
Joseph W. Yoder

Refactoring Principles Page - 1

Refactoring

Joseph W. Yoder

The Refactory, Inc.

joe@refactory.com

http://www.refactory.com

Slide - 2Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

The Refactory Principals

Refactory Affiliates
Joseph Bergin Fred Grossman

Bill Opdyke Rebecca Wirfs-Brock

John Brant

Brian Foote

Ralph Johnson

Don Roberts

Joe Yoder

Joseph W. Yoder

Refactoring Principles Page - 2

Slide - 3Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Short Instructor Bio

Joseph Yoder (Founder and Senior Architect, The
Refactory; Hillside Board President; ACM Member)

pattern enthusiast, an author of Big Ball of Mud;

programs adaptive software,

runs a development company,

consults top companies on software needs,

amateur photographer,

motorcycle enthusiast,

enjoys dancing samba!!!

Slide - 4Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Evolved from The UIUC SAG
Throughout the 90’s we were studying
objects, frameworks, components,
reusability, patterns, “good” architecture.

However, in our SAG group we often
noticed that although we talk a good
game, many successful systems do not
have a good internal structure at all.

Joseph W. Yoder

Refactoring Principles Page - 3

Slide - 5Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Selfish Class
Brian and I had published a paper called
Selfish Class which takes a code’s-eye
view of software reuse and evolution.

In contrast, our BBoM paper noted that in
reality, a lot of code was hard to (re)-use.

Escape from the Spaghetti
Code Jungle (Big Balls of Mud)

Brian Foote

&

Joseph Yoder

PLoP D4 Book

Addison Wesley

http://www.amazon.com/gp/reader/0192860925/ref=sib_dp_pt
http://www.stg.brown.edu/projects/hypertext/landow/victorian/darwin/darwin5.html

Joseph W. Yoder

Refactoring Principles Page - 4

Slide - 7Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Big Ball of Mud
Alias: Shantytown, Spaghetti Code

A BIG BALL OF MUD is haphazardly

structured, sprawling, sloppy, duct-tape and bailing

wire, spaghetti code jungle.

The de-facto standard software

architecture. Why is the gap

between what we preach and

what we practice so large?

We preach we want to build high quality
systems but why are BBoMs so prevalent?

Slide - 8Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Where does Mud Come From

Throwaway Code

Legacy Mush

Urban Sprawl

Slash and Burn
Tactics

Merciless Deadlines

Sheer Neglect

Software Tectonics

Reconstruction

• Major Upheaval

• Throw it away

Incremental Change

• Evolution

• Piecemeal Growth

Joseph W. Yoder

Refactoring Principles Page - 5

Slide - 9Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Throwaway Code

Sometimes this
is the right
approach

There is the
danger that
such code will
take on a life of
its own

Slide - 10Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Piecemeal Growth

Mir was designed to accommodate
maintenance and growth

• Core 1986

• Kvant 1 1987

• Kvant 2 1989

• Kristall 1990

• Spekter 1995

• Docking 1995

• Priroda 1996

Joseph W. Yoder

Refactoring Principles Page - 6

Slide - 11Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Sweep It Under the Rug

You may not know how to get rid of
a problem, but at least you can
cordon it off... (maybe then…)

- A kind of Refactoring!!!

Slide - 12Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Agile Principles & Refactoring

Scrum, TDD, Refactoring, Regular Feedback,
Testing, More Eyes, …

Good People! Face-To-Face conversation.

Continuous attention to technical excellence!

Motivated individuals with the environment
and support they need. Retrospectives!

Allow Requirements to Change! Encourage
Software Evolution as needed!

Joseph W. Yoder

Refactoring Principles Page - 7

Slide - 13Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Agile Encourages Changes

Very Little Upfront Design!

Piecemeal Growth! Small Iterations!

Late changes to the requirements
of the system!

Continuously Evolving the Architecture!

Adapting to Changes requires the code
to change and Refactoring supports
changes to the code in a “safe” way.

Slide - 14Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Agile & Refactoring

A key part of Agile is to allow things to
change and adapt as dictated by
business needs!

To support these changes, Refactoring is
encouraged by most Agile practitioners.

Agile has helped Refactoring be accepted
into the mainstream development
process (even sometimes encouraged).

Joseph W. Yoder

Refactoring Principles Page - 8

Slide - 15Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Agile Refactoring & Testing

Many Agile practices highly encourage
Testing as one of their core practices.

Processes like XP support developers writing
many unit tests (XUnit).

Test Driven Development (TDD) is usually
considered a key principle of Agile.

Testing was a key principle of Refactoring
before there was Agile.

Slide - 16Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Ground Breaking Work

Before there was Agile…

Started at the University Of Illinois

Bill Opdyke & Don Roberts PHD Thesis

Refactoring Browser by John Brant and
Don Roberts (first commercial tool)

Joseph W. Yoder

Refactoring Principles Page - 9

Slide - 17Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring Definition

Refactoring is the process of changing
a software system in such a way that it
does not alter the external behavior of
the code, yet improves its internal
structure…Martin Fowler, Refactoring
Improving the Design of Existing Code;
Addison Wesley , 1999

Slide - 18Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring

Refactoring is the engine of Consolidation

Refactorings are program transformations
that preserve program semantics, while
improving structure, lot’s of small steps

Refactoring was originally done by hand, but
standard tools have emerged

Languages differ significantly in the degree to
which they support refactoring

Joseph W. Yoder

Refactoring Principles Page - 10

Slide - 19Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactorings

Behavior Preserving Program
Transformations

• Rename Instance Variable

• Promote Method to Superclass

• Move Method to Component

Always done for a reason!!!

Slide - 20Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

A Simple Refactoring

Object

Concrete1 Concrete2

Object

Concrete1 Concrete2

NewAbstract

Create Empty Class

Borrowed from Don Roberts, The Refactory, Inc.

Joseph W. Yoder

Refactoring Principles Page - 11

Slide - 21Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

A Complex Refactoring

Array

Matrix

Matrix

MatrixRep

ArrayRep

rep

SparseRep IdentityRep

Borrowed from Don Roberts, The Refactory, Inc.

Slide - 22Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Why Refactor?

Need to fix a bug

Add new enhancements

Code is brittle and hard to maintain

There is much code entanglement

Do not refactor to just refactor!!!

Joseph W. Yoder

Refactoring Principles Page - 12

Slide - 23Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring Code Smells

A code smell is a hint that something has gone wrong
somewhere in your code. Use the smell to track
down the problem KentBeck …

Bad Smells in Code was an essay by KentBeck and
MartinFowler, published as Chapter 3 of Refactoring
Improving The Design Of ExistingCode.

----Wards Wiki

Slide - 24Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Code Smells (1)
Code Smell Description

Duplicate Code Name tells all….you have duplicate code that you want to remove.

Long Method If it is too long, break it up into smaller pieces.

Large Class Big bloated class doing many different thing….consider breaking it up.

Long Parameter List Many parameters being passed around…Use Replace Param with

Method.

Divergent Change Each change requires changes to many methods…might need a new

object.

Shotgun Surgery A change requires many changes to many classes…Move Method or

Field.

Feature Envy Method in one class is always interested in another class…Move

Method.

Data Clumps Sets of data is always used together….put them together in same object.

Primitive Obsession Too many primitive data types….use more real objects like Address

Switch Statements Many case statements…replace with objects or move methods.

http://c2.com/xp/KentBeck.html
http://c2.com/xp/KentBeck.html
http://c2.com/cgi/wiki?MartinFowler
http://c2.com/cgi/wiki?RefactoringImprovingTheDesignOfExistingCode
http://c2.com/cgi/wiki?RefactoringImprovingTheDesignOfExistingCode
http://c2.com/cgi/wiki?RefactoringImprovingTheDesignOfExistingCode

Joseph W. Yoder

Refactoring Principles Page - 13

Slide - 25Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Code Smells (2)
Code Smell Description

Parallel Inheritance Two class hierarchies are tightly coupled….remove delegation.

Lazy Class Class is not really doing much work…move methods and fields.

Speculative

Generality

Trying to generalize where you are not ready to generalize.

Temporary Field Have a field that is only sometimes set…use a subclass for that case.

Message Chains Chaining many messages for a result…use hide delegation to remove.

Middle Man A middle class does little work between classes…..remove the class.

Inappropriate

Intimacy

Two classes are tightly coupled and working too closely…separate

changes.

Incomplete Lib

Classes

Not enough function in library…use add foreign method to add to

classes.

Data Class Dumb data holder classes so either add methods working on data or

move fields to where the data is being used.

Refused Bequest Inheriting too much behavior you don’t need…push down where it

belongs.

Comments Methods with many comments…similar to large methods….extract

method.

Slide - 26Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Duplicate Code

Do everything exactly once

Duplicate code makes the system
harder to understand and maintain

 Any change must be duplicated

 The maintainer must know this

Fixing Code Duplication

 Move identical methods up to superclass

 Move methods into common components

 Break up Large Methods

Joseph W. Yoder

Refactoring Principles Page - 14

Slide - 27Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Feature Envy

Method is accessing values and doing
work for other classes

Method might be in wrong place

Move the method to the class where it
is usually doing the work for

Slide - 28Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Switch Statements

Many switch statements or nested
conditionals throughout methods

Rather than switching use method
names to do the cases (double dispatch)

Use polymorphism or overriding of hook
methods (new cases do not change
existing code)

Joseph W. Yoder

Refactoring Principles Page - 15

Slide - 29Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Inappropriate Intimacy

Classes become far too intimate and
spend too much time delving into each
others’ private parts

Tightly coupled classes…you can’t
change one without changing the other

Too much inheritance can lead to
over intimacy

Slide - 30Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Parallel Hierarchies

Every time you make a subclass of one
class, you have to make a subclass of
another class from another hierarchy.

If you used good naming techniques,
you can recognize this since the prefix
of your class names will be the same
for both hierarchies

Move Method and Move Field can help

the referring class disappear

Joseph W. Yoder

Refactoring Principles Page - 16

Slide - 31Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Comments

We are not against comments but…

If you see large methods that have
places where the code is commented,
use Extract Method to pull that out to a
comment

Slide - 32Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Comments Example
void printOwing (double amount) {

printBanner();

//print details

System.out.println (name: “ + _name);

System.out.println (amount: “ + amount);

…}

void printOwing (double amount) {

printBanner();

printDetails();

…}

void printDetails (double amount) {

System.out.println (name: “ + _name);

System.out.println (amount: “ + amount);}

Joseph W. Yoder

Refactoring Principles Page - 17

Slide - 33Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Prerequisites of Refactoring

Since you are changing the code
base, it is IMPORTANT to Validate
with Tests.

There are also a time to refactor
and a time to wait.

Need both Unit Testing and Integrated
Tests for making sure nothing breaks.

Slide - 34Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Deciding Whether A
Refactoring is Safe

Refactoring should not break a program.
 What does this mean?

A safe refactoring is behavior preserving.

It is important not to violate:
 naming/ scoping rules.
 type rules.

"The program needs to perform the
same after a refactoring as before.”

Satisfying timing constraints.

Joseph W. Yoder

Refactoring Principles Page - 18

Slide - 35Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Using Standard Tools

To be safe, must have tests

Should pass the tests before
and after refactoring
 Commercial Testing Tools

 Kent Beck’s Testing Framework
(SUnit, JUnit, Nunit, …)

Take small steps, testing between each

Java and C# tools are pretty good

Slide - 36Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring Scripts

Experts develop internal scripts

Rename method
 1. Browse all implementers

 2. Browse all senders

 3. Edit and rename all implementers

 4. Edit and rename all senders

 5. Remove all implementers

 6. TEST!!!!

Joseph W. Yoder

Refactoring Principles Page - 19

Slide - 37Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Catalogue of Refactorings

Composing Method

Moving Features

Organize Data

Simplifying Conditionals

Simpler Method Calls

Generalization

From Fowlers Book

Slide - 38Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Composing Method Catalogue

Extract Method, Inline Method,

Inline Temp, Replace Temp with Query,

Introduce Explaining Variable,

Split Temporary Variable,

Remove Assignments to Parameters,

Replace Method with Method Object,

Substitute Algorithm

Joseph W. Yoder

Refactoring Principles Page - 20

Slide - 39Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Method

void printOwing(double amount) {
printBanner();

//print details
System.out.println(“name:” + _name);
System.out.println(“amount:” + amount);

……a lot more details….

}

Slide - 40Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Method (2)

void printOwing (double amount) {
printBanner();
printDetails(amount);

}

void printDetails (double amount) {

System.out.println(“name:” + _name);
System.out.println(“amount:” + amount);

……a lot more details….

}

Joseph W. Yoder

Refactoring Principles Page - 21

Slide - 41Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Method Mechanics

Create a new method and name it after the
intention of the code to extract.

Copy the extracted code from the source to
the new method.

Scan the extracted code for references to any variables
that are local to the source method.

See whether any temps are used only within
extracted code.

Pass into target method as parameters local-scope
variables that are read from the extracted code.

Compile, Build and Test!!!

Replace the extracted code in the source method.

Slide - 42Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Inline Method

int getRating() {

return (moreThanFiveLateDeliveries()) ? 2 : 1;

}

boolean moreThanFiveLateDeliveries() {

return _numberOfLateDeliveries > 5;

}

int getRating() {

return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

Joseph W. Yoder

Refactoring Principles Page - 22

Slide - 43Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Inline Method Mechanics

Check that method is not polymorphic.

 Done inline if subclasses override the method.

Find all calls to method.

Replace each call with the method body.

Compile and test.

Remove the method Definition.

Compile and test.

Slide - 44Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Temp with Query
double basePrice = _quantity * _itemPrice;

if (basePrice > 1000)

return basePrice * 0.95;

else

return basePrice * 0.98

if (basePrice() > 1000)

return basePrice() * 0.95;

else

return basePrice() * 0.98

double basePrice() {

return _quantity * _itemPrice;}

Joseph W. Yoder

Refactoring Principles Page - 23

Slide - 45Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Temp Mechanics

Look for temp assigned to once.

 If more than once, consider split temporary.

Declare the temp as Final.

Compile.

Extract the right hand side into a method.

Compile and test.

Slide - 46Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Introduce Explaining Variable
if (basePrice > 1000)

return _quantity * _itemPrice; * 0.95;

else

return _quantity * _itemPrice; * 0.98

double basePrice = _quantity * _itemPrice;

if (basePrice > 1000)

return basePrice * 0.95;

else

return basePrice * 0.98

Could evolve to apply Replace Temp with Query Refactoring

Joseph W. Yoder

Refactoring Principles Page - 24

Slide - 47Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Introduce Explaining Mechanics

Declare a final temporary variable, and
set it to the result of part of the complex
expression.

Replace the result part of the expression
with the value of the temp.
 If the result part of the expression is

repeated, replace the repeats one at a time.

Compile and test.

Repeat for other parts of the expression.

Slide - 48Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Remove Method with
Method Object
Class Order …

double price() {

double primaryBasePrice;

double secondaryBasePrice;

double tertiaryBasePrice;

// long computation;

…}

Order

price()

PriceCalculator

primaryBasePrice

secondaryBasePrice

tertiaryBasePrice

compute()

1

return new PriceCalculator(this).compute()

Joseph W. Yoder

Refactoring Principles Page - 25

Slide - 49Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Remove Method to
Method Object Mechanics

Create a new class named after method.

Give the new class a final field for the object
that hosted the original method.

Give the new class a constructor for the original
object and each parameter.

Give the new class a compute method.

Copy the body of original method to compute.

Compile.

Replace the old method with the one that
creates the new object and calls compute.

Slide - 50Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Moving Features Catalogue

Move Method, Move Field,

Extract Class, Inline Class,

Hide Delegate

Remove Middle Man

Introduce Foreign Method

Introduce Local Extension

Joseph W. Yoder

Refactoring Principles Page - 26

Slide - 51Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Move Method

Class 1

aMethod()

Class 2

Class 1

Class 2

aMethod()

Slide - 52Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Move Method Mechanics
Examine all features used by the source method that
are defined in the source class. Consider whether they
also should be moved.

Check the sub and superclasses of the source class for
other definitions.

Declare the method in the target class.

Copy the code from the source method to the target.

Compile the target class.

Determine how to reference the correct target object.

Turn the source method into a delegating method.

Compile and test.

Decide whether to remove the source method or retain
it as delegating method.

Joseph W. Yoder

Refactoring Principles Page - 27

Slide - 53Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Move Field

Class 1

aField

Class 2

Class 1

Class 2

aField

Slide - 54Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Move Field Mechanics
If the field is public, use encapsulate field.

Create a field in the target class with getters
and setters.

Compile the target class.

Determine how to reference target object
from the source.

Remove the field on the source class.

Replace all references to the source field
with references to the appropriate method
on the target.

Joseph W. Yoder

Refactoring Principles Page - 28

Slide - 55Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Class
Person

name
officeAreaCode
officeNumber

getTelephonNumber

TelephoneNumber

areaCode

number

getTelephoneNum()

1

Person

name

getTelephoneNumber

officeTelephone

Slide - 56Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Class Mechanics

Decide how to split the responsibilities
of the class.

Create a new class to split responsibilities.

Make a link from the old to the new class.

Use Move Field on each field to move.

Compile and Test.

Use Move Method on each desired method.

Compile and Test.

Review and reduce the interfaces of the class.

Joseph W. Yoder

Refactoring Principles Page - 29

Slide - 57Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Organize Data Catalogue

Self Encapsulate Field, Replace Data Value
with Object, Change Value to Reference,
Change Reference to Value, Replace Array
with Object, Duplicate Observed Data,
Change (Uni|Bi) directional Association to
(Bi|Uni) directional, Replace Magic Number,
Encapsulate (Field|Collection), Replace
Record with Data Class, ……..

Slide - 58Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Data Value with Object
Person

name
address: String

Address

street
city

state
zip

1

Person

name

getAddress

Joseph W. Yoder

Refactoring Principles Page - 30

Slide - 59Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Data Value Mechanics
Create the class for the value.

Compile.

Change the type of the field in the source
class to the new class.

Change the getter in the source class to
call the getter in the new class.

If the field is mentioned in the source
class constructor, assign the field.

Change the getting message to create
a new instance of the new class.

Compile and Test.

Slide - 60Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Array with Object
String[] row = new String[3];

row[0] = “Liverpool”;

row[1] = “15”’;

Performance row = new Performance();

row.setName(“Liverpool”);

row.setWins(“15”’);

Joseph W. Yoder

Refactoring Principles Page - 31

Slide - 61Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Array Mechanics

Create a new class to represent the information
in the array. Give it a public field for the array.

Change all users of the array to use the new
class.

Compile and Test.

One by one, add getters and setters for each
element of the array.

Create a field for each element of the array
and change the accessors to use the field.

Remove the array. Compile and Test.

Slide - 62Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Simplifying Conditionals Catalogue

Decompose Conditional, Consolidate
Conditional Expression, Consolidate
Duplicate Conditional Fragments,
Remove Control Flag, Replace Nested
Conditionals with (Guard Clauses |
Polymorphism), Introduce Null Object,
Introduce Assertion

Joseph W. Yoder

Refactoring Principles Page - 32

Slide - 63Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Decompose Conditional

if (date.before (SUMMER_START) || date.after (SUMMER_END)

charge = quantity * _winterRate + _winterServiceCharge;

else charge = quantity * _summerRate;

if (notSummer(date))

charge = winterCharge(quantity)

else charge = summerCharge(quantity);

Slide - 64Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Decompose Mechanics

Extract the conditional into its own
method.

Extract the then part and the else part
into their own methods.

Joseph W. Yoder

Refactoring Principles Page - 33

Slide - 65Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Consolidate Conditional

double disabilityAmount() {

if (_seniority < 2) return 0;

if (_monthsDisabled > 12) return 0;

if (_isPartTime) return 0;

//compute the disability amount

double disabilityAmount() {

if (isNotEligableForDisability()) return 0;

//compute the disability amount

Slide - 66Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Consolidate Mechanics

Check that none of the conditionals has
side effects.

Replace the string of the conditional with
a single conditional statement using
logical operators.

Compile and Test.

Consider using Extract Method on the
Conditional.

Joseph W. Yoder

Refactoring Principles Page - 34

Slide - 67Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Consolidate Duplicate
Conditional Fragments

if (isSpecialDeal()) {

total = price * 0.95;

send();

}

else {

total = price * 0.98;

send();

}

if (isSpecialDeal())

total = price * 0.95;

else

total = price * 0.98;

send();

Slide - 68Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Consolidate Dup Mechanics

Identify the code that is executed the
same way regardless of the conditional.

If the code is at the beginning, move it
before the conditional.

If the code is at the end, move it after
the conditional.

If the code is in the middle, see if it
changes anything.

Joseph W. Yoder

Refactoring Principles Page - 35

Slide - 69Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Nested Conditional
with Guard Clauses

A method has conditional behavior that
does not make clear the normal path of
execution.

Use guard clauses for the special cases!

Slide - 70Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Nested Conditional
with Guard Clauses

double getPayAmount() {

double result;

if (_isDead) result = deadAmount();

else {

if (_isSeparated) result = separatedAmount();

else {

if (_isRetired) result = retiredAmount();

else result = normalAmount;}}

return result;}

double getPayAmount() {

if (_isDead) return deadAmount();

if (_isSeparated) return separatedAmount();

if (_isRetired) return retiredAmount();

return normalAmount;}

Joseph W. Yoder

Refactoring Principles Page - 36

Slide - 71Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Nested Mechanics

For each check put in the guard clause.

Compile and Test after each check is
replace with a guard clause.

Might consider consolidate conditional if
the guards use the same result.

Slide - 72Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Conditional with
Polymorphism

You have a conditional that chooses
different behavior depending on the type
of an object

Move each leg of the conditional to an
overriding method in a subclass. Make
the original method abstract!

Joseph W. Yoder

Refactoring Principles Page - 37

Slide - 73Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Conditional with
Polymorphism

double getSpeed() {

switch (_type) {

case EUROPEAN:

return getBaseSpeed();

case AFRICAN:

return getBaseSpeed() – getLoadFactor() * _number
ofCocunuts;

…} Bird

getSpeed

European

getSpeed

African

getSpeed

Slide - 74Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Replace Polymorphism
Mechanics

If the conditional is part of a larger
statement, take apart the conditional and
use Extract Method.

If necessary, use Move Method to place
the conditional at the top of the
inheritance hierarchy.

Create classes and copy the body of the
leg of the conditional into the subclass.

Compile and Test…and continue on.

Joseph W. Yoder

Refactoring Principles Page - 38

Slide - 75Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Moving Code
“Refactoring”

To move a function to a different class, add an argument
to refer to the original class of which it was a member
and change all references to member variables to use
the new argument.

If you are moving it to the class of one of the arguments,
you can make the argument be the receiver.

Moving function f from class X to class B

class X {
int f(A anA, B aB){

return (anA.size + size) / aB.size;
} ...

class B {
int f(A anA, X anX){

return (anA.size + anX.size) / size;
} ...

Slide - 76Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

You can also pass in
a parameter object
which gives the
algorithm all of the
values that it will
need.

Inner Classes can
help by providing
access to values that
the algorithm may
need.

Car
f(a, b, c)

{if this.x > a then

this.x = a+b

else if this.x < a then

this.y = a+b

else

this.x = a+b }

Car FStrategy

f(CarPars Car)

{if this.x > a then

this.x = a+b

else if this.x < a then

this.y = a+b

else

this.x = a+b }

CarPars
a, b, c

x, y

Moving Code
“Refactoring”

Joseph W. Yoder

Refactoring Principles Page - 39

Slide - 77Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Introduce Null Object

You have repeated checks for a null value.

Repalce the null value with a null object!

if (address == null) Console::WriteLine(“”)

else Console::WriteLine(this->address);

if (phone == null) Console::WriteLine(“”)

else Console::WriteLine(this->phone);

Slide - 78Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

NullObject

Author: Bobby Woolf, PLoPD 3

Intent: Provide surrogate for another object that shares

same interface usually does nothing but can provide
default behavior encapsulate implementation decisions of
how to do nothing.

Structure:

Joseph W. Yoder

Refactoring Principles Page - 40

Slide - 79Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Simpler Method Calls Catalogue

Rename Method, (Remove|Add) Parameter,
Separate Query with Modifier, Parameterize
Method, Replace Parameter with Explicit
Methods, Preserve Whole Object, Replace
Parameter with Method, Introduce
Parameter Object, Remove Setting Method,
Hide Method, Replace Constructor with
Factory Method, Encapsulate Downcast,
Replace Error Code with Exception, Replace
Exception with Test

Slide - 80Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Rename Method

The name of the method does not reveal
its purpose.

Change the name of the method!

Customer

getInvcdlmt

Customer

getInvoicecreditlimit

Joseph W. Yoder

Refactoring Principles Page - 41

Slide - 81Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Add Parameter

A method needs more information from
the caller.

Add a parameter for an object that can
pass on this information!

Customer

getContact()

Customer

getContact(:Date)

Slide - 82Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Remove Parameter

A parameter is no longer used by the
method body.

Remove the parameter!

Customer

getContact(:Date)

Customer

getContact()

Joseph W. Yoder

Refactoring Principles Page - 42

Slide - 83Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Rename Method

The name of the method does not reveal
its purpose.

Change the name of the method!

Customer

getInvcdlmt

Customer

getInvoicecreditlimit

Slide - 84Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Generalization Catalogue

Pull Up (Field|Method|Constructor Body)

Push Down (Method|Field)

Extract (Subclass|Superclass|Interface)

Collapse Hierarchy

Form Template Method

Replace Inheritance with Delegation

Replace Delegation with Inheritance

Joseph W. Yoder

Refactoring Principles Page - 43

Slide - 85Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Pull Up Field

Two subclasses have the same field.

Extract it into the superclass!

Slide - 86Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Push down Field

A field is only used in special cases
(subclasses).

Move the field into the subclasses!

Joseph W. Yoder

Refactoring Principles Page - 44

Slide - 87Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Pull Up Method

Two subclasses have the same method.

Extract it into the superclass!

Might be a place to apply theTemplate Method
Design Pattern!

Slide - 88Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Push down Method

A method is only used in special cases
(subclasses).

Move the method into the subclasses!

Joseph W. Yoder

Refactoring Principles Page - 45

Slide - 89Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Superclass

You have two classes with similar features.

Create a superclass and move the common
features to the superclass!

Slide - 90Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Interface

Several Clients use the same subset of a class’s
interface, or two classes have part of their
interface in common.

Extract the subset into an interface!

Joseph W. Yoder

Refactoring Principles Page - 46

Slide - 91Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring Summary

We have seen the mechanics
for some of the Refactorings.

When you find smelly code,
you often apply Refactorings
to clean your code.

Refactorings do often
apply Design Patterns.

Testing is a Key Principle
of Good Refactoring!

Slide - 92Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Patterns and Refactoring

Understanding Design Patterns and good design is a
prerequisite to good OO refactorings!

Refactoring is the Redesign or
re-architecture of a system!

Apply well-known design principles such as
“design patterns” to separate what changes
from what doesn’t!

Joseph W. Yoder

Refactoring Principles Page - 47

Slide - 93Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring and
Design Patterns (1)

What varies Design Pattern

Algorithms Strategy, Visitor

Actions Command

Implementations Bridge

Response to change Observer

Slide - 94Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

What varies Design Pattern

Interactions between objects Mediator

Object being created
Factory Method, Abstract

 Factory, Prototype

Structure being created Builder

Traversal Algorithm Iterator

Object interfaces Adapter

Object behavior Decorator, State

Refactoring and
Design Patterns (2)

Joseph W. Yoder

Refactoring Principles Page - 48

Slide - 95Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

C++ Refactoring

"C++ syntax parsing can hard" pointers,
headers, memory management, casting, …

"C++ has this nasty preprocessing" which
can make refactoring harder

“C++ has templates" So, declaration
constructs can be a more complex

There are some tools that can help

Slide - 96Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Large Refactorings

Accumulations of many problems
overtime can lead to a muddy design.

You no longer understand the system.

Accumulation of half-understood
design decisions chokes a program.

Joseph W. Yoder

Refactoring Principles Page - 49

Slide - 97Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Four Big Refactorings

Tease Apart Inheritance

Convert Procedural Design to Objects

Separate Domain from Presentation

Extract Hierarchy

Slide - 98Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Tease Apart Inheritance

You have an inheritance hierarchy that
is doing two jobs at once.

Create two hierarchies and use
delegation to invoke one from the other.

Joseph W. Yoder

Refactoring Principles Page - 50

Slide - 99Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Tease Apart Example
Deal

Active Deal Passive Deal

Tabular
Active Deal

Tabular
Passive Deal

Deal

Active
Deal

Passive
Deal

Presentation Style

Tabular
PresStyle

Single
PresStyle

1

Single
Presentation
Style

Slide - 100Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Tease Apart Mechanics
Identify the different jobs being done by the
hierarchy.

Decide which job is more important.

Use Extract Class at the common superclass
to create an object for the additional job and
add an instance variable for this object.

Create subclasses of the extracted object for
each subclass.

Use Move Method to move the behavior in
each subclass.

Joseph W. Yoder

Refactoring Principles Page - 51

Slide - 101Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Convert Procedural To Object

You have a lot of code written
in Procedural Style.

Turn the data records into objects, break
up the behavior and move the behavior
into the objects.

Slide - 102Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Convert Procedural Example

Order Calculator

determinePrice()
determineTaxes()

Order

OrderLine

Order

getPrice()
getTaxes()

OrderLine

getPrice()
getTaxes()

Joseph W. Yoder

Refactoring Principles Page - 52

Slide - 103Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Convert Procedural Mechanics
Take each record type and turn it into a dumb
data object with accessors.

Take all procedural code and put it into
a single class.

Take each long procedure and apply Extract
Method and the related refactorings to break
it down. As you break it down, use Move
Method to move to the appropriate class.

Continue until you’ve moved all of the
behavior away from the original class.

Slide - 104Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Separate Domain
from Presentation

You have GUI classes that contain
domain logic.

Separate the domain logic into separate
domain classes.

Joseph W. Yoder

Refactoring Principles Page - 53

Slide - 105Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Separate Domain Mechanics
Create a domain class for each window.

If you have a grid, create a class to
represent rows on the grid.

Examine the data on the window. If it is
used for the domain logic, use Move
Method to move it into the domain object.

Use Extract Method to separate
presentation from domain logic.

Apply more refactorings to domain object
once the separation is complete.

Slide - 106Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Hierarchy

You have class that is doing too much
work, at least in part through many
conditionals.

Create two hierarchy of classes in
which each subclass represents a
special case.

Joseph W. Yoder

Refactoring Principles Page - 54

Slide - 107Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Hierarchy

BillingScheme

Business Billing
Scheme

Residential
Billing Scheme

Billing
Scheme

Slide - 108Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Extract Hierarchy Mechanics
Identify a variation.

Create a subclass for each special case and
use Replace Constructor with Factory Method.

One a time copy method that contain
condition logic to the subclass. Might do this
by first using Extract Method in the superclass
and Pull Down and Push Down Method.

You may see some duplicate code that can
move up the hierarchy and possibly apply
Template Method Design Pattern.

Joseph W. Yoder

Refactoring Principles Page - 55

Slide - 109Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Despite The Benefits, Some People Are
Still Reluctant to Refactor, Because…

They might not understand
how to refactor.

If the benefits are long term, what’s
in it for them (in the short term)?

Refactoring is an “overhead” activity;
people are paid to write new features.

Refactoring might break the
existing program.

Slide - 110Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Addressing Concerns
About Refactoring

Understanding how to refactor:

 Opdyke and Roberts doctoral thesis,
and related publications.

 Refactoring: Improving the Design of Existing
Code (Fowler, Beck, Brant, Opdyke, and
Roberts; Addison-Wesley, 1999).

Achieving near-term benefits:

 Interleave refactoring and incremental
additions….this is part of Agile!!!

Joseph W. Yoder

Refactoring Principles Page - 56

Slide - 111Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Addressing Concerns
About Refactoring
Reducing the overhead of refactoring:

 Use browsers, text editors, and tools
to reduce manual effort.

 Try it! Refactoring saves in overall
development time near term.

Refactoring safely:

 Need to have unit-level test suites that test
the functionality of each module.

 Apply precondition checking and test suites
described in refactoring references.

Slide - 112Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring: Two Hard Problems

Is it safe to apply a refactoring?

 (Discussed earlier.)

Which refactorings should you apply?

Joseph W. Yoder

Refactoring Principles Page - 57

Slide - 113Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Deciding What Refactorings To Apply

It is the role of the designer to understand
the goals of their application.

Reasoning based upon program structure:
 more powerful than upon simple textual scans.

Heuristics can be applied to automatically
detect some structural abnormalities.

Slide - 114Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Deciding What Refactorings To Apply
Commonality analysis:
 for example: common names/ types may

suggest a common abstraction.
Complexity analysis:
 For example: very large, complex classes (or

large functions, or functions with many
arguments) are candidates for simplification/
splitting.

Useful references:
 Johnson/ Foote “Designing Reusable Classes”

 http://www.laputan.org/drc/drc.html
 Beck/ Fowler “Bad Smells in Code”

 Refactoring text/ chapter 3.

http://www.laputan.org/drc/drc.html

Joseph W. Yoder

Refactoring Principles Page - 58

Slide - 115Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring Strategies
Foote/ Opdyke “Lifecycle and Refactoring
Patterns That Support Evolution & Reuse”
(PLOP ’94).
 Prototype/ Initial Design; Expand; Consolidate.

 http://www.laputan.org/lifecycle/Lifecycle.html

Various Strategies
(Compiled by Roberts):
 Extend – refactor

 Refactor – extend

 Debug – refactor

 Refactor – debug

 Refactoring to understand.

Slide - 116Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Refactoring Addresses Some
Key Leverage Points

Refactoring is a technique that works with Brooks’
“promising attacks” (from “No Silver Bullet”):

 buy rather than build: restructuring interfaces to
support commercial SW

 grow don’t build software: software growth involves
restructuring (isn’t this core to Agile???)

 requirements refinements and rapid prototyping:
refactoring supports such design exploration, and
adapting to changing customer needs

 support great designers: a tool in a designer’s tool
chest.

http://www.laputan.org/lifecycle/Lifecycle.html

Joseph W. Yoder

Refactoring Principles Page - 59

Slide - 117Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Papers and Web Sites

Bill Opdyke’s Thesis

Don Robert’s Thesis
 http://st-www.cs.illinois.edu/users/droberts/thesis.pdf

Refactoring Browser
 http://st-www.cs.illinois.edu/users/brant/Refactory

Evolving Frameworks
 http://st-www.cs.uiuc.edu/users/droberts/evolve.html

Extreme Programming
 http://www.c2.com/cgi-bin/wiki?ExtremeProgramming

Slide - 118Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

More Web Sites

Wiki wiki web
 http://c2.com/cgi/wiki?WikiPagesAboutRefactoring

The Refactory, Inc.
 http://www.refactory.com

Martin Fowler’s Refactoring Pages
 http://www.refactoring.com/

Adaptive Object Models
 http://www.adaptiveobjectmodel.com/

Joseph W. Yoder

Refactoring Principles Page - 60

Slide - 119Refactoring Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

That’s All

