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ABSTRACT
Audio-visual question answering aims to answer questions regard-
ing both audio and visual modalities in a given video, and has drawn
increasing research interest in recent years. However, there have
been no appropriate datasets for this challenging task on videos in
real-life scenarios so far. They are either designed with questions
containing only visual clues without taking any audio informa-
tion into account, or considering audio with restrictions to specific
scenarios, such as panoramic videos and videos about music per-
formances. In this paper, to overcome the limitations of existing
datasets, we introduce AVQA, a new audio-visual question answer-
ing dataset on videos in real-life scenarios. We collect 57,015 videos
from daily audio-visual activities and 57,335 specially-designed
question-answer pairs relying on clues from both modalities, where
information contained in a single modality is insufficient or ambigu-
ous. Furthermore, we propose a Hierarchical Audio-Visual Fusing
module to model multiple semantic correlations among audio, vi-
sual, and text modalities and conduct ablation studies to analyze
the role of different modalities on our datasets. Experimental re-
sults show that our proposed method significantly improves the
audio-visual question answering performance over various ques-
tion types. Therefore, AVQA can provide an adequate testbed for the
generation of models with a deeper understanding of multimodal in-
formation on audio-visual question answering in real-life scenarios.
(The dataset is available at https://mn.cs.tsinghua.edu.cn/avqa)

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Informa-
tion systems→ Question answering.
∗Corresponding authors.
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1 INTRODUCTION
Some psychological and cognitive science studies [1, 16, 34] show
that multimodal data plays a crucial role in the human brain’s cog-
nition system to form a whole coherent perception. Humans can
naturally integrate what they see and hear to understand the sur-
rounding environment. Audio-visual question answering is a task
that aims to model this multimodal system for machines. Formally,
given a stream of video, audio-visual question answering aims to
answer natural language questions by integrating information from
both audio and visual modalities, which has been an emerging re-
search topic in recent years. For example, given a video showing
that a flock of birds suddenly fly away from trees, and the question
“why do these birds fly away?”, it requires to combine the visual
information “a bird flying away” and the audio information of a
train whistle to answer the question as “the whistle sound shocks
the bird”. To achieve an accurate reasoning process and get the
correct answer, it is essential to extract cues and contexts from both
audio and visual modalities and discover their inner correlations.

Although most of the video question answering datasets [2, 4, 9,
24, 25, 37, 41, 44, 46] provide access to features of three modalities
(audio, visual, and text), few of them have carefully considered the
information from the audio modality in the creating process, thus
most of the questions in these datasets could be answered with only
the visual modality [41, 44]. Due to the severe noise in background
sounds, some works [32, 49] discover that audio modality in these
datasets provides little information and may be useless or even
harmful to the question answering task. Few datasets [26, 45] are
specifically proposed for the audio-visual question answering task.
Specifically, Pano-AVQA [45] targeting panoramic videos takes
audio-visual relationships into account, while those questions are
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Figure 1: AVQA is an audio-visual question answering dataset
for the multimodal understanding of audio-visual objects
and activities in real-life scenarios on videos. AVQA provides
diverse sets of questions specially designed considering both
audio and visual information, involving various relation-
ships between objects or in activities. Here is an example
from AVQA dataset and the top two lines show the video clip
from both visual frames and audio waveform.

mainly limited to existence or location judgment using spatial at-
tributes, neglecting the function of modeling different types of
relationships such as temporal relations [6]. MUSIC-AVQA [26]
further regards spatial-temporal association between modalities in
the audio-visual question answering task. However, visual scenes
are limited to music performance, in which the questions are only
about instrument relationships, lacking the exploration of more
real-life scenarios.

In short, although most researchers find it urgent to study the
problem of audio-visual question answering, the lack of systematic
datasets on real-life scene videos considering audio-visual corre-
lations limits the research progress. In this paper, we propose the
AVQA dataset, the first dataset designed for audio-visual question
answering on general videos of real-life scenarios. AVQA is collected
from VGG-Sound [3] dataset and selects the suitable classes for
question answering tasks and annotates the original data by crowd-
sourcing. After the collection of the raw data, we post-process
samples to improve the quality of the dataset and make it more
suitable for training and testing models. Given that videos in AVQA
are real-life scenarios, an intelligent system must reach answers
with complete modalities. AVQA is designed as a practical yet chal-
lenging testbed for audio-visual question answering.

Besides, we propose a Hierarchical Audio-Visual Fusing (HAVF)
module to integrate information from audio, visual, and text modal-
ities for question answering. We conduct dense experiments by
integrating our HAVF module into state-of-the-art video question
answering models and benchmark the audio-visual question an-
swering task on our dataset. Experimental results show significant

performance increase and demonstrate the important role of the
audio modality in our real-life scene video datasets.

We summarize the contributions of our paper as threefold:
• We introduce AVQA, a new video dataset annotated with
specifically-designed questions about real-life audio-visual
activities. Activities in the videos have distinctive acoustic
characteristics, urgently requiring the capability of integrat-
ing multimodal cues and understanding relations among the
three modalities.
• We propose a Hierarchical Audio-Visual Fusing (HAVF) mod-
ule that can be flexibly combined with existing video ques-
tion answering models.
• We conduct extensive experiments to demonstrate the ef-
fectiveness of our method, which significantly improves the
accuracy of audio-visual question answering and further
demonstrates the superiority of our question design.

2 RELATEDWORK
2.1 Related Datasets
Based on whether audio data is accessible, we can classify existing
datasets into two categories: datasets with and without access to
audio. For those datasets published with audio or with links to raw
videos, we can extract audio features or transcribed speech text as
an extra input in addition to video frames. For example, MSRVTT-
QA [41] dataset and ActivityNet-QA [44] dataset collect real-life
scene data from online videos (like YouTube) and provide links
to original videos. With the support of these datasets, researchers
can obtain both audio and visual data according to the needs of
their models. Besides, datasets [2, 4, 5, 9, 24, 25, 35, 37, 46] generated
frommovies, tutorial videos or social scenes contain a large number
of conversations or instructions, which are usually transcribed as
extra text inputs in addition to subtitles and question-answer pairs.
Closest to our work are Pano-AVQA [45] andMUSIC-AVQA [26],
which proposed benchmarks for audio-visual question answering
on panoramic videos and music performance scenes. Some other
datasets are generated from silent animated GIFs [17] and synthetic
videos [36, 43] or published without links to raw videos [10, 28],
thus audio information is not available and models can only utilize
the visual features extracted from them.

Although the first type of dataset contains audio data, most of
them are still not suitable for the audio-visual question answer-
ing task. Sound utilized in datasets [2, 4, 5, 9, 24, 25, 37, 46] is
mainly human speaking and hard to model interactions with visual
modality. It is usually actually introduced to models in the form
of text [24, 25] rather than natural sounds, which loses the unique
characteristics of sounds. In this way, the video question answering
task degenerates into textual plot understanding or actor dialogue
comprehension problems on these datasets. Datasets [41, 44] are
towards understanding spatial and temporal relationships in real-
life scenarios. Questions are mostly visual-based while sounds are
accompanied by severe noise for the audio-visual mismatching.
Several recently-released Video QA datasets [11, 27, 31, 38, 39] fo-
cus more on understanding richer relation types and performing
more complex reasoning processes, such asmulti-step reasoning [5],
understanding temporal [39] and causal relationships [27, 31, 39],
composition reasoning[11, 38], and commonsense reasoning [27].
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Although these new problem settings involve a variety of complex
reasoning, none of these problems take into account the participa-
tion of audio and its benefits during the inference process. Ques-
tions considering audio-visual relationships in [45] are generated
from fixed question templates. For example, when given questions
like "Who/what is making [sound]?" or "Which sound is [object]
making?", it rarely requires models to go beyond recognizing the
location and existence of objects and sound. MUSIC-AVQA [26]
explores more complex relationships between sounds of the same
or different instruments, such as spatial and temporal relative lo-
cation, counting, and comparison of acoustic characteristics, but
is limited in monotonous music performance scenes. Moreover,
the data scale of datasets [26, 45] is small, which is inadequate for
question answering models training. Therefore, both audio-visual
question answering datasets limit the training and evaluation of
the model reasoning ability.

Comparedwith the aforementioned datasets, our proposedAVQA
has two distinctive characteristics: (1)questions in AVQA contain
a richer set of audio-visual objects and activities in daily life; (2)
AVQA has a larger scale number of videos, which benefits models
to learn from and understand multiple audio-visual relationships.

2.2 Related Video Question Answering Methods
Recently, there has been significant progress in video question an-
swering. We review the existing approaches as follows: (1) models
considering audio modality. Zhuang et al. [49] fuse audio and visual
modalities at the input stage and feed the multimodal representa-
tion to the proposed attention memory unit. Miyanishi et al. [32]
propose a modulated multi-stream 3D ConvNets, in which three
bottlenecks take motion, appearance, and audio modality as inputs,
respectively. Yun et al. [45] propose a transformer-based model to
encode multimodal features. Besides, Li et al. [26] introduce spatial
and temporal grounding modules to reason spatio-temporal associ-
ations between audio and visual modalities under a question query.
(2) models without considering audio modality. The research on
traditional settings of the video question answering task has mainly
proceeded along three different dimensions: encoder-decoder mod-
els [17, 42, 48], memory-basedmodels [7, 8, 20, 21], and graph-based
models [12, 15, 18, 19].

3 AVQA DATASET
The AVQA dataset centers around understanding various audio-
visual relationships in real life. We introduce our dataset with an
example in Figure 1, and more detailed examples can be found in
supplementary materials.

3.1 Video Collection and Preprocessing
We aim to evaluate the reasoning ability of question answeringmod-
els in real-life audio-visual scenarios, so the video corpus should
have a considerable scale and contain rich and generic classes.
Therefore, we choose the audio-visual dataset VGG-Sound [3],
which consists of 200k videos for 309 audio classes.

Our dataset is designed for learning objects and activities in
daily life using both audio and visual information. More specifically,
we expect that videos focus on natural sounds or common human
activities, and have the potential to annotate diverse questions based

on them. Towards achieving this, we shuffle the initial dataset and
remove some videos belonging to monotonous and multiple scene
classes. After this process, we select 100k videos of 165 categories
for the labeling company to annotate.

3.2 Annotation Process
We build a web application and design a four-step annotation pro-
cess for creating this dataset. In order to reduce the complexity and
achieve better annotation quality, we contact a professional data
labeling company and conduct on-site training for 13 annotators.
We introduce some tips for attention in the annotating process
and give some positive and negative annotation examples to help
annotators better understand our idea. Each annotator is asked to
log into the web application, get the annotating task assigned by
the backend, and complete it. For each question, one annotator only
participates in one of these steps.

3.2.1 Video Evaluation. In the first stage, every video is evaluated
whether it has enough visual or audio information for propos-
ing questions. The videos with monotonous or static scenes are
skimmed. Videos that pass this step enter the next step.

3.2.2 Annotation Collection. In the second stage, annotators are
asked to label question-answer pairs. For each video, annotators
can design one or a series of related questions. For each question,
we ask annotators to write the correct answer to the question as
well as the type information (video type, question type, etc.).

3.2.3 Quality Control. Three other annotators check each ques-
tion to ensure that it is closely related to the video and has the
appropriate complexity to be answered. The question cannot enter
the next stage if any of the three annotators think the question is
incorrect or not complicated enough.

3.2.4 Choice Completion. Questions that pass the quality control
stage are completed with three options. Each annotator can write
one to three options until the number of them reaches three. The
option should have the same text class with the correct answer so
that the question is more difficult to be answered. In particular, we
think that a good option could be an answer only inferred from
visual information or audio information, which is distinguishable.
In order to have balanced question distribution and answer distribu-
tion, we ask annotators to consider the answers that often appear
in other videos as choice candidates.

The raw questions and choices are written in Chinese. We trans-
late them into English by Neural network translation tools from
Baidu1. In addition, during annotators’ working days, we regularly
check the questions and answers and give feedback to annotators
to ensure the completion quality of the annotating task.

3.3 Data Balancing
Data bias exists widely in all kinds of datasets. In the video question
answering task, it is manifested as the different frequency in answer
candidates. Machine learning models can reach a relatively good
performance only by fitting the dataset biases. To prove this, we
train models only to learn from bias on MSVD-QA, MSRVTT-QA,
three subsets 𝐴𝑐𝑡𝑖𝑜𝑛, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛, and 𝐹𝑟𝑎𝑚𝑒𝑄𝐴 of TGIF-QA and
1https://api.fanyi.baidu.com/
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Table 1: Comparison with other related video datasets. Our AVQA dataset aims to reason about multiple audio-visual relation-
ships in real-life scenarios. (B-Background sound, S-Human speech, O-Object sound.)

Dataset Questions
for audio

Sound
type

Visual scene
type

Audio-visual relationship type Video
number

QA pairs
numberExistential Location Counting Temporal Causal Purpose

MSRVTT-QA [41] × B Real-life × × × × × × 10K 243.7K
ActivityNet-QA [44] × B Real-life × × × × × × 5.8K 58K

MovieQA [37] × S Movie × × × × × × 6.8K 6.5K
TVQA [24] × S Movie × × × × × × 21.8K 152.5K
TVQA+ [25] × S Movie × × × × × × 4.2K 29.4K
DramaQA [4] × S Movie × × × × × × 23.9K 18.0K
LifeQA [2] × S Real-life × × × × × × 0.3K 2.3K
KnowIT VQA [9] × S Movie × × × × × × 12.1K 24.3K
Social-IQ [46] × S Social × × × × × × 1.3K 7.5K

Pano-AVQA [45] ✓ O Panoramic ✓ ✓ × × × × 5.4K 51.7K
MUSIC-AVQA [26] ✓ O Music ✓ ✓ ✓ ✓ × × 9.3k 45.9K

AVQA (Ours) ✓ O Real-life ✓ ✓ ✓ ✓ ✓ ✓ 57.0K 57.3K
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(d) Distribution of questions by their first three words.

Question Type Top-5 frequent candidates
Which dog, bird, cat, chicken, cattle

Come From train, aircraft, sound of wind, motorcycle,
helicopter

Happening rope skipping, skiing, rowing, riding,
machine gun fire

Where at sea, field, eabed, highway, aquatic

Why I’m hungry, decompression, roller coaster
ride, frightened, motorcycle

Before Next volcanic explosion, setting off fireworks,
tornado, sharpen the knife, set off firecrackers

When evening, chicken, train, lion, sound of
wind

Used For decompression, train, dog, turkey, protect
your eyes

(e) Top-5 frequent candidates per qustion type.

Figure 2: Illustrations of AVQA dataset statistics. (a) Distribution of audio categories. (b-e) Distributions of collected question-
answer pairs.

our proposed dataset. We then define a new metric, Unbalancing
Factor (UF):

𝑈𝐹 =
𝐴𝑐𝑐𝑟

𝐴𝑐𝑐𝑡
− 1 (1)

where 𝐴𝑐𝑐𝑟 is the accuracy of answers in reality, and 𝐴𝑐𝑐𝑡 is the
theoretical accuracy, i.e., the probability that each answer is se-
lected (the inverse of candidate number). UF evaluates the degree of
data bias, and it decreases to 0 when there is no bias in the dataset.
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Table 2: Data bias evaluation on different datasets. (OE-Open
ended, MC-Multiple choice)

Dataset Question
type

Candidate
number 𝐴𝑐𝑐𝑡 𝐴𝑐𝑐𝑟 𝑈𝐹

MSVD-QA [41] OE 1.9K 0.054% 16.71% 309.4
MSRVTT-QA [41] OE 6.2K 0.016% 9.95% 621.9
TGIF-QA_FrameQA [17] OE 1.5K 0.065% 25.69% 395.2
MUSIC-AVQA [26] OE 94 1.064% 18.96% 17.82
TGIF-QA_Action [17] MC 5 20% 46.44% 2.322
TGIF-QA_Transition [17] MC 5 20% 50.10% 2.505

AVQA(Ours initial) MC 4 25% 72.37% 2.895
AVQA(Ours final) MC 4 25% 41.79% 1.672

Table 3: Notations in Algorithm 1.

Notation Role
𝐴 All annotations

𝐶_𝑙𝑖𝑠𝑡 Unique candidate matrix, 4 columns are [𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ,
𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡 , 𝐶𝐴𝑁_𝑐𝑜𝑢𝑛𝑡 ,𝑈 _𝑐𝑜𝑢𝑛𝑡]

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 Text of answer candidates
𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡 Count number that candidates appear in correct options
𝐶𝐴𝑁_𝑐𝑜𝑢𝑛𝑡 Count number that candidates appear in confusion options
𝑈 _𝑐𝑜𝑢𝑛𝑡 Unbalancing count = 𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡 −𝐶𝐴𝑁_𝑐𝑜𝑢𝑛𝑡
𝑆_𝑑𝑖𝑐𝑡 Dictionary of candidate synonyms
𝐵_𝐴 Balanced annotations
𝑡ℎ𝐴 Threshold for 𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡
𝑡ℎ𝑈 Threshold for 𝐶𝐴𝑁_𝑐𝑜𝑢𝑛𝑡
𝑈 _𝑙𝑖𝑠𝑡 Unbalancing sorted candidate matrix
𝐵_𝑖𝑡𝑒𝑚𝑠 Items need to be balanced
[] Operations that extract some rows from the matrix
[′′] Operations that get certain column from the matrix

We set all visual and question input features to zero vectors
and let models only learn from data bias in answer distribution.
The results are reported in Table 2. We can see that most of the
datasets have great data bias. We find that our initial dataset has
the largest data bias among datasets of multiple choice. Although
our fully manual annotation process ensures that the questions and
answer candidates are reasonable, we still introduce large annotator
bias into our dataset. We then propose a data balancing algorithm
called Confusion Candidates Replacing (CCR) multi-choice
video question answering dataset balancing algorithm to decrease
our dataset’s data bias while keeping the advantage of reasonable
question-answer pairs. The operation of CCR is presented algo-
rithmically in Algorithm 1. Table 3 summarizes the notations used
across these presentations.

The CCR balancing algorithm first sorts 𝐶_𝑙𝑖𝑠𝑡 according to
the descending order of the fourth column 𝑈 _𝑐𝑜𝑢𝑛𝑡 . Then we fil-
ter candidates whose 𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡 is more than threshold 𝑡ℎ𝐴 , and
𝑈 _𝑐𝑜𝑢𝑛𝑡 is more than threshold 𝑡ℎ𝑈 (line 1-2 of Algorithm 1). We
consider the number of 𝑈 _𝑐𝑜𝑢𝑛𝑡 to select seriously unbalanced
answer candidates and the number of 𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡 to ensure that
data bias will decrease after balancing this candidate. Then, for
each annotation 𝐴𝑖 in 𝐴, confusion options of 𝐴𝑖 in the column
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 of 𝐵_𝑖𝑡𝑒𝑚𝑠 means items that need to be balanced. If
so, we then get the unbalancing count from the column𝑈 _𝑐𝑜𝑢𝑛𝑡
of 𝐵_𝑖𝑡𝑒𝑚𝑠 . We traverse the synonym list of this confusion option

Algorithm 1: CCR balancing algorithm
Input :𝐴,𝐶_𝑙𝑖𝑠𝑡, 𝑆_𝑑𝑖𝑐𝑡
Output :𝐵_𝐴
Parameters :𝑡ℎ𝐴, 𝑡ℎ𝑈

1 𝑈 _𝑙𝑖𝑠𝑡 = sort( 𝐶_𝑙𝑖𝑠𝑡 , key=𝑈 _𝑐𝑜𝑢𝑛𝑡)
2 𝐵_𝑖𝑡𝑒𝑚𝑠 =𝑈 _𝑙𝑖𝑠𝑡 [ 𝐴𝑁𝑆_𝑐𝑜𝑢𝑛𝑡 > 𝑡ℎ𝐴 and𝑈 _𝑐𝑜𝑢𝑛𝑡 > 𝑡ℎ𝑈 ]
3 for each 𝐴𝑖 in 𝐴 do
4 for 𝑖𝑡𝑒𝑚 in 𝐴𝑖 [′multi-choice′] except 𝐴𝑖 [′answer′] do
5 if 𝑖𝑡𝑒𝑚 in 𝐵_𝑖𝑡𝑒𝑚𝑠 [′candidates′] then
6 𝐵_𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑡𝑒𝑚 index in 𝐵_𝑖𝑡𝑒𝑚𝑠 [′candidates′]
7 𝑖𝑡𝑒𝑚_𝐵_𝑐𝑜𝑢𝑛𝑡 = 𝐵_𝑖𝑡𝑒𝑚𝑠 [𝐵_𝑖𝑛𝑑𝑒𝑥] [′𝑈 _𝑐𝑜𝑢𝑛𝑡 ′]
8 for 𝑆_𝑖𝑡𝑒𝑚 in 𝑆_𝑑𝑖𝑐𝑡 [𝑖𝑡𝑒𝑚] do
9 𝑆_𝑖𝑛𝑑𝑒𝑥 = index of 𝑆_𝑖𝑡𝑒𝑚 in𝑈 _𝑙𝑖𝑠𝑡

10 𝑖𝑡𝑒𝑚_𝑆_𝑐𝑜𝑢𝑛𝑡 =
𝑈 _𝑙𝑖𝑠𝑡 [𝑆_𝑖𝑛𝑑𝑒𝑥] [′𝑈 _𝑐𝑜𝑢𝑛𝑡 ′]

11 if 𝑖𝑡𝑒𝑚_𝐵_𝑐𝑜𝑢𝑛𝑡 < −𝑖𝑡𝑒𝑚_𝑆_𝑐𝑜𝑢𝑛𝑡 then
12 𝑖𝑡𝑒𝑚 ← 𝑆_𝑖𝑡𝑒𝑚
13 𝐵_𝑖𝑡𝑒𝑚𝑠 [𝐵_𝑖𝑛𝑑𝑒𝑥] [′𝑈 _𝑐𝑜𝑢𝑛𝑡 ′] -= 1
14 𝑈 _𝑙𝑖𝑠𝑡 [𝑆_𝑖𝑛𝑑𝑒𝑥] [′𝑈 _𝑐𝑜𝑢𝑛𝑡 ′] += 1
15 break
16 end
17 end
18 end
19 end
20 end
21 𝐵_𝐴 = shuffle(𝐴)
22 return 𝐵_𝐴

through 𝑆_𝑑𝑖𝑐𝑡 and get their unbalancing count from the column
𝑈 _𝑐𝑜𝑢𝑛𝑡 of𝑈 _𝑙𝑖𝑠𝑡 . Suppose there is one synonym whose unbalanc-
ing count is negative and absolute value is more than unbalancing
count of the candidate itself. In that case, we can use this synonym
to replace this candidate for balancing. So here we replace it and
change the unbalancing count of each other.

After doing this one by one, we manually balance some items
that the CCR balancing algorithm cannot solve. This process is
simple because the algorithm has balanced most candidates. Finally,
we find 363 items that are hard to be balanced, so we removed them
from our dataset. From the results of Table 2, our dataset reaches
the least data bias. Models trained on our dataset will have more
ability learned from video-text-audio contextual representing to
reason rather than more ability from data bias. Finally, we split
the AVQA dataset by randomly selecting 70% of the samples as the
training set and the rest as the validation set.

3.4 Dataset Exploration
3.4.1 Dataset Statistics. OurAVQAdataset contains 57,335 question-
answer pairs and 57,015 videos for over 158 hours. We compare
AVQA with existing video question answering datasets that pro-
vide audio modality access in Table. 1. Note that our AVQA pro-
vides specially designed questions about a wide variety of audio-
visual relationships in real-life scenes and is of the largest scale on
video numbers among these datasets. Video clips in our dataset
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involve eight categories of audio-visual objects and activities (see
Figure 2(a)). We classify questions into eight categories based on
semantics, and we visualize the distribution of question types and
their first three words in Figure 2(b) and (d). Figure 2(c) and (d)
show the distribution of top-20 frequent answers for the overall
dataset and top-5 frequent candidates for each question type.

3.4.2 Dataset Highlights. We summarize the highlights of AVQA as
follows:1) Large-scale. AVQA has the most videos with little noise
compared to related video datasets. Besides, AVQA outperforms
two other audio-visual question answering datasets in both the
number of videos and the number of question-answer pairs. Mean-
while, AVQA has a broader scene scope than panoramic videos
and music performance videos. A large number of videos bring a
wider variety of life scenarios, which is more suitable for model
training and evaluation in multimodal reasoning ability. 2) High
quality. Our annotations are of high quality, especially compared
with datasets entirely generated by NLP tools like MSVD-QA [41]
and MSRVTT-QA [41]. Even though they may have more QA pairs,
due to the limitation of inaccurate annotations, the current highest
accuracy in both datasets is around 40%. The fully manual annota-
tion also makes AVQA superior to semi-manual annotated datasets
like TGIF-QA [17]. This is because our confusion options are more
relevant to the videos, bringing models better fine-grained discrim-
ination ability. 3) Novelty and broader applicability. There are
a considerable number of questions in AVQA that can only be an-
swered from both audio and visual information. Therefore, models
trained on our dataset need to integrate the three modalities for
reasoning, which is closer to the way humans get external infor-
mation in real life. 4) Small data Bias. From Table 2, we can see
that the data bias in our dataset becomes the least after the CCR
algorithm, so that models are more likely to learn natural relations
rather than data bias.

4 AUDIO-VISUAL QUESTION ANSWERING ON
AVQA

4.1 Formulation
The basic video question model could be summarized as:

𝑎 = argmax
𝑎∈A

Pr(𝑎 |𝑉 ,𝑄) = 𝑝𝜙
(
𝑎 |𝛼\ (h𝑣, h𝑞);A

)
, (2)

where h𝑣 ∈ R𝑑𝑣 , h𝑞 ∈ R𝑑𝑞 is the visual feature and question feature,
respectively, which could be extracted with corresponding deep
neural network models [13, 14, 40]. 𝛼\ is a feature fusion model
used to fuse features from both question and video modalities, and
𝑝𝜙 (𝑎 |·;A) is the answer decoder probability model to decode the
final answer 𝑎 from the answer setA, with learnable weights \ and
𝜙 , respectively.

However, when it comes to the more challenging audio-visual
question answering problem, Eq. 2 becomes more complicated that
we have to model the following probability considering all three
modalities:

𝑎 = argmax
𝑎∈A

Pr(𝑎 |𝑉 ,𝐴,𝑄) (3)

Based on current two-modalities fusing techniques, we could firstly
fuse any two modalities and then fuse the results with the third one,
or we could directly fuse all the three modalities directly. In our

preliminary experiments, we find some modalities contribute little
to the final answer. For example, the fusion of𝑉 and𝐴 theoretically
does not correlate with the final answer 𝑎 if the dataset is fully
balanced. In the following, we introduce three important fusing
methods, which could be seen as variants of Eq. 2, and we show
how these variants finally contribute to Eq. 3.
Early Audio-Visual Fusion. Early Audio-Visual Fusion (EAVF)
could be formularized as follows:

Pr(𝑒) (𝑎 |𝑉 ,𝐴,𝑄) = 𝑝
(𝑒)
𝜙

(
𝑎
��𝛼 (𝑞−𝑎𝑣)
\

(𝛼 (𝑎𝑣)
\
(h𝑣, h𝑎), h𝑞));A

)
, (4)

where 𝛼 (𝑎𝑣)
\

is the audio-visual fusion model and their output is

further fused with the question using 𝛼
(𝑞−𝑎𝑣)
\

to generate the fi-
nal answer probability. This fusion method could be explained as:
regarding audio and visual features as two complementary modali-
ties, and their fused result forms a full video feature, and the final
answer could be reasoned out from the question feature and the
full video feature.
Middle All Fusion. Middle all Fusion (MF) could be formularized
as:

Pr(𝑚) (𝑎 |𝑉 ,𝐴,𝑄) = 𝑝
(𝑚)
𝜙

(
𝑎
��𝛼 (𝑞𝑎𝑣)
\

(h𝑣, h𝑎, h𝑞);A
)
, (5)

where 𝛼𝑞𝑎𝑣
\

is a comprehensive fusion model to fuse information
from all three modalities. This fusion method treats all three modal-
ities equally and fuses them all.
Late Audio Fusion. Late Audio Fusion (LAF) could be formularized
as follows:

Pr(𝑙) (𝑎 |𝑉 ,𝐴,𝑄) = 𝑝
(𝑙)
𝜙

(
𝑎
��𝛼 (𝑎−𝑞𝑣)
\

(𝛼 (𝑞𝑣)
\
(h𝑣, h𝑞), h𝑎));A

)
, (6)

where 𝛼 (𝑞𝑣)
\

is the basic video-question fusion model as used in
most existing works, while 𝛼 (𝑎−𝑞𝑣) fuses the audio feature into the
results of 𝛼 (𝑞𝑣)

\
. This fusion method treats the audio modality as a

supplementary modality that provide extra information to answer
the question.

Generally, both of the three fusions methods sound reasonable
and have their advantages in different question types and baseline
models (See Exp. 5.2 for more details). In this paper, we try to
combine them all to form a more powerful and more complement
model with Hierarchical Audio-Visual Fusing module (HAVF):

Pr(𝑎 |𝑉 ,𝐴,𝑄) = H
(
Pr(𝑒) , Pr(𝑚) , Pr(𝑙)

)
(𝑎 |𝑉 ,𝐴,𝑄), (7)

where H(· · · ) takes the prediction of 𝑃𝑟 (𝑒) ,𝑃𝑟 (𝑚) ,𝑃𝑟 (𝑙) as input,
and normalize the result as output probability.

4.2 Implementation
In this section, we briefly introduce the implementation details of
the model, including the feature extraction model, feature fusion
model, answer model and the hierarchical ensemble model.
Feature Extraction. For audio features, we choose a pre-trained
audio tagging model [22] and take the output of the upper layer of
the sigmoid layer as the audio embedding. For visual features, we fol-
low previous work [23] and take a consistent approach [13, 14, 40]
to extract appearance and motion features separately. For text fea-
tures, we use a pre-trained GloVe [33] to transfer each word to a
300-dimensional feature vector and use an LSTM encoder to obtain
text representation for questions and candidates.
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Figure 3: Our Hierarchical Audio-Visual Fusing module. We take pre-trained PANNs [22] and ResNet [14] to extract audio
features and visual features and obtain the question embedding through an LSTM model for the feature extraction stage. Then,
we combine three fusion modules (EAVF, MF, LAF) with the baseline model to fuse features generated from audio, visual,
and text modalities. Finally, the Hierarchical Ensemble module combines the advantages of three fusing methods and uses
integrated tri-modal information to predict the answer to the input question.

Table 4: Results of preliminary experiments on HCRN

Fusion Strategy 𝑣𝑞

(basic) 𝑣 − 𝑎𝑞 𝑞 − 𝑎𝑣
(Eq. 4)

𝑎 − 𝑞𝑣
(Eq. 6)

𝑞𝑎𝑣

(Eq. 5)

Total accuracy 82.5 82.6 86.5 87.1 87.8

Feature Fusion. For each variants of fusion methods, we try
four strategies for different baseline models: (1) concatenation (2)
element-wise addition (3) element-wise multiplication (4) modified
conditional relation unit [23].
Answer Model and Hierarchical Ensemble. We take an averag-
ing strategy to ensemble three fusing methods. After averaging the
outputs of the answer model, we finally choose the candidate with
the highest averaged prediction score as the answer.
Training Details. We follow the same hyperparameter settings as
in the baseline papers [7, 18, 23, 29, 30, 47] and list more details in
the supplementary materials.

5 EXPERIMENTS
5.1 Experimental Setup
We evaluate our dataset and our Hierarchical Audio-Video Fus-
ing (HAVF) module with six well-known and state-of-the-art video
question answering models.

We follow the feature fusion strategy as in the original model
to fuse features from the audio modality (feature concatenation,
feature elementary-wise operation, or attention). We also find that
feature concatenation works better for the EAVF (Eq. 4) fusion,
and element-wise multiplication works better for MF (Eq. 5) and
LAF (Eq. 6) fusion. We basically introduce how we integrate our
HAVF into these models here and put more implementation and
experiment details in the supplementary materials.

HME [7]: we use an elementary-wise multiplication strategy for
EAVF, MF, and LAVF fusion.
PSAC [30]:We choose concatenation for EAVF, and choose element-
wise multiplication for both MF and LAF.
LADNet [29]: the same strategy as PSAC.
ACRTransformer [47]: the same strategy as PSAC.
HGA [18]: we use a concatenation strategy for EAVF, MF, and LAF.
HCRN [23]: We choose concatenation, modified conditional rela-
tion unit, and element-wise multiplication for EAVF, MF, and LAF,
repectively.
For each model, we then use our proposed HAVF to obtain a final
result.

5.2 Preliminary Experiments
There are theoretically four choices to fuse three modalities without
considering relative order, i.e., considering fusing any two of the
three modalities first (audio, visual, and question), and then fusing
the results with the left one or directly fusing all the threemodalities.
In this section, we briefly summarize our experimental results of
these fusing methods, namely: 𝑣 − 𝑎𝑞, 𝑞 − 𝑎𝑣 , 𝑎 − 𝑞𝑣 , 𝑞𝑎𝑣 fusions,
and the baseline fusion 𝑣𝑞.

As shown in Table 4, the 𝑣 −𝑎𝑞 fusion brings almost no improve-
ment compared with the no audio baseline, which is discarded in
our further study. Except for 𝑣 − 𝑎𝑞, all the other variants could
get 4% to 5% absolute accuracy improvement, which demonstrates
the effectiveness of audio. Therefore, we choose the other three
variants to form our final Hierarchical Audio-Visual Fusing module.

5.3 Experimental Results and Analysis
The performance for each model on the AVQA validation set is
shown in Figure. 4 and Table. 5. Performance is reported for the base-
line (without audio modality) model, baseline+EAVF, baseline+MF,
baseline+LAF, and baseline+HAVF.
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Table 5: Fine-grained Testing Performance(%) of baselines and our proposed Baseline-HAVF method. The best performance
over each question type is highlighted in bold form. The largest performance increase caused by our HAVF module over each
question type is highlighted in underline form.

Methods Which Come From Happening Where Why Before Next When Used For Total Accuracy

HME [7] 82.2 85.9 79.3 76.6 57.0 80.0 57.1 76.5 81.8
HME+HAVF 85.6 (+3.4) 88.3 (+2.4) 83.1 (+3.8) 83.5 (+6.9) 61.6 (+4.6) 80.0 (+0.0) 57.1 (+0.0) 88.2 (+11.7) 85.0 (+3.2)

PSAC [30] 78.7 80.0 77.0 79.4 44.2 76.0 42.9 58.8 78.6
PSAC+HAVF 89.0 (+10.3) 91.1 (+11.1) 83.2 (+6.2) 81.7 (+2.3) 61.6 (+17.4) 82.0 (+6.0) 52.4 (+9.5) 76.5 (+17.7) 87.4 (+8.8)

LADNet [29] 81.1 87.1 76.6 81.8 67.4 78.0 47.6 76.5 81.9
LADNet+HAVF 84.2 (+3.1) 89.0 (+1.9) 79.1 (+2.5) 81.4 (-0.4) 68.6 (+1.2) 82.0 (+4.0) 52.4 (+4.8) 76.5 (+0.0) 84.1 (+2.2)

ACRTransformer [47] 82.5 82.8 79.4 82.5 54.7 80.0 47.6 58.8 81.7
ACRTransformer+HAVF 88.5(+6.0) 91.7(+8.9) 83.9(+4.5) 84.9(+2.4) 50.0(-4.7) 82.0(+2.0) 57.1(+9.5) 64.7(+5.9) 87.8(+6.1)

HGA [18] 82.1 84.3 79.5 83.1 59.3 82.0 57.1 88.2 82.2
HGA+HAVF 88.6 (+6.5) 92.2 (+7.9) 83.8 (+4.3) 82.6 (-0.5) 61.6 (+2.3) 78.0 (-4.0) 52.4 (-4.7) 82.4 (-5.8) 87.7 (+5.5)

HCRN [23] 83.7 84.1 80.2 80.9 52.3 74.0 57.1 70.6 82.5
HCRN+HAVF 89.8 (+6.1) 92.8 (+8.7) 86.0 (+5.8) 84.4 (+3.5) 57.0 (+4.7) 80.0 (+6.0) 52.4 (-4.7) 82.4 (+11.8) 89.0 (+6.5)

Table 6: Experimental results(%) of different input modality
combinations for HCRN-MF.

Modalities Accuracy

Question 48.0
Audio 83.2
Visual 80.8

Audio+Question 83.5
Visual+Question 81.6

Visual+Audio+Question 87.8

Overall Performance. In Figure 4, we show the overall perfor-
mance of different fusing methods, from which we could find that
different baseline models prefer different fusing methods: EAVF
works better for HME, PSAC, while MF works better for ACRTrans-
former, while LAF works for LADNet. But among all the fusing
methods and all models, our proposed HAVF works the best.
Performance across Different Question Categories. In Table 5,
we further show the performance of all models with/without our
HAVF module on all fine-grained question categories. For almost all
categories, our HAVF could bring more than 5% absolute accuracy
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Figure 4: Overall testing accuracy(%) of variants for the pro-
posed Hierarchical Audio-Visual Fusing module.

increase, which verifies the importance of audio modality on one
hand and demonstrate the effectiveness of our proposed HAVF
module on the other hand.
The Role of Multimodal Signals. In Table 6, we validate the
effectiveness of different modality combinations. Audio is the most
representative modality in AVQA and a little more efficient than
visual features, which differs from the findings in existing video
question answering datasets. The best result shown in the model
with full modality inputs further demonstrates the rationality and
efficiency of our question design settings of our AVQA dataset.

6 CONCLUSION AND FUTUREWORK
In this paper, we introduce a challenging dataset AVQA, which is a
large-scale real-life dataset annotated with questions considering
different audio-visual relationships. We present building process
and propose a Hierarchical Audio-Visual Fusing module to tackle
the challenges of audio-visual question answering task in real-life
scenarios. We conduct extensive experiments to show the effec-
tiveness of our model and give in-depth analysis. In addition, we
identify two critical challenges that we believe are essential to be
addressed in future researches. 1) Temporal Relation Modeling.
In this work, we use a video-level audio embedding, which erases
the temporal property of audio modality. Therefore more advanced
model that could capture complex temporal associations between
two modalities is expected to further improve performance in the
temporal aspect. 2) Explainable Framework. If we can make the
reasoning process explainable, it will help models be more reliable
and flexible to be aggregated in applications in everyday life. We
believe that the AVQA dataset has the potential to promote the
community of audio-visual question answering and empower high
multimodal understanding ability in models.
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A DATASET
In this section, we introduce the details of AVQA dataset construc-
tion process and show more examples from AVQA.

A.1 Video Filtering
We select 165 subcategories from the 8 audio categories of the
original VGG-Sound dataset for labeling question-answer pairs.
The conditions that the video clip passes the video filtering process
are: (1) The video clip contains common audio-visual objects or
activities in real-life scenarios. (2) The content of the video clip
is informative enough to annotate question-answer pairs. (3) The
background of the video clip changes dynamically over time, which
is not static or monotonous.

A.2 QA Annotation
In order to ensure a high annotation quality, we design a four-stage
annotation process. We train annotators to check and evaluate
video content richness, question complexity, and completeness of
options in different annotation stages. The flow chart of the QA
annotation process is shown in Figure 5.
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Figure 5: QA annotation process.

B MODEL IMPLEMENTATION AND TRAINING
DETAILS

We describe the model implementation and training details in this
section. The code is implemented based on the Pytorch library2.

B.1 Implementation Details
To better introduce how we integrate our HAVF module to different
SOTA video question answering baseline models, we show model
implementation details of all fusing methods in Table. 9. We finally
choose the optimal fusing strategies for each of the EAVF, MF, and
LAF methods to form our HAVF module.

B.2 Hyperparameter Settings
We follow the same hyperparameter settings as the official code
version of each baseline method to train and evaluate our HAVF
modules, and details are listed in Table. 7.

C DETAILED EXPERIMENTAL RESULTS
We conduct extra calculations and statics for each baseline model on
model complexity and efficiency. We evaluate the model accuracy
and model inference time (on a TITAN XP GPU) and show the
2https://pytorch.org/

Table 7: Hyperparameter settings for each baseline model

Baseline method Hyperparameter settings

HME hidden_size = 512, num_layers = 2, num_epochs = 1000, batch_size = 32,
num_workers = 4, learning_rate = 0.001, momentum = 0.9, weight_decay = 1e-4

PSAC epochs = 100, num_hid = 512, max_len = 20, char_max_len = 15,
num_frame = 36, batch_size = 32, seed = 1000, vid_enc_layers = 1

LADNet epochs = 50, num_hid = 1024, max_len = 36, batch_size = 64, seed = 1000,
scale = [256, 512, 1024], reasonSteps = 1, sub_nums = 8, lambda = 0.01

ACRTransformer

SENTENCE_LEN = 12, MIN_OCC = 1, NUM_HIDDEN = 3072, NUM_LAYER = 1,
EMB_DROPOUT = 0.3495, FC_DROPOUT = 0.3495, L_RNN_DROPOUT = 0.3495,
ANSWER_LEN = 16, LEARNING_RATE = 0.0095, MOMENTUM = 0.9, topk = 35,
BATCH_SIZE = 128, NUM_GLIMPSE = 2, POOLING_SIZE = 5, C3D_SIZE:1024,
RES_SIZE = 2048, VIDEO_LEN = 35, MID_DIM = 1024, SEED = 1111, EPOCHS = 30,
NUM_PROPOSAL = 6, warmup = 2000

HGA

num_workers = 2, batch_size = 64, lr = 0.0001, dropout = 0.3, hidden_size = 512,
max_epoch = 50, momentum = 0.9, q_max_length = 35, v_max_length = 80,
rnn_layers = 1, birnn = 0, gcn_layers = 2, tf_layers = 1, max_n_videos = 100000,
lr_list = [10, 20, 30, 40], cycle_beta = 0.01, two_loss = 0, weight_decay = 0

HCRN
lr = 0.0001, batch_size = 32, max_epochs = 50, vision_dim = 2048, audio_dim = 2048,
word_dim = 300, module_dim = 512, k_max_frame_level = 16, k_max_clip_level = 8,
spl_resolution = 1

Table 8: Comparison of Parameter Numbers and Inference
Time between all baselines and baseline+HAVF models.

Method Total Accuracy Parameters Inference Time

HME 81.8 165.01M 398.363ms
HME+EAVF 83.6 166.06M 403.087ms
HME+MF 78.7 167.11M 401.868ms
HME+LAF 79.4 167.11M 404.205ms
HME+HAVF 85.0 247.51M 761.215ms

PSAC 78.6 166.99M 227.993ms
PSAC+EAVF 86.1 195.94M 228.841ms
PSAC+MF 84.4 179.58M 228.098ms
PSAC+LAF 85.6 176.43M 228.227ms
PSAC+HAVF 87.4 299.17M 240.691ms

LADNet 81.9 144.25M 228.336ms
LADNet+EAVF 82.0 150.04M 229.525ms
LADNet+MF 81.2 144.25M 228.322ms
LADNet+LAF 84.7 146.35M 228.44ms
LADNet+HAVF 84.1 187.86M 241.403ms

ACRTransformer 81.7 377.62M 252.345ms
ACRTransformer+EAVF 85.3 409.08M 252.488ms
ACRTransformer+MF 86.4 383.91M 252.799ms
ACRTransformer+LAF 85.3 383.91M 252.343ms
ACRTransformer+HAVF 87.8 924.13M 313.29ms

HGA 82.2 244.88M 277.64ms
HGA+EAVF 84.4 267.43M 276.775ms
HGA+MF 85.2 260.61M 277.21ms
HGA+LAF 86.2 260.61M 276.812ms
HGA+HAVF 87.7 535.87M 388.964ms

HCRN 82.5 169.8M 398.925ms
HCRN+EAVF 86.5 173.21M 395.778ms
HCRN+MF 87.8 184.75M 391.616ms
HCRN+LAF 87.1 181.34M 393.908ms
HCRN+HAVF 89.0 286.53M 748.072ms

results in Table. 8 for illustration. The inference time includes: (1) a
shared feature extraction time (ResNet 101 for video feature and
PANNs for audio feature), which is shared by all models (about
220 ms); (2) per-branch inference, which depends on the backbone
Video QA model complexity and fusion strategy.



MM ’22, October 10–14, 2022, Lisboa, Portugal Pinci Yang et al.

What color is the first person in the video wearing?  
A. Black B. White C. Red D. Blue

(a) Which

What does sound come from?  
A. Civil defense alarm B. Train C. Fireworks
D. Bomber

(b) Come From

What happened in the video?  
A. Imitate the barking of a dog B. The dog howled 
C. The dog’s cry D. Dog’s coquetry

(c) Happening

Where are the people in the video?  
A. On the subway  B. On the train  C. On the plane
D. Helicopter

(d) Where

Why did the stick fall in the video?  
A. Stop at the red light B. Here comes the pedestrian
C. Here comes the train D. No entry

(e) Why

What’s going to happen in the video?  
A. Volcano eruption B. Volcanic explosion
C. Automobile engine starting D. Tornado

(f) Before Next

When will the smoke alarm in the video?  
A. In the park B. In case of failure C. When there is smoke
D. When water drips in

(g) When

What’s the use of what’s in the mouth in the video?  
A. Prevent drinking seawater B. See the sea C. Detection azimuth
D. Breathing

(h) Used For
Figure 6: Examples of different question types from AVQA.

Table 9: Implementation details of different fusingmethods for each baselinemodel. (EME—EAVF&MF ensemble, MLE—MF&LAF
ensemble, ELE—EAVF&LAF ensemble, add—element-wise addition, mul—element-wise multiplication, concat—concatenation. )

Baseline models EAVF MF LAF EME MLE ELE HAVF

HME
add
mul

concat

mul
concat

mul
concat EAVF (mul) + MF (mul) MF (mul) + LAF (mul) EAVF (mul) + LAF (mul) EAVF (mul) + MF (mul)

+ LAF (mul)

PSAC mul
concat

add
mul

concat

add
mul

concat
EAVF (concat) + MF (mul) MF (mul) + LAF (mul) EAVF (concat) + LAF (mul) EAVF (concat) + MF (mul)

+ LAF (mul)

LADNet
add
mul

concat

mul
concat

add
mul

concat
EAVF (concat) + MF (mul) MF (mul) + LAF (mul) EAVF (concat) + LAF (mul) EAVF (concat) + MF (mul)

+ LAF (mul)

ACRTransformer
add
mul

concat

add
mul

concat

add
mul EAVF (concat) + MF (mul) MF (mul) + LAF (mul) EAVF (concat) + LAF (mul) EAVF (concat) + MF (mul)

+ LAF (mul)

HGA
add
mul

concat
concat mul

concat EAVF (concat) + MF (concat) MF (concat) + LAF (concat) EAVF (concat) + LAF (concat) EAVF (concat) + MF (concat)
+ LAF (concat)

HCRN concat
ccrn
vcrn

ccrn + vcrn
mul EAVF (concat) + MF (vcrn) MF (vcrn) + LAF (mul) EAVF (concat) + LAF (mul) EAVF (concat) + MF (vcrn)

+ LAF (mul)
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