatter matrix

where and

4) Perform the singular value decomposition (SVD) on
to find the orthonormal basis of and , respec-
tively. Denote and as the transformation matrices
whose columns consist of the orthonormal basis of
and , respectively, and compute and

.
5) In the data set , compute the between-

class scatter matrix

where , ,
and

.
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6) Similarly, in the data set , compute
the between-class and within-class scatter matrices

and

where , ,

, and

.
7) Solve the principal eigenvectors of the fol-

lowing eigensystem:

(5)

Then

are the optimal discriminant vectors of KFSODVs lying in
the subspace .

8) Assume that are the first optimal discrim-
inant vectors maximizing the Fisher’s discriminant crite-
rion under the orthogonal
constraints . Then

are the first optimal discriminant vectors of KFSODVs
lying in the subspace , where the discriminant vec-
tors can be solved by the following proce-
dures.
• The first optimal discriminant vector is the eigen-

vector associated with the largest eigenvalue of the
eigensystem

(6)

• Suppose that the first optimal discriminant vectors
have been obtained, then the th

optimal discriminant vector is the eigenvector as-
sociated with the largest eigenvalue of the eigensystem

(7)

where and is the
identity matrix, where represents the dimensionality
of .

From the above procedures, one can see that the most time
consuming part of solving the KFSODVs is to solve the op-
timal discriminant vectors in subspace , especially when

is large. The most preferred method for computing the prin-
cipal eigenvector of both (6) and (7) is the power method [20],
where only a square complexity is needed to solve the principal
eigenvector of the eigensystem. However, for (7), after com-
puting the matrix , one also has to compute its
inverse when computing each new discriminant vector. More-
over, it should be noted that using the KPCA method to find
the orthogonal basis of in step 1) may also be time con-
suming. To this end, we also adopt the MKGS method to replace
the KPCA method for finding the basis of the principal subspace
of the total-class scatter matrix, which further reduces the com-
putation cost of our algorithm.

Algorithm 1 lists the pseudocode of solving the optimal dis-
criminant vectors defined in (6) and (7). Table I shows the com-
putation complexity of Algorithm 1. From Table I, one can see
that there will be a complexity of for the th
discriminant vector, where is the dimensionality of .
Therefore, the total computational complexity of Algorithm 1
could be as large as if we want to
obtain discriminant vectors. Hence, the computation of KF-
SODVs is particularly costly when becomes large.

Algorithm 1: KFSODVs/LM algorithm for solving the
optimal vectors in (6) and (7)

Input:
• Data matrices

and
,

label vector , and the number
of optimal discriminant vectors.

Initialization:
1) Compute .
2) Compute the inverse of , i.e., .
3) Compute the principal eigenvector of

via the power
method and set .

For , Do
1) Compute .
2) Compute the principal eigenvector of

via the power method.
3) Set .

Output:
• Output the columns of .
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TABLE I
COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

III. KFSODVS/ROU ALGORITHM FOR FAST

SOLVING KFSODVS

We have reviewed the KFSODVs/LM algorithm in Section II,
from which one can see that the KFSODVs/LM algorithm can
be expressed in the following form:

KFSODVs/LM KPCA FSODVs/LM

where KPCA is used to find the orthonormal basis of the sub-
space .

In this section, we will present the KFSODVs/ROU algorithm
to efficiently solve the discriminant vectors of the KFSODVs
method. To further reduce the computational cost, we adopt the
MKGS algorithm to find the orthonormal basis of rather
than using the KPCA algorithm. Moreover, to efficiently solve
the optimal set of discriminant vectors in (6) and (7), we propose
to make use of the ROU technique to incrementally establish
the eigensystems for solving these discriminant vectors. Conse-
quently, our KFSODVs/ROU algorithm can be expressed in the
following form:

KFSODVs/ROU MKGS FSODVs/ROU (8)

A. MKGS for Solving the Orthonormal Basis of

Let . Then, the matrix defined in
(1) can be expressed as . According to
the MKGS algorithm [10], the corresponding orthonormal vec-
tors of the columns of can be obtained using the following
steps, where and are -dimensional vec-
tors, is an diagonal matrix, is an matrix,

is an -dimensional vector where the
th item is 1, and denotes the inner product of vectors

and .
1) Let , ,1 and

.
2) Repeat for :

a)
b) repeat for :

i)

ii)

c)
d) repeat for :

i)

e) compute .
3) , where

.
4) .

1The inner product �� �� � can be computed via the kernel trick.

Then the columns of the matrix are the
corresponding orthonormal vectors of the columns of .

If the column space of is not of full rank, i.e.,
, then there are diagonal

elements of that would vanish. In this case, we should omit
those for which and obtain whose number of
columns is equal to the rank of .

B. KFSODVs/ROU Algorithm for Solving the
Discriminant Vectors in (6) and (7)

Rewrite the optimal discriminant vectors in (6) and (7) into
the following successive form:

(9)

Solving (9) boils down to solving the following optimization
problem:

(10)

Let be the SVD of , where is an
orthogonal matrix and .

Since is nonsingular, we have .
Let

and

Then, solving the optimal discriminant vectors
boils down to solving the optimal vectors of the
following optimization problems:

(11)

where . The first vector
is the principal eigenvector associated with the largest eigen-
value of the matrix . Suppose that we have
obtained the first vectors . To solve the th
vector , we introduce Lemma 1 and Theorems 1 and 2.
Similar proofs had been given in [11]. We provide the proofs in
Appendixes I–III, respectively.
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TABLE II
COMPUTATIONAL COMPLEXITY OF ALGORITHM 2

Lemma 1: Let be an matrix with
orthonormal columns. If , then there exists a
(nonunique) such that

Theorem 1: Let be the QR decomposition2 of .
Then, is the principal eigenvector corresponding to the
largest eigenvalue of the following matrix:

Theorem 2: Suppose that is the QR decom-
position of . Let ,

, and .
Then

is the QR decomposition of .
The above two theorems are crucial to design our fast algo-

rithm. Theorem 1 makes it possible to use the power method to
solve the optimal discriminant vectors, while Theorem 2 makes
it possible to update from by adding a single column.
Moreover, it is notable that

(12)

where is the th column of . Equation (12) makes
it possible to update the positive-semidefinite matrix

from
by

the ROU technique.
Based on the above derivations, we summarize the fast algo-

rithm of solving the optimal discriminant vectors
in Algorithm 2. Note that we compute the SVD of instead
of therein in order to save the computation of preparing
by computing . This computation cannot
be waived in Algorithm 1.

Algorithm 2: KFSODVs/ROU algorithm for solving the
optimal vectors in (6) and (7)

Input:
• Data matrices

and
, label

2Given an��� matrix�, the QR decomposition of� is to find an���
orthogonal matrix � and an � � � upper triangular matrix � such that � �

��.

vector , the number of optimal
discriminant vectors, and the threshold .

Initialization:
1) Perform SVD of : .

2) and .

For , Do
1) Solve the principal eigenvector of via the

following power method:
While , do
• , , ;
• .

2) and .
3) If , , , and ; else

, , and
.

4) .

Output:
• Output .

C. Computational Complexity

Table II shows the detailed computational complexity anal-
ysis of Algorithm 2. In the initialization part, each operation
is performed only once. In the loop part, however, each oper-
ation needs to repeat times if we want to obtain optimal
discriminant vectors. From Table II, one can see that there only
needs to be a complexity of for the th discrim-
inant vector, and the total complexity of solving the optimal
discriminant vectors is . In
contrast with Algorithm 1, one can see that the computation cost
of KFSODVs/ROU algorithm is significantly reduced.

D. KFSODVs for Recognition

In this section, we will address the recognition problem based
on the KFSODVs method. Let denote the
optimal transform matrix obtained from the subspace

and the optimal transform ma-
trix obtained from the subspace . Suppose that

is a test sample. Then, the projections of onto
and are

and (13)

Let

and

(14)

be the projections of onto and , respectively.
Denote the distance between and by and
the distance between and by , where

(15)

(16)

Considering that the distances and
are computed from different subspaces, they may not share the
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same metrics. To solve this issue, we adopt the scheme of Yang
et al. [21] by defining the following hybrid distance to measure
the similarity between and :

(17)
where is the fusion coefficient determining the weight
of the two kinds of distances in the decision level.

Suppose that is the class label of the test sample .
Then, can be obtained by

where (18)

IV. EXTENSION TO GENERAL PROBLEMS

In this section, we will generalize the solution method of
the above KFSODVs/ROU algorithm to solve the more gen-
eral cases like the following optimally constrained generalized
Rayleigh quotient (OCGRQ) problems:

(19)

where and are positive-semidefinite matrices, and is
a positive-definite matrix.3 Similar with the solution method
of KFSODVs/ROU, one can efficiently solve the OCGRQ
problem via the ROU technique of the eigensystem, herein
called OCGRQ/ROU.

Let be the SVD of and let
. Then, we have , where is the

identity matrix. Let . Then, solving (19) boils down
to solving the following optimization problems:

(20)

where .
By comparing the formulation in (20) with that in (11),

one can find that both equations can be unified into the
same solution framework. If we simply replace the matrices

and in (11) by and
, respectively, then one can see that the two equa-

tions are identical. Consequently, one can adopt the same fast

3If� is singular, we can add a regularization term such that it is nonsingular;
see Algorithm 3.

algorithm of solving the discriminant vectors defined in (11)
to solve the discriminant vectors of (20). We give the psu-
docode of solving the OCGRQ problem via the ROU technique
(OCGRQ/ROU) in Algorithm 3.

Algorithm 3: OCGRQ/ROU algorithm for solving the
optimal vectors in (19)

Input:
• Data matrices , , and , the number of optimal

discriminant vectors, and the threshold .

Initialization:
1) Perform SVD of : . If is singular,

, is the estimated
noise spectrum [31].

2) , , .

For , Do
1) Solve the principal eigenvector of via the following

power method:
While , do
• and ;
• .

2) and .
3) If , , , and ; else

, , and
.

4) .

Output:
• .

The OCGRQ framework represents a large family of opti-
mization problems in the dimensionality reduction field. Many
current dimensionality reduction methods, such as ULDA [13],
OLPP [14], and those methods in [15]–[19], can be unified into
this framework. We will take the ULDA method as an example
to show the application of the OCGRQ/ROU algorithm.

The ULDA method aims to find an optimal set of discriminant
vectors that maximize Fisher’s discriminant criterion

under the constraint ,
where , , and represent the between-class, within-class,
and total-class scatter matrices, respectively. More specifically,
the optimal set of discriminant vectors of ULDA can be formu-
lated as the following optimization problems:

(21)

To solve the optimal discriminant vectors of ULDA, Jin et al.
[13] proposed an algorithm based on the Lagrangian multipliers,
herein called the ULDA/LM algorithm, which can be summa-
rized as the following procedures.
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1) The first optimal discriminant vector is the eigenvector
associated with the largest eigenvalue of the eigensystem

(22)

2) Suppose that the first optimal discriminant vectors
have been obtained, then the th

optimal discriminant vector is the eigenvector asso-
ciated with the largest eigenvalue of the eigensystem

(23)

where and is the iden-
tity matrix (we assume that the dimensionality of input data
equals to ).

Similar to the KFSODVs/LM algorithm, solving each dis-
criminant vector of ULDA using the ULDA/LM algorithm
will involve computing the inverse of matrices, which will be
costly when the number of is large. However, if we adopt the
OCGQR/ROU algorithm for solving ULDA, we can greatly
reduce the computational cost. More specifically, let ,

, and . Then, the solution of (21) can be
obtained by using the OCGRQ/ROU algorithm. For simplicity,
we call this new ULDA algorithm the ULDA/ROU algorithm.

V. EXPERIMENTS

In this section, we will evaluate the performance of the
proposed KFSODVs/ROU algorithms on six real data sets. For
comparison, we conduct the same experiments using several
commonly used kernel-based nonlinear feature extraction
methods. These kernel-based methods include the KPCA
method, the two-step kernel discriminant analysis (KDA) [22]
method (i.e., KDA KPCA LDA [21]), and kernel direct
discriminant analysis (KDDA) method [23]. We also conduct
the same experiments using the orthogonal LDA (OLDA)
method proposed by Ye [29] for further comparison. Although
the discriminant vectors of OLDA are also orthogonal to each
other, they are different from those of FSODVs because the
discriminant vectors of OLDA are generated by performing the
QR decomposition on the transformation matrix of ULDA [29].
So OLDA aims to find the orthogonal discriminant vectors
from the subspace spanned by the discriminant vectors solved
by ULDA, not the whole data space. Throughout the experi-
ments, we use the nearest neighbor (NN) classifier [24] for the
classification task. All the experiments are run on the platform
of IBM personal computer with Matlab. The monomial kernel
and the Gaussian kernel are, respectively, used to compute the
elements of the Gram matrix in the
experiments, which are, respectively, defined as follows.

• Monomial kernel: , where is the
monomial degree.

• Gaussian kernel: where
is the parameter of the Gaussian kernel.

A. Brief Description of the Data Sets

The six data sets used in the experiments are: the United
States Postal Service (USPS) handwritten digital database [12],

the FERET database [25], the AR face database [26], the Olivetti
Research Lab (ORL) face database in Cambridge,4 the PIX face
database from Manchester,5 and the UMIST face database6 [27].
The data sets are summarized as follows.

• The USPS database of handwritten digits is collected from
mail envelopes in Buffalo, NY. This database consists of
7291 training samples and 2007 testing samples. Each
sample is a 16 16 image denoting one of the ten digital
characters {“0,” “1,” “2,” “3,” “4,” “5,” “6,” “7,” “8,” “9”}.

• The FERET face database contains a total of 14 126 fa-
cial images by photographing 1199 subjects. All images
are of size 512 768 pixels. We select a subset consisting
of 984 images from 246 subjects who have “fa” images in
both gallery “fa” and prob “duplicate” sets. For each sub-
ject, the four frontal images (two “fa” images plus two “fb”
images) are used for our experiments, which involve vari-
ations of facial expression, aging, and wearing glasses. All
images are manually cropped and normalized based on the
distance between eyes and the distance between the eyes
and the mouth and then are downsampled into a size of
72 64.

• The AR face database consists of over 3000 facial images
of 126 subjects. Each subject has 26 facial images recorded
in two different sessions, where each session consists of
13 images. The original image size is 768 576 pixels,
and each pixel is represented by 24 b of RGB color values.
We randomly select 70 subjects among the 126 subjects for
the experiment. For each subject, only the 14 nonoccluded
images are used for the experiment. All the selected images
are centered and cropped to a size of 468 476 pixels, and
then downsampled to a size of 25 25 pixels.

• The ORL face database contains 40 distinct subjects, where
each one contains ten different images taken at different
time with slightly varying lighting conditions. The orig-
inal face images are all sized 92 112 pixels with a 256-
level grayscale. The images are downsampled to a size of
23 28 in the experiment.

• The PIX face database contains 300 face images of 30 sub-
jects. The original face images are all sized 512 512. We
downsample each image to a size of 25 25 in the exper-
iment.

• The UMIST face database contains 575 face images of 20
subjects. Each subject has a wide range of poses from pro-
file to frontal views. We downsample each image to a size
of 23 28 in the experiment.

B. Experiments on Testing the Performance of KFSODVs/ROU

In this experiment, we use the USPS database and the FERET
database, respectively, to evaluate the performance of the KF-
SODVs/ROU algorithm in terms of the recognition accuracy
and computational efficiency.

1) Experiments on the USPS Database: We choose the
first 1000 training points of the USPS database to train the
KFSODVs/ROU algorithm, and then use all the 2007 testing

4http://www.cam-orl.co.uk/facedatabase.html
5http://peipa.essex.ac.uk/ipa/pix/faces/manchester
6http://images.ee.umist.ac.uk/danny/database.html
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TABLE III
RECOGNITION RATES (IN PERCENT) WITH DIFFERENT CHOICE OF THE

MONOMIAL KERNEL DEGREE OF VARIOUS KERNEL-BASED FEATURE

EXTRACTION METHODS ON THE USPS DATABASE. AS OLDA IS

A LINEAR FEATURE EXTRACTION METHOD, IT DOES NOT

HAVE HIGHER DEGREE COUNTERPARTS

points to evaluate its recognition performance. The parameter
is empirically fixed at 0.7 in the experiments. Table III shows

the recognition rates of the various methods with different
choice of the monomial kernel degrees. Note that OLDA is a
linear feature extraction method. It can be regarded as using a
monomial kernel with degree 1. From Table III, one can see that
the best recognition rate is achieved by the KFSODVs/ROU
method when the monomial kernel with degree 3 is used. One
can also see from Table III that the FSODVs method (which
is equivalent to the KFSODVS method when the monomial
kernel with degree 1 is used) achieves much better performance
than the OLDA method. This is simply because the orthogonal
discriminant vectors of OLDA are obtained by performing the
QR decomposition on the transformation matrix of ULDA [29],
which contains only columns in this experiment.
Hence, the number of the discriminant vectors of OLDA is only
9. By comparison, however, the FSODVs method can obtain
much more useful discriminant vectors and thus can obtain
better recognition result.

To see the change of the recognition rates of the KF-
SODVs/ROU algorithm against the number of the discriminant
vectors, we plot the recognition rates versus the number of the
discriminant vectors in Fig. 1. It can be clearly seen from Fig. 1
that the best recognition rate of KFSODVs/ROU is achieved
when the number of discriminant vectors is much larger than
the number of the classes. For example, if the monomial kernel
with degree 3 is used, the best recognition rate is achieved
when the number of the discriminant vectors is larger than 300,
much larger than the number of classes . This testifies to
the need of more than discriminant vectors that we have
claimed in the Introduction.

To compare the computational time spent on computing the
discriminant vectors between the KFSODVs/ROU algorithm
and the KFSODVs/LM algorithm, we plot in Fig. 2 the com-
putation time with respect to the increase of the number of
discriminant vectors to be computed for both algorithms, from
which one can see that the computation time of KFSODVs/ROU
is less than that of KFSODVs/LM, especially when the number
of projection vectors is large. Moreover, it should be noted that
the increase rate of the computation time of the KFSODVs/LM
algorithm is faster than the KFSODVs/ROU algorithm with the
increase of the number of projection vectors, where the increase
of the central processing unit (CPU) time of the KFSODVs/LM
method is nonlinear whereas the KFSODVs/ROU method is
linear. The results shown in Fig. 2 coincide with our theoretical
analysis in Section III. More specifically, we have theoretically
shown in Section III that the computational complexity of
solving the th discriminant vector is using the

Fig. 1. Recognition rates versus the number of the discriminant vectors of KF-
SODVs/ROU on the USPS database.

Fig. 2. Computational time with respect to the increase of the number of
discriminant vectors for both the KFSODVs/ROU algorithm and the KF-
SODVs/LM algorithm on the USPS database.

KFSODVs/ROU algorithm, where is a
constant for a given problem. Consequently, the increase of the
CPU time in computing discriminant vectors should be linear.
Similar results can be seen in Figs. 4 and 5.

2) Experiments on FERET Database: We use a fourfold
cross-validation strategy to perform the experiment [28]:
choose one image per subject as the testing sample and use
the remaining three images per subject as the training samples.
This procedure is repeated until all the images per subject have
been used once as the testing sample. The final recognition rate
is computed by averaging all the four trials. The parameter
used in this experiment is fixed at 0.6.

Fig. 3 shows the recognition rates of the various kernel-based
feature extraction methods as well as the OLDA method, where
the monomial kernel with degree and the Gaussian
kernel with parameter are, respectively, used to cal-
culate the Gram matrix of the kernel-based algorithms. We can
see from Fig. 3 that the KSFODVs/ROU method achieves much
better results than the other methods.

We also conduct experiments to compare the computa-
tional time between the KFSODVs/ROU algorithm and the
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Fig. 3. Recognition rates of various kernel-based feature extraction methods
on the FERET database.

Fig. 4. Computation time with respect to the increase of the number of pro-
jection vectors for both the KFSODVs/ROU algorithm and the KFSODVs/LM
algorithm on the FERET database.

KFSODVs/LM algorithm with respect to the increase of the
number of discriminant vectors, where we use the training data
of one trial as the experimental data and use the Gaussian kernel
with parameter to calculate the Gram matrix. The
experimental results are shown in Fig. 4, again from which one
can see that the computation time of KFSODVs/ROU is less
than that of KFSODVs/LM and as for the increasing rate of the
computation time with the increase of the number of projection
vectors, KFSODVs/LM is also faster than KFSODVs/ROU.

C. Experiments on Testing the Performance of ULDA/ROU

In this experiment, we aim to compare the computational effi-
ciency between our ULDA/ROU algorithm and the ULDA/LM
algorithm proposed by Jin et al. [13]. Four data sets, i.e., the AR
database, the ORL database, the PIX database, and the UMIST
database, are used as the experimental data to train both algo-
rithms. The experiment is designed in the following form: we
first randomly partition each data set into six subsets with ap-
proximately equal sizes, then we choose four of six subsets as
the training data and the rest as the testing data. In the exper-
iments of testing the recognition performance of ULDA/ROU,

Fig. 5. Computation time with respect to the increase of the number of discrim-
inant vectors for both the ULDA/ROU algorithm and the ULDA/LM algorithm.
(a) AR database. (b) ORL database. (c) PIX database. (d) UMIST database.

we conduct ten trials of experiments and get the average recog-
nition rates as the final recognition rates. Fig. 5 shows the com-
putation time of both algorithms with respect to the increase of
the number of discriminant vectors to be computed. From Fig. 5,
one can see that for the ULDA/LM algorithm, the increasing rate
of the computation time with the increase of the number of pro-
jection vectors is faster than that of the ULDA/ROU algorithm.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a fast algorithm, called KF-
SODVs/ROU, to solve the kernel Foley–Sammon optimal dis-
criminant vectors. Compared with the previous KFSODVs/LM
algorithm, this new algorithm is more computationally efficient
by using the MKGS algorithm to replace the KPCA algorithm
as well as using the ROU technique of eigensystem to avoid
the heavy cost of matrix computation. When solving each dis-
criminant vector, the KFSODVs/ROU algorithm only needs a
square complexity. However, the previous KFSODVs/LM al-
gorithm needs a cubic complexity. The experimental results on
both the USPS digital character database and the FERET face
database have demonstrated the effectiveness of the proposed
algorithm in terms of the computation efficiency and the recog-
nition accuracy.

Although (K)FSODVs may not be needed when the number
of classes is comparable with the dimensionality of the feature

vectors, (K)FSODVs are very helpful in improving the recogni-
tion rates when is relatively small, as demonstrated by our ex-
periments. Moreover, our algorithm is not limited to solving KF-
SODVs. It can be widely used for solving a family of OCGRQ
problems with high efficiency. We take the ULDA method as an
example and propose a new algorithm, called ULDA/ROU, for
ULDA based on Algorithm 3. We also conduct extensive exper-
iments on four face databases to show the computational effi-
ciency of the ULDA/ROU algorithm with that of the previous
ULDA/LM algorithm.

Additionally, other forms of the ROU technique may exist,
resulting in other fast algorithms for solving KFSODVs. For
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example, the following formula may be used to compute the
inverse of recursively:

(24)

where is an nonsingular matrix, is an identity
matrix, and are vectors, represents the zero vectors,
and is a scalar. We will investigate such probabilities in the
future work.

APPENDIX I

Proof of Lemma 1: We can find the complement basis
such that the matrix is an orthogonal matrix.
Then, we have due to .
From , there exists a such that

(25)

On the other hand, . Therefore, the
columns of form a basis of . So there exists a

, such that

(26)

Combining (25) and (26), we obtain

(27)

APPENDIX II

Proof of Theorem 1: Since , is the
QR decomposition of , and is nonsingular, we obtain
that . From Lemma 1, there exists a such
that . Therefore

(28)

where we have utilized the idempotency of the matrix
in the second equality. Therefore, is the principal

eigenvector corresponding to the largest eigenvalue of the ma-

trix .

APPENDIX III

Proof of Theorem 2: From
and the fact that is the QR decompo-

sition of , we obtain that and ,
where is the identity matrix. Thus, we have

(29)

where is the identity matrix. On the other
hand

(30)

From (29) and (30), one can see that the theorem is true.
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