MRS SOFTWARE CORP.

The "Theory” and Practice of
Modeling Language Design (for
Model-Based Software
Engineering)

Bran Seli¢

Malina Software Corp.

Zeligsoft (2009) Ltd.
Simula Research Labs, Norway
University of Toronto,
Carleton University

selic@acm.org

© Copyright Malina Software e

From the "Harry Potter® “ School of Language Design

(Perh aps, a more appropriate title for this A
tutorial is:
\"The Modeling Langquage Designer’s Grimoire “?? y

Grimoire: noun a manual of black magic
(for invoking spirits and demons)

Tutorial Outline

*[On Models and Model-Based Software Engineer'ing_]
¢+ The Key Dimensions of Modeling Language Design

+ Defining a Modeling Language

¢ Case Study: UML

+ Language Refinement: UML Profiles
* Model Transformations

Example System: Aircraft Simulator Software

+ Typical embedded
software system

= Software that must
inferact with the physical
world in a timely fashion

Instructor Station

A/D converter D/A converter

Time-driven
-
Real-Time Computer N Event-driven

System (control)

The Logical Structure of the Software*

(1
|
«block» . !
-Airframe .
|
«block» .
:Atmosphere é
MOdEI «block»
-Control H
«block») Surfaces
:Ground i]
Model
«block»

:Engine

*(simplified representation)

5 © Copyright Malina Software

Behaviour as Specified

Control behaviour
(event driven)

=)

~

—(
\

tl\

s

t2/

=)

S4

HS1

~

t5

Physical simulation

(time driven)

vx(1) = vx(t-1) + Avx(1)

wi(t) = vy(1-1) + Avy(?)
vz(1) = vz(t-1) + Avz(1)

Avx(t) = (x(1) - x(1-1)) / At
A(t) = (A1) - y(t-1)) / A
Avz(t) = (z(1) - z(1-1)) / At

But, the implementation
code corresponding to
the behaviour and
structure looks very
different

>

© Copyright Malina Software

Simulator Software: As Implemented

+ Behaviour sliced according to rate of change

¢ Structural relationships represented by references

= 50 msec band

in code

.«block>:-

l = 100 msec band (2 parts: A and B) amag ine

= 200 msec band (4 parts: A, B, C, D)

= 400 msec band (8 parts: A, B, C, D, E, F,

G, H)

The semantic gap between the way we think about the
problem/solution and its realization in software adds significant
complexity and poses major impediments to design analysis and

software maintenance

7

© Copyright Malina Software

On Types of Complexity

+ Essential complexity

= Immanent to the problem
= Cannot be eliminated by technology or technigue

= e.g., solving the “"traveling salesman” problem

+ Accidental complexity

= Due to technology or methods chosen to solve the problem
= e.g., building a house without power tools

= Complex problems regquire correspondingly powerful tool

The best we can do is to try and minimize accidental complexity!

Thesis: "Modern” mainstream programming languages (e.g., C++,
Java) abound in accidental complexity and are machine-centric

8 © Copyright Malina Software

The Case of the Tandem Switches Tango...

¢+ 1990: AT&T Long Distance Network (Northeastern

e ——© COPYtight Malina Software

The Hidden Culprit

¢ The (missing) "break” that
broke it

..and, its all HIS fault!

switch (...) {
case a;

case b :...;

casem : ...;

9%_‘7)

Wanted:

S1 hillion

3 reward
Ooops! Forgot

the "break”..

© Copyright Malina Software

A Bit of Modern Software...

SC_MODULE (producer) SC_CTOR (consumer)

{ {

sc_outmaster<int> outl; SC_SLAVE (accumulate, inl);
sc_in<bool> start; // kick-start ?gm = 0; // initialize

void generate_data ()

{

for(int i =0; i <10; i++) {
outl =i ; //to invoke slave;}

}
SC_CTOR (producer)

{

SC_METHOD (generate_data) ;
sensitive << start; }};
SC_MODULE (consumer)

{

sc_inslave<int> inl;

int sum; // state variable
void accumulate () {

sum += inl;

}

SC_MODULE (top) // container
{

producer *Al;

consumer *Bl;
sc_link_mp<int> linkl;
SC_CTOR (top)

{

Al = new producer (“Al”);
Al .outl (1linkl);

Bl = new consumer (“Bl”);
Bl.inl (1linkl);}};

..and its (UML 2) Model

«sc_method» «sc._link_mp» «sc_slave»
link1

H A1:producer] | B1:consumer

start in1

N e ——© C0PYfight Malina Software

Automatic Code Generation from Models

SC_MODULE (producer) SC_CTOR (consumer)

{ {

sc_outmaster<int> outl; SC_SLAVE (accumulate, inl);
sc_in<bool> start; // kick-start Tgm = 0; // initialize

void generate_data ()

{

for(int i =0; i <10; i++) {
outl =i ; //to invoke slave;}

}
SC_CTOR (producer)

{
SC_METHOD (generate_data) ;
sensitive << start;}};
SC_MODULE (consumer)

{

SC_MODULE (top) // container
{

producer *Al;

consumer *Bl;
sc_link_mp<int> linkl;
SC_CTOR (top)

{

Al = new producer (“Al’s
Al .outl (1linkl);

Bl = new consumer (“Bl”

Bl inl(linkl):}};

sc_inslave<int> inl;

int sum; // state variable ﬁ\\\\

void acc_:umulate () { «sc_method» «sc_link_mp» «sc_slave»

Tum += inl; L A1:producer link1 __|B1:consumer
_J

13 © Copyright Malina Software

Engineering Models

+ ENGINEERING MODEL: A selective representation
of some system that captures accurately and
concisely all of its essential properties of interest
for a given set of concerns

We don't see everything
at once

I | What we do see is adjusted
{ s to human understanding

T |
ot |

© Copyright Malina Software

Why Do Engineers Build Models?

¢ To understand

= _.the interesting characteristics of an existing or desired
(complex) system and its environment

+ To predict

= _.the interesting characteristics of the system by analysing
its model(s)

+ To communicate

= _.their understanding and design intent (to others and to
oneself!)

* To specify
= ...the implementation of the system (models as blueprints)

5 © Copyright Malina Software

Characteristics of Useful Engineering Models

+ Purposeful:

= Constructed to address a specific set of concerns/audience
¢ Abstract

= Emphasize important aspects while removing irrelevant ones
¢ Understandable

= Expressed in a form that is readily understood by observers
* Accurate

* Faithfully represents the modeled system
¢ Predictive

= Can be used to answer questions about the modeled system
+ Cost effective

= Should be much cheaper and faster to construct than actual system

To be useful, engineering models mus 7‘
satisfy at least”these characteristics!

16 © Copyright Malina Software

What's a Software Model?

* SOFTWARE MODEL: An engineering model of a
software system from one or more viewpoints
specified using one or more modeling languages

= E.g.:

|

] B : i

* * ,77 1 o |

A pO-:: B Q.. :q-m |

-7 «import»
0..1 : a:A
0.*
C : left:B right:B c:C
Structural view Execution view

17

What's a Modeling Language?

+ (SOFTWARE SYSTEM) MODELING LANGUAGE: A
computer language intended for constructing models
of software programs and the contexts in which
they operate

= Can range from very abstract to complete ("the map is the
territory”)

Modeling vs Programming Languages

19

¢ The primary purpose and focus of programming
languages is implementation

= The ultimate form of specification

— Implementation requires total precision and “full” detail

= Takes precedence over understandability

¢ The purpose of modeling also includes
communication, prediction, and understanding

= These generally require omission of "“irrelevant” detuail

+ However...

s O Copyright Malina Software

The Unique Nature of Software

+ Software is a unique in that a program and its
model share the same medium - the computer

— The two can be formally linked to each other

— This formal linkage can be realized by automated
transformations implemented on a computer

Modern MBSE Development Style

* Models can be refined continuously until the application
is fully specified = in the extreme case the mode/ can
become the system that it was modeling!

void generate ()
{for (int i=0; i<10;
«sc_method» / produce! i++)
_| producer L .\ {out1 = i;}}
start out1 //
1 \\ /

| . [NotStartedj A
/" producer 2

‘\ start /gen.erate ()

[NotStartedj / Started \

0\

L [Started j , \ / /

21 © Copyright Malina Software

start

But, if the Model is the System...

¢ ...are we not losing the key abstraction

characteristic of models?

The computer offers a l - /‘
uniguely p
capable abstraction ,/ / producer \
device: L .\v
Software can be
represented [NotStarted)
from any desired
viewpoint and at @ Model start
any desired level of Xform ,

abstraction / S \
tarted

The abstraction

resides within the

model and can be
extracted

automatically
N,

22 © Copyright Malina Software

A Unique Feature of Software

Software has the unigue property that it allows
us to directly evolve models into
implementations without fundamental
discontinuities in the expertise, tools, or
methods/

= Hligh probability that key design
decisions will be preserved in the
implementation and that the results of
prior analyses will be valid

© Copyright Malina Software

The Model-Based Engineering (MBE) Approach

* An approach to system and software development in which
software models play an indispensable role

+ Based on two time-proven ideas:

(1) ABSTRACTION (2) AUTOMATION

Realm of

modeling
languages

Realm of
tools

switch (state) { switZch {
case‘l:actionl; case ‘17CCozenl;

newState('2’); newState('2’);
break; break;
case‘2:action2; case‘2:action2;

newState (‘'3’); newState('3');
break; break;
case’3:action3; case’3:action3;

newState('1l’); newState('1l’);
break; } break; }

21

Styles of MBSE

o —>
Abstraction
Automation Code Round Trip
Code only Visualization Endineering Model-centric /" Model only
Model Model Model Model
A
visu%lize synghronize
Code Code Code Code
“What's a “The code is ‘Manage “The model is “Who cares
model?” the mod. code and the code” about the
model” code?”
I= >
Time

Roundtrip Engineering

Implementation
transformation

Reverse
engineering

NB: Slide idea borrowed from an itemis AG presentation
m 20 © Copyright Malina Software

Automatic Code Generation

*+ A form of model transformation (model to text)

» To a lower level of abstraction

¢+ State of the art:

= All development done via the model (i.e., no modifications
of generated code)

= Size: Systems equivalent to ~ 10 MLoC
= Scalability: teams involving hundreds of developers

= Performance: within +5-15% of equivalent manually coded
system

Y ——————————————————————— © CopYright Malina Software

Major Telecom Equipment Manufacturer

+ MBE technologies used
= UML, Rational Technical Developer, RUP
+ Example 1: Radio Base Station
= 2 Million lines of C++ code (87% generated by tools)
= 150 developers
+ Example 2: Network Controller
= 4.5 Million lines of C++ code (80% generated by tools)

= 200 developers :
Benefits

807 fewer bugs

30% productivity
increase

28

- e O COPYright Malina Software o,

..and a Few Extreme Cases

* Major Equipment Manufacturer 1:

= Code production rate went from 40 LoC/day to 250
Loc/day (>600% improvement)

¢ Major Equipment Manufacturer 2:

= Code production rate went from 200 LoC/week to 950
Loc/week (~500% improvement)

= 6-person team developed 120 KLoC system in 21.5 weeks
compared to planned 40 weeks (~100% improvement)

* Fault density (per line of code) reduced 17-fold (1700%)

B ————————————© C0PYfight Malina Software

Sampling of Successful MBE Products

Automated doors, Base Station, Billing (In Telephone Switches),
Broadband Access, Gateway, Camera, Car Audio, Convertible roof
controller, Control Systems, DSL, Elevators, Embedded Control, GPS,
Engine Monitoring, Entertainment, Fault Management, Military
Data/Voice Communications, Missile Systems, Executable Architecture
(Simulation), DNA Seguencing, Industrial Laser Control, Karaoke,
Media Gateway, Modeling Of Software Architectures, Medical
Devices, Military And Aerospace, Mobile Phone (65M/36), Modem,
Automated Concrete Mixing Factory, Private Branch Exchange (PBX),
Operations And Maintenance, Optical Switching, Industrial Robot,
Phone, Radio Network Controller, Routing, Operational Logic, Security
and fire monitoring systems, Surgical Robot, Surveillance Systems,
Testing And Instrumentation Egquipment, Train Control, Train to
Signal box Communications, Voice Over IP, Wafer Processing,
Wireless Phone

30 © Copyright Malina Software

Where We Stand at Present

Levels of

Abstraction t
—————————— o - -— e = . ~

’ “nde Round Trip o
Engineering Model-centric |

State of the

\
I . |
I ation |
| |
| . |
I Predominant |
| State of the - :
\ Practice synphronige |
|
| |
| |

“The model i
code and the code”
model”

Time

Y ——————————————————————————————© CopYright Malina Software gy

Q: If this stuff is so good, why
isn't everybody doing it?

Root Causes of Low Adoption Rate

¢ Social/Cultural issues

= Conservative mindset of many practitioners

+ Economic factors
= Retraining
= Retooling
= Reorganizing development

= Integration with legacy
¢ Technical issues

= Immaturity of tools

* Lack of systematic theoretical underpinnings

- e O COPYright Malina Software o,

Tutorial Outline

¢+ On Models and Model-Based Software Engineering

O[The Key Dimensions of Modeling Language Design]

+ Defining a Modeling Language
¢ Case Study: UML
+ Language Refinement: UML Profiles

* Model Transformations

Current "Hot"” Topic of Controversy

‘Surely it is better to design a small language that
is highly expressive, because it focuses on a
specific narrow domain, as opposed to a large and
cumbersome language that is not particularly well-

suited to any particular domain?”

4 p
This is a high-level design issue, but not

the only one by any means...
\§)

© Copyright Malina Software

Key Modeling Language Design Dimensions

Scope? J

= Broad (general) or narrow (domain specific)?

30

Formal or informal? (executable?)

Semantics?
= Static: Ontology (concepts and relationships)?
= Dynamic: Model of computation (how do things happen?)

New language or an extension or refinement of an
existing one?

Concrete syntax?

= Graphical? Textual? Heterogeneous?
Extensible?

Method of language specification?

© Copyright Malina Software

Scope: How General/Specialized?

37

¢+ Generality often comes at the expense of expressiveness

= Expressiveness: the ability to specify concisely yet accurately
a desired system or property

= Example:

- UML does not have a concept that specifies mutual exclusion devices
(e.g. semaphore) = to represent such a concept in our model, we
would need to combine a number of general UML concepts in a
particular way (e.g., classes, constraints, interactions)

= ...which may(?) be precise, but not very concise

¢ It also comes at the cost of detail that is necessary to:
= Execute models

= (Generate complete implementations

© Copyright Malina Software

Specialization: Inevitable Trend

38

+ Constant branching of application domains into ever-
more specialized sub-domains

= As our knowledge and experience increase, domain concepts

become more and more refined

- E.g., simple concept of computer memory — ROM, RAM,

DRAM, cache, virtual memory, persistent memory, etc.

* One of the core principles of MBE is raising the

level of abstraction of specifications to move them

closer to the problem domain

=

This seems to imply that domain-specific
languages are invariably the preferred solution

But, there are some serious hurdles here...

~

)

© Copyright Malina Software

The Case of Programming Languages

39

+ Literally hundreds of domain-specific programming
languages have been defined over the past 50 years

= Fortran: for scientific applications

= COBOL for “data processing” applications
= Lisp for AT applications

= etc.

+ Some relevant trends

= Many of the original languages are still around

= More often than not, highly-specialized domains still tend to
use general-purpose languages with specialized domain-specific
program libraries and frameworks instead of domain-specific
programming languages

= In fact, the trend towards defining new domain-specific
programming languages seems to be diminishing

¢+ Why is this happening?

© Copyright Malina Software

Success™ Criteria for a Language (1)

* Technical validity: absence of major design flaws
and constraints

= Ease of writing correct programs

+ Expressiveness

+ Simplicity: absence of gratuitous/accidental
complexity

= Ease of learning

* Run-time efficiency: speed and (memory) space
¢ Familiarity: proximity to widely-available skills
= E.g., syntax

* "Success” = language is adopted by a substantive development
community and used with good effect for real-world applications

no

- s O Copyright Malina Software

Success Criteria for a Language (2)

+ Language Support & Infrastructure:

= Availability of necessary tooling

= Effectiveness of tools (reliability, quality, usability,
customizability, interworking ability)

= Availability of skilled practitioners
= Availability of teaching material and training courses
= Auvailability of program libraries

= Capacity for evolution and maintenance (e.g.,
standardization)

)

T —————————————————————————————— . © CopYright Malina Software oy

Basic Tooling Capabilities

n2

Essential

Model Authoring

Model validation
(syntax, semantics)

Model export/import
Document generation
Version management

Model compare/merge

Practical

Code generation

Model
simulation/debug/trace

Model transformation
Model review/inspection

Collaborative
development support

Language customization
support

Test generation
Test execution
Traceability

e

© Copyright Malina Software

Design Challenge: Simplicity (Scope)

* How complex (simple) should a language be to make
it effective?

«— [imited expressive —»

«— simple complex —

| | | | | |

| | | | | |
Turing C Java PL/l C++ Java+
machine Basic Java libs +
language Java-based frameworks

= The art of computer language design lies in finding the right
balance between expressiveness and simplicity

— Need to minimize accidental complexity while recognizing and
respecting essential complexity

— Small lanquages solve small problems
— No successful lanquage has qotten smaller

13

© Copyright Malina Software

Design Challenge: Scope

+ Real-world systems often involve multiple
heterogeneous domains

= Each with its own ontology and semantic

+ Example: wireless telecom system
= Basic bandwidth management
= Equipment and resource management
= Operations, administration, and systems management
= Accounting (customer resource usage)

= Computing platform (OS, supporting services)

N e —— © C°pYfight Malina Software

The Fragmentation Problem

Wireless Base Station AT A
I Call Processing System E
l" --------------- .i. ------------ Y i
i : R -I ----------- i- ----- N
| | [Comm. }i ! i
i 'L Channel): 7 !
i Resource Mgmt. Sys‘térn'“““',." """"" i
|2 Bt |
l" Bandwidth Mgmt. System }

* FRAGMENTATION PROBLEM: combining
independently specified domain-specific subsystems
specified using different DSLs into a coherent and
consistent whole

m 5 © Copyright Malina Software

Approach to Dealing with Fragmentation

n6

¢+ Having a common syntactic and semantic foundations for the
different DSLs seems as if it should facilitate specifying the
formal interdependencies between different DSMLs

DSL1 Class Library

DSL2 Class Library

DSL1 Refinements

DSL2 Refinements
£>

.etc.

wtax and Semantic Foundation

+ NB: Same divide and conquer approach can be used to
modularize complex languages

¢+ Core language base + independent sub-languages (e.g., UML)

© Copyright Malina Software

Key Modeling Language Design Dimensions

Scope?

= Broad (general) or narrow (domain specific)?

Formal or informal? (executable?)]

a7

Semantics?
= Static: Ontology (concepts and relationships)?
= Dynamic: Model of computation (how do things happen?)

New language or an extension or refinement of an
existing one?

Concrete syntax?

= Graphical? Textual? Heterogeneous?
Extensible?

Method of language specification?

© Copyright Malina Software

Formal vs. Informal: Categories

+ Based on degree of “formality”

= Precision of definition, internal consistency, completeness,
level of detail covered

Category Characteristics Primary Purpose
oo | [PVt | [et
EXECUTABLE Defined, fggm;:,e ;::nsistent, If;-ggli{fiigﬁ
FORMAL Defined, formal, consistent S
CODIFIED Defined, informal D°°K|’;‘i;‘;?;i°",
AD HOC Undefined, informal Documentation,

Analysis

o ———m © CopYright Malina Software

¢+ Based on a well understood mathematical theory with
existing analysis tools

. E? automata theory, Petri nets, temporal logic, process
calculi, queueing theory, Horne clause logic

= NB: precise does not always mean detailed

. For'mali‘l?l provides a foundation for automated validation
of models

= Model checking (symbolic execution)

= Theorem proving

= However, the value of these is constrained due to scalability
issues ("the curse of dimensionality™)

+ It can also help validate the language definition

¢ But, it often comes at the expense of expressiveness

= Only phenomena recognized by the formalism can be expressed
accurately

19 © Copyright Malina Software

How We Can Learn From Models

= By inspection

— mental execution

— unreliable

= By execution
— more reliable than inspection

— direct experience/insight

= By formal analysis

— reliable (provided the models
are accurate)

— formal methods do not
scale very well

50 © Copyright Malina Software

Executable Models

+ Ability to execute a model on a computer and
observe its behavior

= With possible human intervention when necessary

¢+ D. Harel: "Models that are not executable are like
cars without engines”

= However, not all models need be executable
+ Key capabilities

= Controllability: ability to start/stop/slow down/speed
up/drive execution

= Observability: ability to view execution and state in model
(source) form

= Partial model execution: ability to execute abstract and
incomplete models

————————————————————————————————m© CopYright Malina Software

Modeling Languages for Implementation

¢ Much of the evolution of computer languages is
motivated by the need to be more human-centric

Application
specific

Computing
technology
specific

s O Copyright Malina Software

Degree of
(computing
technology)
abstraction

Assemblers (2G),
machine
languages (1G)

t ¢t 1

Classical (3G)
programming
languages

Compiler
filled detail

111

Modeling
languages

can we do
the same
here ?

Implementation

level

Modeling Languages for Implementation

+ A number of “descriptive” modeling languages have
evolved into fully-fledged implementation languages

Application
specific

Computing
technology
specific

Degree of
(computing
technology)
abstraction

t ¢t 1

111

Assemblers (2G),
machine
languages (1G)

Classical (3G)
programming
languages

Compiler
filled detail

s O Copyright Malina Software

. e.g., UML
IModellng chﬁon
anguages anguage

JUAFES | oM
HL Action
languages

Translator
filled detail

level

Implementation Modeling Languages

51

+ Typically a heterogeneous combination of syntaxes
and executable languages with different models of
computation

/ producel

N

void generate ()
{for (int i=0; i<10;

++)

{outl = i;}}

|

[NotStartedj

[sn]@zj

/

/
/

start /generate ()

/ Started \

/T oo detalled: \

= needs to be
supplemented with
abstraction (model)
transformations to

obtain the full
Kbenefifs of models /

© Copyright Malina Software

Key Modeling Language Design Dimensions

*

Scope?
= Broad (general) or narrow (domain specific)?

Formal or informal? (executable?)

Semantics? A
= Static: Ontology (concepts and relationships)?

= Dynamic: Model of computation (how do things happen?)

New language or an extension or refinement of an
existing one?

Concrete syntax?

= Graphical? Textual? Heterogeneous?
Extensible?

Method of language specification?

© Copyright Malina Software

Semantics: Ontology (Information Science)

50

"A formal representation of knowledge as a set of
concepts within a domain and the relationships
between those concepts” [Wikipedia]

In modeling language design:

* The set of primitive concepts that represent (model) the
phenomena in a domain

= The rules for combining these concepts to construct valid
(well-formed) statements in the language

Example [UML]:
= Concepts: Class, Association, Dependency, Attribute, etc.

= Relationships: Attributes are owned by Classes

Requires a specialized language (e.g., OWL, MOF)

© Copyright Malina Software

Semantics: Model of Computation (MoC)

* Model of Computation: A conceptual framework

(paradigm) used to specify how a (software) system
realizes its prescribed functionality

= Where and how does behavior (computation) take place

+ Selecting the dominant MoC(s) is a primary language
design decision

= Based on characteristics of the application and requirements

= Closely coupled to the chosen formalism

57

s O Copyright Malina Software

¢ Concurrency paradigm: does computation occur sequentially
(single thread) or in parallel (multiple threads)?

¢ Causality paradigm: what causes behavior

= event driven, control driven, data driven (functional), time driven,
logic driven, etc.

¢+ Execution paradigm: nature of behavior execution

= Synchronous (discrete), asynchronous, mixed (LSGA)

+ Interaction paradigm: how do computational entities interact

= synchronous, asynchronous, mixed

+ Distribution paradigm: does computation occur in a single site
or multiple?

= Multisite (= concurrent execution) vs. single site

= If multisite: Coordinated or uncoordinated (e.g., time model, failure
model)?

m 38 © Copyright Malina Software

Nesting MoCs

59

Most practical
languages use a
combination of .
MoCs g

«sc_method»

7,
7
7’
-
/

_ producer N
start N\ out1
Distributed

MoC

producel

void generate ()
{for (int i=0; i<10;
I++)
{out 1551

.\v

[NotStarted)

/ Started \

~
~
~
~
~
~

N

Control-flow J

| start /generate ()| driven MoC

concurrent

Event-driven
MoC

© Copyright Malina Software

On Specifying Semantics

+ Semantics are specified using a language whose semantics
are already defined

* Numerous approaches to defining run-time semantics of
computer languages

= Informal natural language description are the most common way

= Denotational, operational, axiomatic

+ The "Executable UML Foundation” specification provides
a standard for defining semantics

= Defines the dynamic semantics for a subset of standard UML
concepts that have a run-time manifestation

= Semantics of modeling languages can be specified as programs
written using a standardized executable modeling language
(operational (interpretive) approach)

» The semantics of Executable UML itself are defined
axiomatically

60 © Copyright Malina Software

OMG Approach to Specifying UML Semantics

¢+ UML semantics hierarchy
= As defined by the Executable UML Foundation proto-standard

Higher-level behavioral formalisms (with SVPs)

| Higher-level UML UML UML

. ML . . i UML :
UML action statechart activities interactions LA g !
semantics semantics semantics semantics] pftfr_' _L_airlg_‘f?_e_(‘f')__:

p
Foundational UML (fUML) action semantics

Generic (action executions, token flows, etc.)

UML VM
(with %
SVPs) Act on (create, destroy, read, write, etc.)
Core structural elements (objects, links, etc.)
\

SVP = Semantic Variation Point

m Y © Copyright Malina Software

Foundational UML (fUML) and Basic UML (bUML)

+ A subset of fUML actions is used as a core language (Basic
UML) that is used to describe fUML itself

Foundational UML (fUML) action semantics
(action executions, token flows, etc.)

Maps to
(Operational
Specification)

A

Basic UML action semantics (bUML)

Maps to (Axiomatic Specification)

A\ 4

Formal mathematical model
(Process Specification Language)

Basis for a formalization of UML

62 © Copyright Malina Software

Key Modeling Language Design Dimensions

*

Scope?

= Broad (general) or narrow (domain specific)?

Formal or informal? (executable?)

Semantics?

= Static: Ontology (concepts and relationships)?

= Dynamic: Model of computation (how do things happen?)

New language or an extension or refinement of an
existing one?

b3

Concrete syntax?

= Graphical? Textual? Heterogeneous?
Extensible?

Method of language specification?

© Copyright Malina Software

Approaches to DSML Design

. Define a completely new language from scratch

. Extend an existing language: add new domain-
specific concepts to an existing (base) language

. Refine an existing language: specialize the concepts
of a more general existing (base) language

Refinement vs Extension

+ Semantic space = the set of all valid programs that
can be specified with a given computer language

+ Refinement: subsets the semantic space of the base
language (e.g., UML profile mechanism)

= Enables reuse of base-language infrastructure

+ Extension: intersects the semantic space of the
base language

()

H [Refinement]
J

m O © Copyright Malina Software

Comparison of Approaches

New Language High Low Low Low
Extension Medium Medium Medium Medium
Refinement Low High High High

bb

Refine, Define, or Extend?

+ Depends on the problem at hand

= TIs there significant semantic similarity between the UML metamodel
and the DSML metamodel?

* Does every domain concept represent a semantic specialization of some UML
concept:

- No semantic or syntactic conflicts?
= Is language design expertise available?
= TIs domain expertise available?
= Cost of maintaining a language infrastructure?
* Need to integrate models with models based on other DSMLs?

+ Example: Specification and Description Language (SDL: ITU-T
standard Z.100)

= DSML for defining telecommunications systems and standards
= First defined in 1970
= Currently being redefined as a UML profile (Z.109)

m Y7 © Copyright Malina Software

Key Modeling Language Design Dimensions

*

Scope?

= Broad (general) or narrow (domain specific)?

Formal or informal? (executable?)

Semantics?

= Static: Ontology (concepts and relationships)?

= Dynamic: Model of computation (how do things happen?)

New language or an extension or refinement of an
existing one?

Concrete syntax? J

= Graphical? Textual? Heterogeneous?

Extensible?

Method of language specification?

© Copyright Malina Software

Concrete Syntax Design

¢+ Two main forms:
= For computer-to-computer interchange (e.g., XMI)

= For human consumption - “surface” syntax

. I[)esigning a good surface syntax is the area where we know
east

= If a primary purpose of models is communication and understanding,
what syntactical forms should we use for a given language?

+ Requires multi-disciplinary skills
= Domain knowledge
= Computer language design
= Cognitive science
= Psychology
= Cultural Anthropology
= Graphic design
= Computer graphics

B e ——© C0pYfight Malina Software

Concrete Syntax Design Dimensions

¢ Graphical (visual) or textual?

= _or both?

+ If visual: what are the primary and secondary metaphors (for visual
languages)?

= Consistency, intuitive appeal
+ Multiple viewpoints
= Which ones?
= How are they represented?
= How are they linked?
+ How is the syntax defined?
= Examples or some formalism (which one?)?
= Mapping to abstract syntax?
+ How is the syntactical information stored in the model?
= We may want to use different notations for the same model depending on viewpoint
¢+ Interchange format
»= Human readable as well? (e.g., XML based)

B ————————————— © CopYfight Malina Software

Key Modeling Language Design Dimensions

Scope?

= Broad (general) or narrow (domain specific)?

Formal or informal? (executable?)

Semantics?

= Static: Ontology (concepts and relationships)?

= Dynamic: Model of computation (how do things happen?)

New language or an extension or refinement of an
existing one?

Concrete syntax?

= Graphical? Textual? Heterogeneous?
Extensible?

Method of language specification? J

71

© Copyright Malina Software

Key Language Desigh Questions

72

* Who are the primary users?

= Authors / readers? (i.e., primary use cases)
¢+ What is its primary purpose?

= Documentation, analysis, prediction, implementation?
+ Context

= What is the context in which models defined in the language
will have to fit?

* What is the dominant model of behavior = MoC

s O Copyright Malina Software

Tutorial Outline

¢+ On Models and Model-Based Software Engineering

¢+ The Key Dimensions of Modeling Language Design

*[Defining a Modeling Language]
¢ Case Study: UML
+ Language Refinement: UML Profiles

* Model Transformations

Defining a Modeling Language

* The definition of a modeling language consists of:
¢

Set of language concepts/constructs (“ontology™)
+ e.g., Account, Customer, Class, Association, Attribute, Package

Rules for combining language concepts (well-formedness
rules)

ABSTRACT
SYNTAX
AL

-+ e.g., ‘each end of an association must be connected to a class”

= CONCRETE SYNTAX (notation/representation)

 e.g., keywords, graphical symbols for concepts
= SEMANTICS: the meaning of the language concepts
* i.e., what real-world artifacts do the concepts represent?

\.

71

- e~ © CopYright Malina Software gy

The Key Elements

of a Modeling Language

Modeling
Language
1
0.* 1
Concrete | 9 1 Abstract .
Syntax Syntax Semantics
0.*
1.* 1.* 1.* 1.* 31
Composition | 1.7| Notational 0.* | Language | 1. Composition Model of
Rules(C) “| Element “| Concepts | Rules(A) Computation

75

s O Copyright Malina Software

Model-Driven Architecture (MDA)™

¢+ In recognition of the increasing importance of MBE,
the Object Management Group (OMG) is developing
a set of supporting industrial standards

(2) AUTOMATION

A
_ ;i‘t N g
o -_- o Space gﬂé - ":i: Telecom
. _ o “} < E # '::cd:::g:::! % >
- =] W KS
(3) INDUSTRY STANDARDS °
UML 2 Y Henog SN
O CL Transpertation .'-, HealthCare
MOF More...
SysML
http://www.omg.org/mda/ SPEM
..etc.

76

© Copyright Malina Software

MDA Languages Architecture

¢+ MDA = OMG's initiative to support model-based
engineering with a set of industry standards:

]
UML Profiles

UML 2 cwMm B spem | ©OPM R Ras
(Ontology)

Core Specifications:
MOF 2, XMI 2.1, MOF Versioning, MOF QVT, MOF to Text

UML 2 Infrastructure

m 17 © Copyright Malina Software

The OMG 4-Layer “Architecture”

01011
<sawdust>
...... 7
01011 | e <2 tons> .
| el clard> °°'' Real Objects
<DelilceCream> T e ! (M 0)
, ! | <5 tons> : (computer memory,
! L . . run-time environment)
___________ |._____________|____l___________I e — I______________________________________.
«reprélsentedBy» «rep}esentédBy» i-«represented-:By»
v L v v
vV
Customer i .CustomerOrder Model (M 1)
id ' | Item (model repository)
. -~ | quantity
| ,/I
___________ P T
«.f,pecifie,dBy’» : «specifiedBy»
w v M2 =
Class Association LA Meta-Model (M2 = UML,
i K (modeling tool) C WM)
\ /

\ «specifiedBy» /
\ /

. Meta-Meta-Model -
| W (modeling tool) (M3 B MOF)

«specifiedBy» !

© Copyright Malina Software

Infrastructure Library - Contents

InfrastructureLibrary

PrimitiveTypes
7 S
_ L7 (Integer, String, Boolean...) N o
«importy/ 0 Ngimport»
4 . N
R iKimport» N
Z | N
Abstractions Basic Constructs
(Grab-bag of fine-grain (Simple forms of basic 00 (Sophisticated forms of
00 modeling modeling concepts: Class, 00 modeling concepts)
primitives/mix-ins) Operation, Package, etc.)

A
|

| «import»
|

Profiles

(Extensibility mechanisms)

79

The MOF = Meta
Object Facility

The Structure of MOF (simplified)

UML Infrastructure

/,77V\
EMOF
Pt e \\\fmerge»
«merge--~ «rhergen x\«\r?\erge»)
: R\
et |V |
Reflection |dentifiers Extension
n CMOF

81

Essential MOF Concepts (Example)

. Package
+ Key concepts used to define an abstract syntax (modmarigaﬁon J
construct)
Generalization . /
[(relationship) SEEE
VAN Class
(concept)
Automobile - w
- Wheel
make : String 3..
power : Integer - C -
Association onstraint
[(relationship) vehicle |0..2 (well-for;medness
Composition rule)
driverl 0..* (relationship) 7/
D /4
Person (driver.age <= 16) implies

(power <= 10)

m 52 © Copyright Malina Software

Example: EMOF Metamodel (Root)

Metaclass = A MOF
+ Using MOF to define Class that models a
anguage Concep
(E)MOF
g 0..1
Element <
I I
NamedElement Comment
name : String body : String 0.

Type TypedElement

Example: EMOF Metamodel (simplified)

type 0.~
Type 0.1 TypedElement

/\ /\

0..”
Class < Property

isAbstract : Boolean

isReadOnly : Boolean
default : String [0..1]
isComposite : Boolean
isDerived : Boolean

opposite
0..1

< - Operation @»—— Parameter

m 9 © Copyright Malina Software

The Meaning of Class Models

Type

type

0..1

TypedElement

* A key element of abstract syntax definition

¢+ What does this model represent?

* There is much confusion about the meaning of this type of

diagram (model)
¢+ Questions:

= What do the boxes and lines represent?

= How many Types are represented in this diagram?

= What does “type” mean?
= What does "0..*" mean?

85

© Copyright Malina Software

Example: Two Populations with Relationships

__—————_——-

-
——

© Copyright Malina Software

Some Facts We Can State

* Particular statements:
= Bob has no children (in the set Children)
= Karl is the father of Dee and Ida
= Karl and Jill are the parents of Cory

* Fred and Peggy are the parents of Guy
= Peggy is the mother of Hayley
= Alice is the mother of Les

+ General statements (through abstraction):

= Children can have one or two Adult parents
= Some Adults are parents of Children

= Every Person has a name and a gender

87 © Copyright Malina Software

Classes and Associations in MOF (and UML)

+ Class: A specification of a collection of object
instances characterized by posessing the same set
of features and behaviours

+ Association: A specification of a collection of links
whose ends conform respectively to the same type

88

Classes and Association Classifiers

T ™= -

/”, ﬁ \\
,* Adults D<-_T
/

&

~
Y,
=
L

A

]

1

]

Fred<---~-

—————_—-

L parents
Adult

’——_\

Bob /
b Ji||<‘,l'
"

\
\
L
¢
-’-- - -
S o ~~_F’egmn?(_1

-
- -

children

name : String 1 0
gender : [M, F]

Child

name : String
gender : [M, F]

s O Copyright Malina Software

Interpreting Association Ends

parents children :
Adult Child
name : String | 5 0.* name : String
gender : [M, F])) gender : [M, F]
_ The “children” N
LT T T~ (set) of Karl - ~9
//’ _ Adults \ Children |
/ p _\‘\ ! P PO
/ Y i b | P \\ \

——————_-

/ 1
/ . €r—=maEEr=ssmmaEss==ccc——=d e m——an 1y
\ b T — I
B I ! ~ 7= x
{ : N ~ —__ /
1 \ 4 = | I
\
~]
I

The “parents”
(set) of Cory

|
J An OCL
\

Karl.children->includes (Cory)

© Copyright Malina Software

OBJECT CONSTRAINT
LANGUAGE (OCL): WRITING
CONSTRAINTS

Example: A Community
] [

friend

m 7 © Copyright Malina Software

A Corresponding Class Diagram

+husband

0..1 0..*
+wife Person

Q..*
+name: String] <<enumeration>>
0..1 | tisMarried: Boolean +friend Gender

+gender: Gender
+age: Integer +M
+F

+isSenior(): Boolean

+parent +child

Adult Child

0..* 0..*

93

Propositions, Predicates, and Constraints

9

+ Proposition: A statement that is either True of False
= Bob is an Adult

* Les and Ida are friends

¢ Predicates: Propositions that involve variables; e.g.:

» There is at least one Adult with the name "Bob”

= All Adults are married
= Every Child has at least one Adult parent

* A predicate require a range for its variables

¢ Constraints: predicates that, by design, must evaluate to
True; e.g.:

= Only Adults can have Children

= An Adult who is married must have a spouse

© Copyright Malina Software

First-Order (Predicate) Logic(s)

95

¢+ Used to reason about predicates

+ Basic operators of FOL:
= The usual Boolean operators
AND (~)
* OR (v)
NOT (—)
= Conditional:

_]|I_f <predicate-1> is True (hypothesis) then <predicate-2> (conclusion) must be
rue

<predicate-1> — <predicate-2>

= Existential quantifier (3):

. Th_?_re exists at least one member of the domain such that predicate <predicate>
is True

3 a € Dom | <predicate>
= Universal quantifier (Vv):

For all members of the specified domain <predicate> is True

V a € Dom | <predicate>

. © CopYright Malina Software

FOL Examples and OCL Equivalents

* There is at least one Adult with the name "Bob”
= J a c Adult | (name(a) = "Bob")

* All Adults are married
= V a c Adult | (married(a) = True)

+ Every Child has at least one Adult parent
* V ¢ c Child | (size(parents(c)) > 1)

¢ ...and their OCL equivalents

" exists (a:Adult| a.name = “Bob”)
" forAll (a:Adult | a.isMarried)

"= forAll (c:Child | parents—->size() >= 1)

9%

© Copyright Malina Software

The Object Constraint Language (OCL)

¢+ An OMG standardized language for specifying
constraints and queries for UML and MOF

classifiers and objects

= http://www.omqg.orq/spec/OCL/2.2/PDF

= Declarative side-effect-free language

* Primarily used in conjunction with MOF to specify
the abstract syntax of modeling language constructs

= Example:

+
Adult parent

+child

0..*

Child

context Child inv:
self.parent—->s1ze()

<

= 2

97

© Copyright Malina Software

OCL Basics - Contexts and Constraints

+husband

0..1 0..*

+wife Person o *
+name: String _
0..1 | +isMarried: Boolean +friend 5 '
+gender: Gender Ei i

+age: Integer

+isSenior(): Boolean

+ Context: identifies the class (or object) to which
the constraint (also called an invariant) applies

context Person inv:

+ Class constraints are written from the perspective
of a generic member of the context class

= ...which means that they apply to all members of the class

((self.isMarried) and (self.gender = #M))
implies((self.wife->size() = 1) and
(self.husband->size () = 0))

m © Copyright Malina Software

OCL Basics - Data Types Used in OCL

+ Reuses basic UML/MOF primitive types
= Boolean, Integer, String
= Adds type Real
= Support all common arithmetic and logic operators
+ Collection types
= Set, OrderedSet, Bag, Sequence
¢ Model types
* Modeler-defined application-specific classes
= E.g., Person, Adult, Child, Gender
¢+ OclType = the type of all types (metatype)
= Useful operation on any type: allInstances()

Person.allInstances() —— returns the set of all
—— 1nstances of Person

99 © Copyright Malina Software

OCL Basics - Standard Arithmetic Operators

<numeric-expr-1>
<numeric-expr-1>
<numeric-expr-1>
<numeric-expr-1>
<numeric-expr-1>
<numeric-expr-1>
<numeric-expr-1>

<numeric-expr-1>

<numeric-expr-1>.

< <numeric-expr-2>
> <numeric-—-expr-2>
<= <numeric-expr-2>
>= <numeric-expr-2>
+ <numeric-expr-2>
- <numeric-expr—-2>
* <numeric-expr—-2>
/ <numeric-expr-2>

mod (<numeric—expr—2>)

© Copyright Malina Software

OCL Basics - Common Logic Operators

¢ not <Boolean-—-expr>

¢ <Boolean—-expr—-1> or <Boolean-expr-2>
¢ <Boolean-expr-1> and <Boolean-expr-2>

¢ <Boolean-expr—-1> xor <Boolean-expr-2>

¢ <expression-1> = <expression—-2>
¢ <expression-1> <> <expression-2>
¢ <Boolean—-expr-1> implies <Boolean-expr-1>

¢ if <Boolean—-expr—-1> then <expression-2>
[else <expression-3> endif]

101 © Copyright Malina Software

OCL Basics - OclAny

+ Supertype of all types

* Not to be confused with OclType (which is a metatype)
- The type of OclAny is OclType

+ Defines a useful set of operations that can be
applied to any primitive or user-defined object

oclType () —— returns the type of an object

oclIsTypeOf (<type>) ——- returns True if object is of
—— type <type>

oclIsKindOf (<type>)-- returns True if object is of
—— type <type> or its subtype

B ————————————© CopYfight Malina Software

OCL Basics - Accessing Properties

+husband

0..1 0..*

+wife Person o .x '
+name: String _ .
0..1 | +isMarried: Boolean +friend 4
+gender: Gender g

+age: Integer

+isSenior(): Boolean

¢+ Classifier (and object) attributes and operations are
accessed by the dot (.) operator

self .name —— returns name String
self.isSenior () —- returns True or False
self.friend —— returns a collection

—— persons who are friends
—— of "“self”

103 © Copyright Malina Software

OCL Basics - Association/Link Navigation

+ Association ends are accessed like all other
Properties of Classifiers

¢+ OCL can navigate from a Classifier context to any
outgoing association end...regardless of navigability

Person

+name: String
+isMarried: Boolean
+gender: Gender
+age: Integer

O

+isSenior(): Boolean

self.friend
self.person -

+friend

uses default naming rule for

unnamed ends

+ Unless the multiplicity is exactly 1, the result of
the navigation is a collection

104

© Copyright Malina Software

OCL Basics - OCL Collections and Operations

Collection

&

OrderedSet

Set

Bag

Sequence

Collections represent groups of values (e.g., Classes)

Collections can be manipulated using special collection operations

s O Copyright Malina Software

size ()
count (<value>)

includes (<value>)

-- the size of the collection (Integer)
-- the number of occurrences of <value> (Integer)

-- True if collection includes <value>

includesAll (<collection>)

isEmpty ()
notEmpty ()
exists (<expression>)

forAll (<expression>)

-- True if collection includes <collection>

-- True if collection is empty

-- True if collection is not empty

-- True if <expression> is True for at least 1 element

-- True if <expression> is True for all elements

OCL Basics - Applying Operations to Collections

1006

¢+ The application of an operation to a collection is
indicated by the use of the right-arrow (->) operator

m self.friend->size() —— number of friends of self

* self.friend->isEmpty () —— checks if set of

—— friends is empty

s O Copyright Malina Software

OCL Basics - Universal and Existential Quantifiers

+ “exists” and “forAll” operations are used to specify
predicates over collections
= exists = 3 (first-order logic existential quantifier operator)

e self.friend->exists (f:Person | f.name = ‘Bob’)
—— at least one friend must be named ‘Bob’

= forAll = V (first-order logic universal quantifier operator)

« Person.allInstances () —>forAll (p:Person| p.name <> ‘')
—— the name of a Person cannot be an empty string

= Avoids confusing mathematical symbols (+ avoids need for
special typesetting)

107

- e © COPYright Malina Software

OCL Basics - Select and Collect Operations

+ Special iteration operations for deriving useful new
collections from existing ones

+ Select provides a subset of elements that satisfy a
predicate

= <collection>->select (<element> : <type> |
<expression>)
" Person->select (p:Person | p.isMarried)

¢ Collect returns a new collection of values obtained
by applying an operation on all of the elements of a
collection

= <collection>->collect (<element> : <type> |
<expression>)

" Person->collect (p:Person | p.name)

s O Copyright Malina Software

OCL Basics - Other Useful Collection Operations

109

For Sets, Bags, Sequences

<Coll-1>->union (<Coll-2>) —— returns the union of
—— <Coll-1> and <Coll-2>

<Coll-1>->intersection (<Coll-2>) —- returns the
—— intersection of
—— <Co0ll-1> and <Coll-2>

<Coll-1> - (<Coll-2>) —— returns a collection of
—— elements in <Coll-1>
—— that are not in <Coll-2>

For OrderedSets and Sequences

<Coll>->at (i) —— access element at position i
<Coll>->append (<object>) —- add <object> to end of <Coll>
<Coll>->first () —— return first element in <Coll>
<Coll>->last () —— return last element in <Coll>

. © CopYright Malina Software

OCL Basics - Pre- and Post-Conditions

+ "Design by contract” for Operations, Receptions,
and UML Behaviors

» Pre-conditions: Conditions that must hold before an
operation

= Post-conditions: Conditions that must hold after an
operation has completed

* Syntax:
= pre: <Boolean-expr>
= post: <Boolean-—-expr>

= Also can use <attribute>@pre in a post-condition to refer
to the value of <attribute> prior to the execution of the
operation

110 © Copyright Malina Software

OCL Basics - Defining Operations

* Syntax

context <operation—-name> (<parameters>) : <return-
type>
[pre: <Boolean-expr>]
[post: <Boolean-expr>]
[body: <expression>] —— must evaluate to
—— a kind of <return-type>

+ Example
context Person::isSenior () : Boolean
pre: age >= 0
post: age = agelpre -- age 1s unchanged
—— after operation
—— completes

body: (age >= 65)

i © Copyright Malina Software

Summary: OCL

¢ OCL constraints are one of the means to define
well-formedness (i.e., syntactic) rules for MOF -
based models

= Complement class (meta)models

+ It is based on basic first-order logic and set
theory and operates on class (and instance)
diagrams

= Since class diagrams deal with relationships between sets
and elements of sets

+ Defines primarily static semantics but can also be
used to specify dynamic semantics (e.g., through
pre- and post- statements on operations)

m 112 © Copyright Malina Software

MOF Mechanism: Association Specialization

accounts customers
BankAccount A BankCustomer
A A
C-accounts owner
Corporate Corporate
Account p 1 Customer
P-accounts owners .
Personal Private
Account Customer
1> 1..%

NB: tightened
constraint

More Refined Specification

{union} {union}

/accounts /customers
BankAccount BankCustomer

/\ 1.* 1.* N\

{sélbsets accounts} {subsets customers}
C-accounts owner
Corporate Corporate
Account p 1 Customer

{subsets accounts}

P-accounts owners .
Personal Private

Account Customer
1..° 1..*

{subsets customers}

114

Composition ("Black Diamond™) Associations

+ Implies "ownership” of one element by another

= i.e., An instance of Person owns an instance of String that
specifies that person's "name”

0..1 name

Person ‘ String

1 value

¢+ Semantics: "Deletion” semantics

= When the owner is removed, all its owned elements are also
removed with it

name
a: Person -‘ :String

value = “Bran”

15 © Copyright Malina Software

Key MOF Abstraction: Names and Namespaces

* Names are specified by Strings
* No pre-defined character set or size limit
= E.g.: “Alice”, "R2->D2", "4 Sale”, “Cenuh”, "ZFF", "
= NB: An empty name is a valid name

* A namespace is a model element that owns a collection of model
elements (that may be) distinguished by their names

» The features (attributes, operations, etc.) of a Class

= Used as a basis for specifying other MOF concepts: Package, Class,
Operation, etc.

+ General rules (may be further constrained in a profile)

= Names in a namespace are not necessarily unique (but is preferred)
- E.g. Two operations may have the same name but different parameter sets

- E.g.: an operation and an attribute of a class can have the same name

= Namespaces can contain other namespaces = hierarchical (qualified)
names

* Use of double-colon (::) to separate names in a qualified name

- E.g.: "System::CoolingSubsystem::ACUnit"

116 © Copyright Malina Software

The Concept of Visibility

¢+ Named elements owned by a MOF namespace have a
defined visibility:

= The capacity for an element to be referenced by other model
elements (possibly in other namespaces)

+ Pre-defined visibility kinds:

| public (+) |— named element is visible to all elements that can
namespace

= private (-) - visible only within the namespace that owns it

=| protected (#) |- visible only to elements in its extended
-e., its namespace and the namespaces of all
specializing classifiers - for classifier type namespaces only)

+ E.g., a Class attribute visible to all subclasses of that Class

= package - (~) visible only to other elements in the same package

- e.g., a Class attribute visible to all elements in the same Package as
the Class

117 © Copyright Malina Software

MOF Packages

* A Package is a means for grouping the parts of a
(meta)model

= Packages are (typically) not intended to model anything

= Analogous to file system folders

* A package is a kind of namespace

= Public elements from other packages can be imported into
the package namespace (analogous to “external” declarations
in programming)

- e O COPYright Malina Software o,

Package Diagrams

+ Show relationships (import, merge) between

119

packages in a model

= A design-time view

import
Kernel L - <_< - _p_ _ i s «modelLibrary»
UtilityClasses
\ A
‘ |
‘\ «merge» :
\

‘ !
|

: «import»
ExtendedKernel :
AL N i
) b S ~ |
s ~ |
«import» RO :
1

N\
Top

© Copyright Malina Software

Package Import Semantics

«import
_______________ >

+C

+E

Following importing, namespace X contains the

following names:
= A B, C, Y::C, E
= ...but not D

However, Y::C and E are not owned by X

© Copyright Malina Software

Package Import Semantics (cont'd)

Ab
X::B ° | x:c
Aay
et *\<i|mport
X::A +D \Q>\§

+B +C

+A

+ Y owns D and the associations

m 12! © Copyright Malina Software

Element Import

X

_______________ >

<

«import»

«import»

Y

->

+B

+E

same class

/

¥

-C

o

Y:

N

«import»

El|T""""" >

/ |<

+B

+E

An imported element can be given a local alias and a

local visibility

© Copyright Malina Software

Package Merge

+ Allows selective incremental concept extension

«mergey”’
7/

/

EMOF::Reflection 7

Y4

Object

/\

Element

getMetaClass()

InfrastructureLibrary

71

Element

&
T~

-

EMOF::Reflection

Object

/\

)

N

Element

getMetaClass() @

© Copyright Malina Software

Package Merge Semantics

124

+ A graphically-specified operation on packages and

their contents

= Extends definition and scope of a concept through an

increment

+ Why not just use subclassing?

= The additional specifications apply to the original concept

wherever it was used

Element

Object

/\

Object
Element

/\

We would need to replace Element
with the new ObjectElement class
in all parts of the model where

| Element originally appeared

© Copyright Malina Software

EMOF Metamodel: Modular (Mixin) Generalizations

+ A meta-modeling pattern for adding capabilities
using specialized superclasses

= Each increment adds a well-defined primitive capability

= To be used with extreme caution because it can lead to
semantic conflicts and overgeneralization problems

- Especially if the mixin classes have associations

PackageableElement MultiplicityElement NamedElement
A lower : Integer name: String [0..1]
upper : UnlimitedInteger A

/\

Property Operation Parameter

1 e ————————————————————————————————————© CopYfight Malina Software

Meta-Modeling Trap: Overgeneralization

¢ Fragment of the UML 2 metamodel (simplified):

120

ownhedElement|0..*

-
What does it

mean for a
Dependency to

own a Use Case?

N\

~

/\

0..1

|

Over-
generalization
owhnher |

Element F

/

s O Copyright Malina Software

Relationship

T

Dependency

Classifier

7

Use Case

Dealing with Overgeneralization

¢ Caused by "abstract” associations

+ Can sometimes be avoided using association
specialization (covariance) or constraints

ownedElement|0..*

owner
Element e A
0.1 /\
Relationship | Classifier - (fvﬁ,";’zg;
) Classifier
ownedElement->size() = 0 J Z’&

m 127 © Copyright Malina Software

RDFS - An Alternative to MOF

+ Resource Description Framework Schema (RDFS)

= A standardized format for knowledge (ontology)
representation and interchange on the World-Wide Web

= Standardized by the W3C consortium
* http://www.w3.org/standards/techs/rdf

+ Based on simple <object-attribute-value> paradigm:

Attribute
Resource Leo Tolstoy % Value J
(object) URI | author

> Doubleday Co.

http:llwvwv.Iibrary.orglboo@WarAndPeace publ isher

etc.
] content /

[E"COded using an http://www.library.org/content#WarAndPeace

XML syntax

= © Copyright Malina Software

RDFS Metamodel (simplified)

+ Everything is a resource (identified by a URT)

subject

> RDFSResource <

localName : String object
namespace : String [€

uri : String 1 RDFSLiteral
/\ 1'“predicate

RDFStatement
q Properties can be A foma
defined independently RDFProperty 5 RDFClass
of Resources and can 0..*
be associated with range
\ multiple classes Y, 0.*

129 © Copyright Malina Software

Tutorial Outline

¢+ On Models and Model-Based Software Engineering

¢+ The Key Dimensions of Modeling Language Design

+ Defining a Modeling Language

O[Case Study: UML]
+ Language Refinement: UML Profiles

* Model Transformations

The First Cut

g

vvvvvv
e

,,,,,,,,

1 i" Ty :
. Sompany <
[T \‘,,1 o
' Worker ,-_:\‘ Manager LQ“:‘Q“L Department ‘:‘ [HD[IEI-IH
..__J,“,]\V,,.‘ .\7{“,_,/ g
) s LENGUAGE
% /
N/ T - Tia
4 g
n : :
.«"8“-"’“‘-\ { Produst
P projert g
3) i i
L AR
I 7 Y
5 A
e ML e
; Ci:::::'ne ; ¥ Optional Extra’

" The primary intent A
was to facilitate
documentation of the
| results of analysis and

: .
A design. Y

131 © Copyright Malina Software

»»»»»»

nnnnn
uuuuuuuuuu

wwwww

UML Roots and Evolution: UML 1

UML 1.5 (Action Semantics)
UML 1.4 (bug fixes)
UML 1.3 (profiles)

UML 1.1 (First OMG Standard)

L [I
Rumbaugh | Booch Harel Jacobson

[I

Semantic Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,...)

————————— 1967

© Copyright Malina Software

UML Roots and Evolution: UML 2

UML 2.0 (MDA)

UML 1.5 (Action Semantics)
UML 1.4 (bug fixes)
UML 1.3 (profiles)

UML 1.1 (First OMG Standard)

C — T 1996
Rumbaugh | Booch Harel Jacobson
[[
Semantic Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,...)
--------- 1967

m 133 © Copyright Malina Software

UML 1 vs UML 2

¢+ UML 1 was intended primarily as a design and
documentation tool

= Informal and semi-formal definition

= Overlapping and ambiguous concepts
¢+ UML 2 is intended to support MDA

= Much more formal and precise definition
- Executable UML Foundation

= Opens up potential to use UML as an implementation language
¢+ UML 2 added capabilities

= Highly-modular language architecture

= Improved large-system modeling capability

- Interactions, collaboration (instance) structures, activities all
defined recursively for scalability

= More powerful language extensibility capability

134 © Copyright Malina Software

UML 2 Language Architecture

L 4

A user-selectable collection of different languages for different needs
based on a set of shared conceptual cores

+ Organized into user-selectable increments of increasing sophistication

L3 A L3 A L3 A L3 A L3 A
L2 A L2 A L2 A

Flow-Based
Behavior Core

Deployments
Components (L3)

(L2)

L2 | L3
Al A
L2 | L3
Al A

D o ———n~ © COopYright Malina Software

UML Language Compliance Levels

*

*

*

1306

4 |levels of compliance (LO - L3)
= compliance(Lx) = compliance (Lx-1)
Dimensions of compliance:
= Abstract syntax (UML metamodel, XMI interchange)
= Concrete syntax
- Optional Diagram Interchange compliance
Forms of compliance
» Abstract syntax
= Concrete syntax
= Abstract and concrete syntax
= Abstract and concrete syntax with diagram interchange

However, this architecture has been deemed as too complex
for implementation and the compliance levels and the use of

package merge in the definition of UML are being eliminated in
UML 2.5 (due in 2012)

© Copyright Malina Software

UML Language Specification Format

137

+ Abstract Syntax
= Concepts, their features, and mutual relationships

= Described by a MOF metamodel + additional constraints
(OCL or English)

¢ Concrete Syntax
= Notation (diagrams, text, tables, graphical representation)

= UML concrete syntax definition is incomplete and informally
defined

= XML-based Interchange format (XMTI)
+ Language Semantics

= The meaning of UML models and the concepts used to
express them

= English (+ fUML model + mathematical model)

© Copyright Malina Software

UML Concrete
Syntax

General Diagram Format

+ An optional structured form for UML
diagrams /HE ADER

[<c\|iagramKind>] <diagramName> [<parameters>])

\ DIAGRAM CONTENTS AREA

\ pkg TopPkgDiagram .
act

class
cmp <« »

:gp PkgA [------ > PkgB
pkg
stm
uc

m 137 © Copyright Malina Software

UML Concrete Syntax: Diagram Types

UML Diagram

N\

140

Structure Behavior
Diagram Diagram
Instance Class Activity Statechart
Diagram Diagram Diagram Diagram
Deployment Package Interaction UseCase
Diagram Diagram Diagram Diagram
Collaboration Composite /\
Diagram Structure Timing Interaction
Diagram Overview
Profile Sequence Communication
Diagram Diagram Diagram

s O Copyright Malina Software

UML Concrete Syntax

+ Incomplete and informally defined

= No definitive rules on what is a valid syntactical construction

= Creates difficulties in model interchange and confuses users

¢ The relationship between concrete and abstract syntax
is not fully defined

= The "Diagram Interchange” specification defines a one-way link
from the concrete syntax elements of a model (e.g., diagrams)
to the abstract syntax elements

= Allows for multiple different representations of a given model
(e.g., textual, graphical)

+ A standard "Diagram Definition” specification has
recently been adopted by the OMG

= Can serve as a basis for a precise and complete specification
of the concrete syntax of UML and other MDA languages

111 © Copyright Malina Software

UML Abstract
Syntax

New Approach to the UML Metamodel

143

In UML 2, a more incremental approach was used to
define the abstract syntax (compared to UML 1)

= Based on a core of fine-grained abstract concepts (e.g.,
namespace, multiplicity, redefinition)

= More complex concepts derived using mixin-based
composition of core concepts and package merge

= More refined semantics through the use of association
specialization

Enables:

= Cleaner definition of core semantics (concepts are isolated
from each other)

= More flexible definition of complex concepts
= Simpler evolution and extension

© Copyright Malina Software

The Root of the UML Metamodel

Teubzets owner: {subsets ownedElerment

+ ovwningElemerit + ovnedComiment
Elomont ‘: | COImMIment
0.1 7 Represents the A
Jreadonly, union} generalization (union)
- of all varieties of

, compositions between
0.1 \concepts)
+ [Dwener

{r=adOnly, unionk

{readonly, urion}

+ IrelatecElemert _ e — + annaotatedElement Comment

q - % body - String

Refationship

freadOnly, union,

subszets relatedElernent
foﬂﬂfﬂﬂﬂ'ﬂfﬂﬂ#ﬂ#ﬂfp + ftarget -
1.+

%

+ IZOUMCE.,
-

* 1.%
{readonly, Lnian,
subsets relatecElernent -

144

The Namespaces Metamodel

145

MamedEfemeant
hame String [@..1]
visibiity : VisibifityKind [0.1)
fgqualifiediiame © String [0.1]

T

«anumerations
VisibilityKind
public
private
protectecd
package

{readOnly, subsets member} *

Introduces capability
to be part of a
package

PackageableElament A

visibilihy - WisibaliyEind

Namespace

+ Amportecdidember

{readOnly, union,

sibsets owner}
+ hamespace

Zoogl
+=| NamedEfement |

+ fmemier

{readCnly, union}

0.1

+ lownedhlember

{readOnly, union, subsets
member, subsets ownedElement}

. VOPYN9nt marina Software

Adding Namespace Relationships

140

ﬁi.‘. senumerations
VisibilityKind
NamedElomant public o~
hame © String [0..1] private
visdbiity ; VisibilityKind [0.1] protected
fgqualifiediiame © String [0.1] package
PackageableElament

{readOnly, subsets member} *

visibilihy - WisibaliyEind

Namespace

’_____

+ fmportedidember
Tl
- +=| NamedEfement |
) + Mmember s | + fownedidember
{;E;jec;;'z:” ﬂr:i_m {readOnly, union} {readOnly, union, subsets
+ amespace member, subsets ownedElement}

[F I I I I I _—
DirectodRalationship \

{subsets source, subsets ownert
+ importingiamespace

{subisake

+ elementimport

vizibility | VisibiityRind
allaz String [0 1]

ownedElement

{subsets source,
subseks ownert
+ impoHinghamespace

{subsets cwnedElement}

+ packagelmport

DirectedRelationship

Packagelmport

vigibility | Visbildykindg

+ importedPackage

{subsets target}

{subsets target)

o L |
© Copyright

+ importedElament

PackageabloEioment

!
7

Malina Software fr—

Types Metamodel

NamedElement PachkageableElement
TypedElement + type
* d.1 > pe

+ NB: typed elements may not actually have a type
declared (lower bound of TypedElement::type = 0)

= To support incomplete models

m 117 © Copyright Malina Software

Packages Metamodel

| Paciageabictioment |
4{zubssts namespace} Tsubsats ownedtMembart
+ owningPackags + paclaged Element
Paclkage - }} PackagebieElement I
LRI : Strirg [D..1] 0.1 *
4zubs=sts owningFackage) Tsubsets packaged Element}
+ package + fovened Type
[Tvee |
0.1 *

+ [/ rested Package

L3

¥,

+ niesting Package

Tsubssts owningFackage)

N e ———————© CopYfight Malina Software

149

Captures some semantics for elements of a

namespace

Expressed in either formal or natural language

= E.g., Object Constraint Language (OCL), English, Australian

Notation choices:

Stack

size : Integer {size >= 0}

Stack

{size >= O}ﬁ

IN LINE

size : Integer

ATTACHED NOTE

© Copyright Malina Software

Constraints Metamodel

Namespace

PackegeableElement
‘T‘ {ordered})
Constraint " I:unstralredElernenth‘ Efement
-~
+
{subsets {subsets owirar} Lsubsets ownedElernent
{SUhSI::SIrt‘lamEﬂ:laEE} DWHEdI"-"IE!B'jﬂFi{:I?r} + oywningConstrant +specification,_ | vajweSpecification
+ corte + owvnecdRule ~ ;

0.1

* ValueSpecification: modeling element that contains an
expression which evaluates to a Boolean value
(true/false)

¢+ The namespace can be a Class, Package, Interface, etc.

© Copyright Malina Software

Core Structural Concepts: Values

+ Value: universal, unique, and unchanging

= Numbers, characters, strings
= Represented by a symbol (e.g., 7, VII, "a”, “fubar”)
= Includes object identifiers ("InstanceValue™)

= Represented by ValueSpecification in the UML metamodel

| TypadElement | | PackagesbieHement |
{ordered, susets ownedEl ment) T
+ operand
2| ValueSpecification |
0.1
& Expression OpagueExpression | LiteraiSpeciication | | InstanceVaiue |
symid : Swng bady : Sring {ordard, nonunique} .

| Enquage : Sting {orderad) + isfane\alue
+ expresion
{subsets owner} .

1 f & FEENE
| Literaltiul | | Literalnteger | LiteralString | Instancespecification |

[LiteralBooiean | | literalReal | | LiteralniimitedNatural |

© Copyright Malina Software

Core Structural Concepts: Objects

+ "Value containers”: a (physical) space for storing values

= Can be created and destroyed dynamically
= Limited to storing only values conforming to a given type
= The stored value may be changed (e.g., variables, attributes)

= Multiple forms in UML: variables, attribute slots, objects

¢+ Object: a complex value container with a unique identity
conforming to a Class type

= May own attribute slots (containers for attribute values)

= May be capable of performing behaviours (operations, etc.)
= Identity does not change during its lifecycle

= ...but its type could change over type (type reclassification)

B e ——© CopYfight Malina Software

Specifying Instances in UML

+ InstanceSpecification: a generic facility for modeling
objects and other things that occupy memory space

¢ The metamodel

PackageableFlement I

Fy
{subsets {subsets ownedElement,
1subsets Iclgner} owhnedElernent - ;{SDLJEHSEESE,[W”H} ordered’ | |
+ ovvninginstance + zlot rWEAME | ValueSpecification
InstanceSpecification p —| Slot 01 -1 s I
| * + definingFesture

1}! SirucipraliFoature |

{subsets owner} Isubsets ownedElement
+ owvninginstance=pec -~ & SF:'EDIfIDE‘tDD‘J
= VafuaSpecification I

0.1 0.1

+ classifier,_|
"'I Ciassifrer |
*

m 153 © Copyright Malina Software

Multiplicity Concept

Adult

name : St@ [0..%]

parent

child

Child

| Multiplicity {

Multiplicity

1..2

name : Strinw..*]

Multiplicity

Fl\ultiplici'ry |

* For specifying usages that are collections

¢+ Attributes, association ends, parameters, etc.

+ Can specify ranges (upper and lower bounds)

154

= O = absence of elements

= * (or [0..*]) = open-ended upper bound

© Copyright Malina Software

Multiplicity Modifiers

Adult

name : String [0..*]

parent

child

Child

1..2

name : String [0..*]

0.”
{unique,
ordered}

e

L

modifiers

Multiplicity]

+ {unique} = no two elements of the collection can have the
same value

Default value: #ruve

= {nonunique} if false

* {ordered} = the elements in the collection are ordered in
some appropriate manner (= an ordered collection)

Default value: false = {unordered}

© Copyright Malina Software

Multiplicities Metamodel

Element
MuttiplicityElement {subsets owner} {subsets ownedElement]
iaCrdfered | Doolean + cwninglipper + uppervalle. | yajueSpecification
isUinique | Boolean 0 1 01"
fupper : UnlimitedNatural [0..1] [aibsats owner {subsets ownedElement}
fower : integer [0.1] + owninglower + IDWEr’“v’al_llueaI 5
.1 -

B e ———© CopYfight Malina Software

The UML Concept of Classifier

* A classifier is a specification of a collection of
entities (things, concepts, etc.) that

1. Share a set of characteristics (features) and which

2. Can be classified (divided) into sub-collections according to
the nature of some of their characteristics

+ E.g., people can be classified based on their gender
info men and women

= . . .or, they may be classified according to their age into
adults and children

¢ Kinds of Classifiers in UML:

= Classes, Associations, AssociationClasses, DataTypes,
Enumerations, Interfaces, Behaviors (Activities,
Interactions, StateMachines), Signals, UseCases,
Collaborations, Components, Nodes, etc.

157 © Copyright Malina Software

UML Classifier Concept

+ Introduces concepts that can be:

» Classified based on the nature of their features

= (Generalized/specialized

R

i i

Classiffer

+ imAiedrac : Gadean
+ izFiral Sedaizaian | Sade. ..

e adnaly ufion,
Aukeseks membery DirectedReh Forship
+ Fedure * Laakseks sounE, Taakmets divecbed e Aianin,
| Fea ke AukEas awre AukEaks awreddemen:
+ fMedwingdasdfier + speciflc + ey dization
Ao . ol {32 na rlization
ey, uio, 1 = F BRI Badea 0] Te
StrucgraFeatre | ey, wiiar, mtmets et a0
red=firatl=Elamand,
et fedium] 1
+ ke 0.1
Property | + gereval + gErealTaion
+ ch=zifiar Taukemehs bargets: Taseks drechedfel abarshin
Imime s redefiifian Caned,
et f=a ingClam=iier] = = + dgEredal

m 138 © Copyright Malina Software

Redefinition in UML

’_____‘

Introduces capability
to be redefined (in a

)2l e Aty uion ‘
sub-classifier)

+ feedeflneds lerent

+ redeflnabledenent I

' feadtaly, sl meake’

TFoe | NMam es pace |

’ I e Iy
+ fintevitedrianher

Clas=ifier ‘
+ dazifley |+ isAisl@c @ Gode=an {mizet= redeliied Bernend]
izFirAl Hedaizaian Gade... + redefied Ol eif e

Saabeeks mambamlanesiace:

+ ml_eai Baal=an
!

T T

+ redefrEile Banerd + bredefiridonCortlexd

+ daz=iier

Tmaddnly, uiiat] Irutee b pedefivate Barne]

____/

Eadbaly uion,
DirectedRef Fomshin
W | — {Aabisets saure, {Aabisets diveded e FonHin,
AR G Abmes Gwreddement
. + Mesbyingdasdiie ¥ Specife + generaizion
Ao . ol {32 na rlization
ey, uio, 1 = F BRI Badea 0] Te
StrucgraFeatre | ey, wiiar, mtmets et a0
redefivai aElarnad,
et fedium] 1 .
+ e 0.1
P‘mp-z_lrl]' + peeal + geedalaan
* + clamifer {aukmsehs Earger auhseks diechad felabanshin
fruiisets redefiiiian Cani=d,
et f=a ingClam=iier] = = + dgEredal

m 157 © Copyright Malina Software

Classifier Features

+ Two basic kinds:

= Structural features (e.g., attributes, associations)

= Behavioural features (e.g., operations, receptions)

¢ Structural features are type usages and have:
= Multiplicity
= Visibility
= Scope [static(classifier), instance]

- Static features are singletons and apply to the classifier as a
whole rather than individual instances

+ Behavioural features have
= Visibility and scope

160

© Copyright Malina Software

Features Metamodel

L readOnly, union}

+ Jrermber + memberNamespace

| NamedEtement

: ;

| Namespace

Red e {readOnby, unian, TreadOnly, urion, Subsets
| eﬁnab.fefil t subsets member} membera mespace }
+ ffeature + JfeaturirmClassifier
Feafure Classifier
s * * '
1.1 + fownedMember
Namespace |‘~ I NamedElement
FiS + framespaces *
| Muliplc EyElement MultiplicityElentent
FAY FiY
TypedElement
| TwedEement
l|5 {ordered, subsets ownedMemnber}
StructuralFeature BehavioralFeature 0.1 + owinedParameter
+ isReadOnly : Boolean -> N | Parameter

+ owrerFormalParam

{subsets namespace}

*® + raised Exception
p
I| Type

m 10!

+ behavioralFeature *

s O Copyright Malina Software

Class and Association Metamodel

{subsets namespace, subsets {ordered, subsets owredMember

) redefinitionContect} subsets redefinableElement
+ class + restedClassifier
Class (4 Classifter
&1 *
{subsets featuringCassifier, {ordered, subsets feature,
subsets redefinitionContext, subsets redefinableElement,
subsets namespace) subsets owredMember}
+ class + ownedOperation
o J| Qperation
o1 *
_ {ordered, readonly, | Retationship | | Classifier |
{redefines general} subsets relatedElement} {subsets relatiorship}) 7
+ fendType + association | |
* + fsuperClass Type lﬁ\ Association
* 4 glass 1% * + isDerned : Boolean = false
R wp— 0.1
‘ {subsets classifier} + owninghssociation
&1 + class + association {subsets association,
{subsets classifier, subsets namespace) {subsets memberiamespace} subsets featuringClassifier

D1 subsets namespace)

Structural Feature _
+ assotiation
{ordered, subsets member}

subsets owningissociation
‘ % + memberEnd i ra '

Jordered, subsets attribute, .
subsets owred Members Proparty
+ owrednttribute | Tis0erived : Boolean = false
+ isFeadOnly | Boolean = false [red efines isFaadOniy + navigableDwredErd
. + isDrerivedUnion : Boolean = false {subsets ovnedEnd}
+idefautt © Strirg [0..1]
+ anaregation | Aggresationkird = rone *
+lisGomposite | Boolean
" +isll ; Bodlean [0..1] + ownedErd
{ordered, subsets memberErd, subsets feature,
+ redefinedF roperty subsets owred Member}
{subsets redefiredElement} + subsettedProperty
{subsets redefinableElement} .
+ property *

L1 D + joppositE

0.1 + ownirgP roperty’
{subsets owrer}

AggregationKind

{subsets owred Element} Irone
+ defaultvalue shared
fomposite

— |
| ValueSpecification

.1

O e © COPYright Malina Software

¢+ An informal statement that one or more “client”
items require one or more "supplier” items in_some

way

= A change in a supplier affects the clients (in some way)

= Semantics are very open (loose), but can be specialized

Optional
Factory lr.l‘zfnr‘e-defmed J Factory
' 0
. «manufacturedBy» . If<_rrla_n_u_fa_c_tluredBy»
Car Car Motorcycle

O o ——© COPYtight Malina Software o,

Dependencies Metamodel

+ In general, dependencies can be drawn between any
two named elements in the model

|
LML ::Classes::Kernel: PackageableE lement
DirectedRelationship

UL ::Classes:: [‘& [‘&

. + supplier subsets karget
Dependencies:: S i gett - Dependency
MNamedElement - + supplierDependency
+ client
1.2
+ clientDependency

{zubsets source}

164

UML Semantics

Foundational UML (fUML) and Basic UML (bUML)

+ A subset of fUML actions is used as a core language (Basic
UML) that is used to describe fUML itself

Foundational UML (fUML) action semantics
(action executions, token flows, etc.)

Maps to
(Operational
Specification)

A

Basic UML action semantics (bUML)

Maps to (Axiomatic Specification)

A\ 4

Formal mathematical model
(Process Specification Language)

Basis for a formalization of UML

166 © Copyright Malina Software

UML Model of Computation

167

¢

¢

¢

Structure dominant
= All behavior stems from (active) objects

Distributed

= Multiple sites of execution (“localities™)

Concurrent

= Active objects = multiple threads of execution

Heterogeneous causality model
= Event driven at the highest level

= Data and control flow driven at more detailed levels

Heterogeneous interaction model

= Synchronous, asynchronous, mixed

© Copyright Malina Software

UML Run-Time (Dynamic) Semantics Architecture

Activities Staj‘e Interactions
Machines

Behavioral Semantic Base

Flow-Based Behavior Semantics
Object Existence Inter-object Comms

Structural Semantic Base (Objects)

m 168 © Copyright Malina Software

UML Model of Causality (How Things Happen)

+ A discrete event-driven model of computation
= Network of communicating objects
+ All behaviour stems from objects

169

=

al:A1l

I obj2:C2
C="w @
| act2 |
=
obj3:C1
¥
«C=

X

a2:A2

© Copyright Malina Software

How Things Happen in UML

+ An action is executed by an object

= May change the contents of one or more variables or slots
= If it is a communication ("messaging”) action, it may:

- Invoke an operation on another object

- Send a signal to another object

- Either one will eventually cause the execution of a procedure on
the target object...

- _.which will cause other actions to be executed, etc.
= Successor actions are executed

+ Determined either by control flow or data flow

B e ———© CopYfight Malina Software

Basic Structural Elements

¢+ Values

= Universal, unique, constant

= E.g. Numbers, characters, object identifiers (“instance value”)

+ "“Cells” (Slots/Variables)

= Container for values or objects
= Can be created and destroyed dynamically
= Constrained by a type
* Have identity (independent of contents)
+ Objects (Instances)
= Containers of slots (corresponding to structural features)
= Just a special kind of cell
¢ Links
= Tuples of object identifiers
= May have identity (i.e., some links are objects)
= Can be created and destroyed dynamically

= 171 © Copyright Malina Software

Relationship Between Structure and Behaviour

* From the UML metamodel:

Feature | =**— Classifier Class
Zl Z Because:)
when
el executed,
0-1 cB“:avlr:ae\(ljior a SPeCial
Class o o Behavior “execution”
. text) object is
>t Behaviored | ™ /\ reated
Collaboration Classifier
UseCase
Activity StateMachine Interaction OpaqueBehavior
7 N NG

/ \
{For flow-baseﬁ [For event-driven } [For event-driven]

behaviours behaviours system behaviours

m 172 © Copyright Malina Software

Classifier Behaviours vs.Methods

173

¢ Methods: Intended primarily for passive objects

Can be synchronous (for operations) or asynchronous (for receptions)

¢ Classifier behaviour: Intended primarily for active objects

Executed when the object is created

0.1 owned 0..1
Behavi]
o ‘:o*r Behavior €—
. text "
Behaviored comex classifier 0..* | method)
CIaSSiﬁeI' Behavior | 0..1 0..
0.1 Parameter
specification |0..1 0.*
Behavioral
Feajure ‘01
|
Operation Reception

© Copyright Malina Software

Active Object Definition

+ Active object definition:

An active object is an object that, as a direct
consequence of its creation, commences to execute its
classifier behavior, and does not cease until either the
complete behavior is executed or the object is
terminated by some external object.

+ Also:

The points at which an active object responds to
[messages received] from other objects is determined
szle/y y the behavior specification of the active
object. ..

~

Parallel lines
used to
distinguish from

/\passive classes y

AnActiveClass

m 171 © Copyright Malina Software

Passive vs. Active Objects

¢+ Passive objects respond whenever an operation (or
reception) of theirs is invoked

= NB: invocations may be concurrent = conflicts possiblel

+ Active objects run concurrently and respond only
when they execute a "receive” action

al: az2: al: az2:
setA(1)l lgetA() rqu()l l reqA()
obj:C active:A
Message queue

~

Event selection
based on chosen regA | | reqB

scheduling policy 7

getA() : Integer

setA(a:Integer) L

175 © Copyright Malina Software

Run-To-Completion (RTC) Semantics

176

+ Any messages arriving between successive “receive”
actions are queued and only considered for handling
on the next “receive” action

= Simple “one thing at a time” approach

= Avoids concurrency conflicts

Message queue”

reqC k|

'> Receive

A 4

) Receive

© Copyright Malina Software

The Problem with RTC

¢+ Message (event) priority: in some systems (e.g.,
real-time systems) messages may be assigned
different priorities

* To differentiate important (high priority) events from those
that are less so and to give them priority handling (e.g.,
interrupting handling of a low priority message)

¢ Priority inversion: The situation that occurs when a
high priority message has to wait for a low priority
message

¢ The RTC approach is susceptible to priority
/nversion

= But, it is limited to situations where the high-priority and
low-priority events are being handled by the same object
(rather than the system as a whole)

177

s O Copyright Malina Software

RTC Semantics

+ If a high priority event arrives for an object that
is ready to receive it, the processing of any low
priority events by other active objects can be

interrupted
Active1l Active?2

I |
| |
I |
1 |
|
o hi (queue I
________ d) hi !
Handling of low ; ﬂ
priority event oo |
suspended while H |
high priority !

\.event is processed

priority event can commence at

Processing of queued high
this point

178 © Copyright Malina Software

UML Communications Types

+ Synchronous communications: (Call and wait)

= Calling an operation synchronously

+ Asynchronous communications: (Send and continue)
= Sending a signhal to a reception

= Asynchronous call of an operation (any replies discarded)

Object1 Object2 Objecti Object2
1 | 1 |
I I I I
I L I
I I
call opX() : send sigX() :
L opX method sigX method
0 reply executing executing
I 1 I
I I I
I I I
' Synchronous ' 'Asynchronous'
Communications Communications

m 17 © Copyright Malina Software

Purpose of UML Actions

* For modelling fine-grained behavioural phenomena which
manipulates and accesses UML entities (objects, links,
attributes, operations, etc.)

= E.g. create link, write attribute, destroy object
= A kind of UML "assembler”

¢ The UML standard defines:

= A set of actions and their semantics (i.e., what happens when
the actions are executed)

= A method for combining actions to construct more complex
behaviours

* The standard does not define:
= A concrete syntax (notation) for individual kinds of actions

= Proposal exists for a concrete semantics for UML Actions

180 © Copyright Malina Software

Categories of UML Actions

181

Capabilities covered
= Communication actions (send, call, receive,...)
= Primitive function action

= Object actions (create, destroy, reclassify,start,...)

= Structural feature actions (read, write, clear,...)
= Link actions (create, destroy, read, write,...)

= Variable actions (read, write, clear,...)

= Exception action (raise)

Capabilities not covered

= Standard control constructs (IF, LOOP, etc. - handled through

Activities)
= Input-output

0 Comru'ra'rions of any kind (arithmetic, Boolean logic, higher-

level functions)

© Copyright Malina Software

Action Specifications and Action Executions

Action Specification (a design-time specification)

‘ Input Pin \ k

first:

second:

-(at :TestldentityAction\

result : Boolean

J ‘ Output Pin \

Action Execution (a run-time concept)

object1:C1

[oy M
S\
-~
second:

object2:C1

-—

-

al[i]l:Testldentity

ActionExecution

&

~

result : Boolean

- ______ > false

(value)

J

NB: each time action al needs fo be executed,
a new action execution is created

© Copyright Malina Software

Combining Actions

* Data flow MoC: output to input connections

Contention (a2 and a3) Data replication

+ Control flow MoC: identifying successor actions

i1:T1 1-
] at: a2:]o1:T3 i1:T3 n
i2:T2 H—
] asS: |o1:T3
> /=
)

m 183 © Copyright Malina Software

Controlling Execution: Token Passing

+ Execution order can be modeled as an exchange of
data/control “tokens” between nodes

i1 T1
01: T3 i1:T3

+ General execution rules:

= All tokens have to be available before actions execute

‘;ﬂ
ﬂ~r

= Tokens are offered only after action execution completes

m 184 © Copyright Malina Software

Summary: UML Semantics

¢+ The UML model of computation is:

Structure dominant

Distributed

Concurrent

Event driven (at the highest level)

Data and control flow driven (at finer grained levels)

Supports different interaction models

* The core part of the UML semantics is defined
formally

= Provides an opportunity for automated formal analyses

© Copyright Malina Software

Tutorial Outline

¢+ On Models and Model-Based Software Engineering

¢+ The Key Dimensions of Modeling Language Design

+ Defining a Modeling Language

¢ Case Study: UML

*[Language Refinement: UML Profiles]

* Model Transformations

UML as a Platform for DSMLs

+ DSML = Domain-Specific Modeling Language

+ Designed as a "family of modeling languages”

= Contains a set of semantic variation points (SVPs) where the
full semantics are either unspecified or ambiguous

= SVP examples:
» Precise type compatibility rules

- Communications properties of communication links (delivery
semantics, reliability, etc.)

» Multi-tasking scheduling policies

= Enables domain-specific customization

+ Open to both extension ("heavyweight” extension)
and refinement (“lightweight” extension)

187 © Copyright Malina Software

Example: Adding a Semaphore Concept to UML

+ Semaphore semantics:

* A specialized object that limits the number of concurrent
accesses in a multithreaded environment. When that limit is
reached, subseguent accesses are suspended until one of
the accessing threads releases the semaphore, at which
point the earliest suspended access is given access.

* What is required is a special kind of object
= Has all the general characteristics of UML objects

= __but adds refinements

O e ———————————————————————© CopYfight Malina Software

Example: The Semaphore Stereotype

+ Design choice: Refine the UML Class concept by
= “Attaching” semaphore semantics
- Done informally as part of the stereotype definition
= Adding constraints that capture semaphore semantics

+ E.g., when the maximum number of concurrent accesses is reached,
subsequent access requests are queued in FIFO order

= Adding characteristic attributes (e.g., concurrency limit)

= Adding characteristic operations (getSemaphore (),
releaseSemaphore ())

¢+ Create a new "subclass” of the original metaclass with
the above refinements

= For technical reasons, this is done using special mechanisms
instead of MOF Generalization (see slide Why are Stereotypes
Needed?)

189 © Copyright Malina Software

Example: Graphical Definition of the Stereotype

190

Special icon
(Optional)

|

«metaclass»

«stereotype»
Semaphore

UML::Class “Extension”]
A/%

limit : Integer
getSema : Operation
relSema : Operation

limit <= MAXlimit
AN

N

Constraints]

© Copyright Malina Software

Example: Applying the Stereotype

Object

print()

/\

«semaphore» «semaphore»
DijkstraSem BinarySem SomeOtherClass

p() get ()
v() release ()

«semaphore» «semaphore»
limit = MAXIlimit limit = 1
getSema =p getSema = get
relSema=v relSema = release

L o ——© CopYright Malina Software

The Semantics of Stereotype Application

192

BinarySem

get ()
release ()

N

(' NB: attaching a)
stereotype does
not change the

. original!

«semaphore»

BinarySem

get ()
release ()

«semaphore»

limit =1
getSema = get
relSema = release

:Class

~

«semaphore»
limit=1
,l' getSema = get
II relSema = release
1
:Class

name = “BinarySem”

name = “BinarySem”

N

¢ ¢

A

:Operation

:Operation

:Operation

:Operation

name = “get”

name = “release”

name = “get”

name = “release”

© Copyright Malina Software

Stereotype Representation Options

193

«semaphore»

MySema

© Copyright Malina Software

Why are Stereotypes Needed?

* Why not simply create a new metaclass?

MOF
generalization

Semaphore

Rationale:

1. Not all modeling tools support meta-modeling = need to
define (M2) extensions using (M1) models

2. Need for special semantics for the extensions:

— multiple extensions for a single stereotype
— extension of abstract classes (applicable to all subclasses)

194 © Copyright Malina Software

The MOF Semantics of UML Extension

¢+ How a stereotype is attached to its base class
within a model repository:

“Base” metaclass Stereotype
UML::Class ‘/base_CIass 0..1 Semaphore
: MOF::Class 1 extension_Semaphore | : MOF::Stereotype

Association ends naming convention:
base_<base-class—name>
extension_<stereotype—-name>

Required for writing correct OCL constraints
for stereotypes

195 © Copyright Malina Software

Example: OCL Constraint for a Stereotype

“Base” metaclass Stereotype
UML::Class ‘/base_CIass 0..1 Semaphore
: MOF::Class 1 extension_Semaphore | : MOF::Stereotype

+ Semaphore constraint:
the base Class must have an owned ordered attribute
called "msgQ” of type Message

context Semaphore inv:
self .base_Class.ownedAttribute->
exists (a | (a.name = ‘msgQ’)
and (a.type—>notEmpty())
and (a.type = Message)
and (a.isOrdered)
and (a.upperValue = self.limit))

1906

Adding New Meta-Associations

197

+ This was not possible in UML 1.x profiles

Meta-associations represent semantic relationships between
modeling concepts

New meta-associations create new semantic relationships

Possibility that some tools will not be able to handle such

additions

+ UML 2.0 capability added via stereotype attribute

types:

To be used with carel

«metaclass»

UML::Class

between Class and

(Creates an association

Message that does not

<

exist in UML

/

«stereotype»
Semaphore/ |
/

msgQ : Message [0..%]

© Copyright Malina Software

UML Profiles

* Profile: A special kind of package containing
stereotypes and model libraries that, in conjunction
with the UML metamodel, define a group of domain-
specific concepts and relationships

» The profile mechanism is also available in MOF where it can
be used for other MOF-based languages

* Profiles can be used for two different purposes:
= To define a domain-specific modeling language

= To define a domain-specific viewpoint (cast profiles)

198

- e O COPYright Malina Software o,

Re-Casting Models Using Profiles

+ A profile can be dynamically applied or unapplied to a
given model

= Without changing the original model

199

= Allows a model to be interpreted from the perspective of a
specific domain

¢+ Example: viewing a UML model fragment as a queueing
network

useri

user2

DBase

N
e

-1 arrivalRate = . . . 1
«client»
user1 \
«server»
DBase
«client» / -
user2
serviceRate = . . 1
arrivalRate = . . .

© Copyright Malina Software

Multi-Base Stereotypes

+ A domain concept may be a specialization of more
than one base language concept

NB: stereotyping an
abstract class

e
- -~
~

- LSO «metaclass» «metaclass»
// SemCollaboration . UML - UML
. N ConnectableElement Class
/ \
N client1 \ \
] \
| «semaphore» :
\ / Sem /
\
\ . /'
\\ client2 e /«stereotype»
N .’ Semaphore

S~ -
e - -

NB: disjunctive semantics
(unlike generalization)

J

- s O Copyright Malina Software

Analysis with Cast Profiles

+ E.g., recast a model as a queueing network model

M2M Transform }

Modeling

Tool Model Analysis

Tool

4
N

i
31 25 (W
W

5

QoS annotations J Inverse M2M Tr'ansform}

m 201 © Copyright Malina Software

"Required” Extensions

¢+ An extension can be marked as “required”

= Implies that every instance of the base class will be
stereotyped by that stereotype

-+ Used by modeling tools to autogenerate the stereotype instances

= Facilitates working in a DSML context by avoiding manual
stereotyping for every case

= E.g., modeling Java

«metaclass»

UML::Class

A

{required}

«stereotype»
JavaClass

202 © Copyright Malina Software

Strict Profile Application

* A strict application of a profile will hide from view
all model elements that do not have a corresponding
stereotype in that profile

= Convenient for generating views

+ Strictness is a characteristic of the profile
application and not of the profile itself

= Any given profile can be applied either way

s O Copyright Malina Software

Metamodel Subsetting with Profiles (1)

¢ It is often useful to remove segments of the full
UML metamodel resulting in a minimal DSML
definition
= NB: Different mechanism from strict profile application -

the hiding is part of the profile definition and cannot be
applied selectively

* The UML 2.1 profile mechanism adds controls that
define which parts of the metamodel are used

= Based on refinement of the package import and element
import capabilities of UML

2041

s O Copyright Malina Software

Metamodel Subsetting with Profiles (2)

¢ Case 1: Metamodel Reference

= All elements of the referenced MOF package (PackageX) are visible (but
not the elements of PackageY)

= These elements can also serve as the base metaclasses for stereotypes in

MyProfile
]
| |

«reference» PackageX

PackageY

Case 2: Explicit Metaclass Reference
Metaclass Q is visible and can serve as a base metaclass for stereotypes in

MyProfil
yProfile NB: Care must be

taken to ensure that
all prerequisite parts
PackageX for Q (superclasses,
merge increments,
etc.) are also

L — /vefer'enced -

«reference» Q
____________ — o = dhes >

m 205 © Copyright Malina Software

Metamodel Subsetting with Profiles (3)

+ Case 3: Implicit metaclass reference

= Metaclass M is visible

<<profi|e» MyProfile MetamodelZ

«metaclass»
MetamodelZ::M

«stereotype»
S

206 © Copyright Malina Software

Model Libraries

+ M1 level model fragments packaged for reuse
= Identified by the «modelLibrary» standard stereotype

+ Can be incorporated into a profile
= Makes them formally part of the profile definition

- E.g., define an M1 "Semaphore” class in a library package and include the package
in the profile

= The same implicit mechanism of attaching semantics used for stereotypes
can be applied to elements of the library

= Overcomes some of the limitations of the stereotype mechanism

= Can also be used to type stereotype attributes

+ However, it also precludes some of the advantages of the
profiling mechanism

= E.g., the ability to view a model element from different viewpoints

*+ Model libraries should be used to define useful types shared by
Tr‘lo zl\'-l rrl\or-eI profiles or profile fragments as well as by models at
the eve

207 © Copyright Malina Software

Example: Model Library

TimeValue

value : Integer
unit : TimeUnit

«profile» RealTimeProfile
«enumeration»
| TimeUnit
usec
Z

msec
sec
min

| P4 _
«import»- - \\«lmport»
| .- [~. NB: these
can also be
used in M1
models
AN~
«import» +” “~<_ «import»
|/ -

The UML Profile Metamodel

Namespace

Paclage

Property

ExtensionEnd

lower : Integer

DirectedRelationship Association
redefines ownedend
{subsets ownedElernent} - — {readOnly} {readOnly} ; frec
+ profieapplication | T refileApplication Class + fmetaclass + Iextens?un Extension + ownedEnd
> n] | fisRequired : Boolean 1]
+ applyingPackage /
{subsets owner, *
subsets source}
{subsets target}
Brofil + appliedProfile
rofite i {redefines type}
{subsets paclagedElement} Stereatype +1iype
+ fownedStereotype]
el =
1 -
0.1 i
+ icon
{subsets elementimport}
+ metaclassReference Elementimport Image
0.1 v content : String -EIement
location : String
{subsets packagel mport} format : String
+metamodelReference | Packagelmport
el
0.1 *

209

e © CopYright Malina Software

Guidelines for Defining Profiles

+ Always define a pure domain model (using MOF) first and
the profile elements second

= Allows separation of two different concerns:
* What are the right concepts and how are they related?

* How do the domain-specific concepts map to corresponding UML
concepts?

= Mixing these two concerns often leads to inadequate profiles

¢ For each domain concept, find the UML concept(s) that
most closely match and define the appropriate
stereotype

= If no matching UML concept can be found, a UML profile is
probably unsuitable for that DSML

= Fortunately, many of the UML concepts are quite general
(object, association) and can easily be mapped to domain-
specific concepts

© Copyright Malina Software

Matching Stereotypes to Metaclasses

+ A suitable base metaclass implies the following:
= Semantic proximity
The domain concept should be a special case of the UML concept
= No conflicting well-formedness rules (OCL constraints)
* Presence of required characteristics and (meta)attributes
e.g., multiplicity for domain concepts that represent collections
New attributes can always be added but should not conflict with existing ones
= No inappropriate or conflicting characteristics or (meta)attributes
Attributes that are semantically unrelated to the domain concept

These can sometimes be eliminated by suitable constraints (e.g., forcing
multiplicity to always have a value of 1 or 0)

= Presence of appropriate meta-associations
It is possible to define new meta-associations
= No inappropriate or confliciting meta-associations

These too can be eliminated sometimes by constraints

e © CopYright Malina Software

Beware of Syntactic Matches!

+ Avoid seductive appeal of a syntactic match

= In particular, do not use things that model M1 entities to
capture MO elements and vice versa

- Example: using packages to represent groupings of run-time
entities

- Example: using connector and part structures to capture design
time dependencies (e.g., requirements dependencies)

+ This may confuse both tools and users

Catalog of Adopted OMG Profiles

+ UML Profile for CORBA

+ UML Profile for CORBA Component Model (CCM)

+ UML Profile for Enterprise Application Integration (EAI)

* UML Profile for Enterprise Distributed Object Computing (EDOC)

¢+ UML Profile for Modeling QoS and Fault Tolerance Characteristics
and Mechanisms

+ UML Profile for Schedulability, Performance, and Time
+ UML Profile for System on a Chip (SoC)

*+ UML Profile for Systems Engineering (SysML)

*+ UML Testing Profile

¢+ UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE)

* UML Profile for DoDAF/MoDAF (UPDM)

213 © Copyright Malina Software

Bibliography

¢+ OMG UML Profiles specifications

= http://www.omq.orq/technology/documents/profile catalog.h
tm

214

Tutorial Outline

¢+ On Models and Model-Based Software Engineering

¢+ The Key Dimensions of Modeling Language Design
+ Defining a Modeling Language

¢ Case Study: UML

+ Language Refinement: UML Profiles

o [Model Transformations]

Model Transformations: Purpose

+ Generating a new model from a source model—
according to formally defined rules—to:

1. Extract an interesting subset of the source model (Query)

+ Example: Find all classes that have multiple parents

2. Generate a new model, based on a different metamodel,
that is "equivalent” to the source model (Transformation)

- Example: Create a queueing network model of a UML model to
facilitate performance analysis

- Example: UML to Java transformation for code generation
- Definition of “equivalence” depends on the particular case

3. Represent the source model from a particular viewpoint
(View)

+ In effect, just a special case of Transformation

216 © Copyright Malina Software

A Basic Representation of Model Transformation

+ Source to target mapping based on pre-defined
transformation rules

= Conceptually similar to source code compilation

MM1 to MM2 Metamodel
M2 > Transformation S Ve anote
MM2
A Rules
A
v _ Transformation : l mode
“l Mapping | | :MMm2

] Can be either a
process or an object

© Copyright Malina Software

217

Model Transformations: Styles

(1) Source element (2) Source pattern
to target pattern to target element

(3) Source pattern
to target pattern

= 218 © Copyright Malina Software

The Traditional Template Approach

+ A basic "element-to-pattern” style
= Generate a target pattern for each element of the source model

" Elxam)ple (S. Mellor: "archetype” language that generates a Java
class):

.for each object in O _OBJ

public class S{object.name} extends StateMachine
private StateMachineState currentState;

.select many attributes related by object->0O ATTR[R 105]

.for each attribute in attributes

private S{attribute.implType} S{attribute.name};

.end for

.éelect many signals related by object->SM SM[R301]->SM EVT[R303]

.for each signal in signals
protected void S${signal.name} () throws ooadException;

.end for }
.emit to file S{object.name}. java
.end for

+ Open source example: Jave Emitter Templates (JET) in Eclipse

= 219 © Copyright Malina Software

Some Drawbacks of the Template Approach

+ Primarily intended for model-to-code transforms
= Optimized for working with strings

= Model-to-model transforms possible but may be difficult to
specify

¢+ Cons:

= E.g., no dedicated support for a system-level optimization
pass

= Unidirectional: no built-in support for inverse mapping

= Localized perspective: no support for incremental
transformation ("recompile the world” for every change,
regardless of scope)

= Serialized transformation process (like Cfront): No ability
to exploit application level knowledge for optimization

© Copyright Malina Software

MDA Transformation Standards

¢+ MOF to XMI
* MOF to JMI
* MOF 2 Queries/Views/Transformations
¢ MOF to Text

I 2 o ——mm© COpYright Malina Software

QVT Basics

¢+ Three types of transformations defined:

= Core
= Relations
= Operational Mappings

¢ The first two forms are declarative the third is
imperative (procedural)

= Core is a "minimal” form based on minor extensions to OCL and
EMOF

= Relations is more user-friendly but may be less efficient
= The standard defines a formal mapping from Relations to Core

+ Operational style provides more flexibility but is more
complex

* All allow invocation of external ("black box"”) transforms

222 © Copyright Malina Software

QVT Metamodel Structure (simplified)

«import»
EMOF |€-----------------~----—-]
‘\\\ ///,
<<imp0r’[;~\\‘ ///’«import»
Common
/”’%
-]
«import»_ - -~ v
_-=T | «import»
| - !
|
Core :
QVT Relations
X QVT [©~<«import»
4 Mapping -

“————_——

~
~

Essential
OCL

I\

«import»

Imperative
OCL

A

«import»

Operational
QvT

© Copyright Malina Software

A Generalized Model of QVT Model Transformations

2241

* Transformations can be viewed as an instantiable
collection of relations between metamodel patterns

M2

M1

Transform
[MM1-MM2]

N

d Metamodel
| vm2

alTransform
: Transform

N

V

l .

: MM2

© Copyright Malina Software

Relations and Transformations

* A relation specifies a matching between two (or
more) model patterns in respective models

—

= A pattern (domain) in a relation can be designated as
— "“checkonly” - only detects and flags violations of relation
— "enforced” - modifies corresponding model to assure relation holds

= A relation may invoke (depend on) other relations

= A transformation consists of one or more "top-level” relations
that must hold

— ..and a set of relations invoked (transitively) by top-level
relations

225 © Copyright Malina Software

Relational Transforms: Graphical Syntax

¢ Only practical for binary relations

Class2Table
_ «domain» __ _ «domain» __
c:Class t : Table
name = cn name = cn+ _tid’
ul : UML r1 : RDBMS
< (—:— OE— >
p : Property col : Column
name = pn name = pn
___ when
cn.notEmpty ()
____ where
Property2Column (c, t)

o ———————ssssn | © C0pYright Malina Software

Relational Transforms: Textual Syntax

+ Equivalent textual specification:

relation Class2Table {
checkonly domain ul:UML c:Class {
name = cn, p:Property {name = pn}}
enforce domain rl:RDBMS t:table {
name = c¢cn + ' _tid’,
col:Column {name = pn }}
when { cn.notEmpty () }
where { Property2Column (¢, t) }}

¢+ Any number of domains (patterns) can be included in
a relation

227

Transformation Relations as Objects

* Model transformation can be viewed as enforcement
of pre-defined formal relations between two or
more models

* This can be achieved by instantiating a set of
“relation” objects (traces) that enable continuous
transformation

= If one model changes, trace objects react to ensure that
the declared relations between models always hold (for
enforced domains)

= Only the necessary changes are made = incremental change
model

s O Copyright Malina Software

Example: UML to MOF Model Transform

¢ Translate a UML-based metamodel into a proper
MOF metamodel

= e.g., MOF does not support association classes

ClassBE
+aB| 1
ClassB
+aB | 1 +and | 1
— ClassC > > ClassA_ClassB
1 + aB
+ an 1
Classh,
1 |+ an&4
Classh,

B e ——— © CopYfight Malina Software

Example: UML Metamodel (Simplified Fragment)

LIMLProperty
+ assocEnd |+ name : String

+ lower : Integer
* + upper : Unlimitedinte, ..

7N 7N

- attribute * +end | 2.*

. ’D..l ’D..l

LIMLClass LMLAssociation
+ umlclass | £ name ; 5tring - name ; String
LML AssociationClass

+ name ; String

Example: MOF Metamodel (Simplified Fragment)

0.1 MOFClass
+ name ; String

+ mofilass

* + attribute

MOFFroperty MOFAssociation

%k

+ assocEnd [ame: String {— D'i + name ; String
+ lower : Integer

+ upper : UnlimitedInteger | + end

*

Example: Relationship Definition

UMLAssocClass2MOF
«domain»
ca : MOFClass alel : MOFProperty
name = na name = nel
] lower = lel
«domain» upper = uel
al : MOFAssociation
a: UMLClass endl : UMLProperty name = na+ "_"+ nac
name = na name = nel
H:Tf-::r _ lﬁél alez | MOFProperty
name = ne2
u:UML m : MOF lower = le2

Lpper = ez

ac . UMLAssociationClass <--- -C>— =2 ac : MOFClass
name = nac

C name = nac

aze? MOFFroperty
end2 : UMLProperty name = nel
b : UMLClass name = nez lower = lel
name = nb lower = le2 Lpper = uel
Lpper = ue2

a2 : MOFAssociation
name = nb + "'+ nac

azel : MOFProperty

name = ne2
ch : MOFClass
lower = lez

name = nb Lpper = ue?

- e O COPYright Malina Software o,

Alternative: Operational Mappings Approach

+ A "how" (vs "what"”) approach to transformation
= Unidirectional: source and target clearly identified
= However: support for incremental transforms

- Uses concept of "trace” objects that incarnate a transformation
instance

¢+ Provides explicit control over the entire transformation
process

= E.g., can specify sub-transformations that can be executed in
parallel

+ Extends OCL with imperative statements and side-
effects

= E.g.: assignment statement, imperative "if-then-else”, loops,
efc.

= Used to specify transformation procedure
= Includes a "standard library” of OCL operations

233 © Copyright Malina Software

Operational Mapping: Basics

+ Some conceptual overlap with Relations
= Source is always “checkonly” and target is always “enforced”
= Transformations are reified as objects

= Each "transformation instance” (trace) ensures continuous
updating of the target model in the presence of ongoing
modifications of the source model

¢ General format:

= transformation <name> (in im:MM1, out om:MM2)
main () {-- <imperative transformation
description> }

+ A transformation occurs by creating an instance of the
appropriate transformation and invoking its “transform()”
operation

= The results can be checked for success or failure
= Exceptions can be handled explicitly, etc.

231 © Copyright Malina Software

Operational Mapping: Mapping Specification

+ Each mapping is defined as an operation on the appropriate
metamodel element

= E.g. (see slide xxx):

= mapping AssociationClass: :UMLAssocClass2MOF () {
// this will create an end object if it does not exist
object ca : MOFClass

{name := self.end[0].umlclass.name;};
object cb : MOFClass

{name := self.end[l].umlclass.name;};
object alel : MOFProperty

{name := self.end[0].name;

lower := self.end[0].lower;

upper := self.end[O0] .upper;}

object ale2 : MOFProperty
{name := self.end[1l].name;
lower self .end[1l] . lower;
upper self.end[1l] .upper;}

object ac : MOFAssociation
{name := ca.name + ' ' + cb.name; }
}

B D e —— © CopYfight Malina Software

Operational Mapping: Invoking the Mappings

transformation UML2MOF (in um:UML, out mm:MOF)
main () {
im.objectsOfType (AssociationClass) —>
map UMLAssocClass2MOF ()}
mapping AssociationClass: :UMLAssocClass2MOF () {

-}

B D e ———© CopYfight Malina Software

Alternative: The Core Language Approach

+ Similar to Relations but simpler
= Trace classes need to be specified explicitly

= Mappings tend to be more verbose

Guard Guard Guard
Pattern Pattern Pattern
Domain Trace Domain
Pattern Pattern Pattern

map <mappingName> {
[check] [enforce] <metamodelName> (<guardPattern>) {<domainPattern>}
[check] [enforce] <metamodelName> (<guardPattern>) {<domainPattern>}

where (<guardPattern>) {<tracePattern>} }

B e —— © CopYfight Malina Software

Summary: MDA Transformations

+ A key element of MDA
¢ An operation on MDA models to

= Convert models into equivalent models suitable for analysis
or viewing

= Refine or generalize models (e.g., PIM to PSM, or PSM to
PIM)

» Generate code from models

+ OMG provides a technology-neutral standard for defining
transformations

* Declarative style (Core and Relations)
= Imperative style (Operational Mappings)

+ Work on model transformations is in its infancy and more
research is required to deal with scalability, performance,
optimization, etc.

m 238 © Copyright Malina Software

Summary (1)

* The definition of a modeling languages comprises a
concrete syntax, an abstract syntax, and semantics

= Greater emphasis on communication/understanding aspects
compared to most programming languages

+ E.g., multiple DSMLs, each chosen for its expressiveness

+ We have neither a deep understanding nor a
systematic approach to modeling language design

= A discipline lacking theoretical underpinnings = but
definitely not lacking in controversy

= But, a critical discipline to help us contend with the growing
complexity of modern software

239

- e O COPYright Malina Software o,

Summary (2)

+ Designing a useful domain-specific computer
language (modeling or programming) is challenging
and requires diverse and highly-specialized skills

= Domain expertise
= Modeling language design expertise

* No established and reliable theory of modeling language design
to guide the designer

= Dealing with the fragmentation problem

¢+ And remember: if the support infrastructure is
inadequate, the language may not be viable

= Despite its potential technical excellence

240 © Copyright Malina Software

Bibliography/References

¢ é\(.)ol(gleppe, "Software Language Engineering”, Addison-Wesley,

. Kellg, S. and Tolvanen, J-P., "Domain-Specific Modeling:
Enabling Full Code Generation," John Wiley & Sons, 2008

¢+ J. Greenfield et al., "Software Factories”, John Wiley &
Sons, 2004

* Kermeta Workbench (http://www.kermeta.orqg/)

*+ OMG's Executable UML Foundation Spec
(http://www.omqg.orqg/spec/FUML/1.0/Betal)

¢+ UML 2 Semantics project
(http://www.cs.queensu.ca/~stl/internal/uml2/index.hitml)

¢+ ITU-T SDL language standard (Z.100)
(http://www.itu.int/ITU-
T/studygroups/com10/lanquages/Z.100 1199 . pdf)

+ ITU-T UML Profile for SDL (Z.109
(http://www.itu.int/md/T05-S617-060419-TD-WP3-3171/en)

241 © Copyright Malina Software

- THANK YOU -
QUESTIONS,
COMMENTS,

ARGUM%TS. .

