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Chapter 1

Introduction

By Ed we denote the d-dimensional Euclidean space i.e. Rd equipped with
the Euclidean metric. A realization (or an embedding) of a graph G in Ed is
obtained by specifying the location of the vertices of the graph in Ed. Two
realizations of the K3,3 graph in E2 are illustrated below:
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Figure 1.1: A realization of the K3,3

where the vertices lie on a quadric,
which is decomposed into two lines.
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Figure 1.2: A realization of the K3,3

where the vertices lie on a irreducible
quadric.

Given a graph G its configuration space Cd(G) is defined to be the space of all
realizations of G in Ed. A realization of a graph G will be called flexible iff there
exists a continuous deformation which preserves the edge lengths. Otherwise the
realization will be called rigid. Both of the realizations of the K3,3 illustrated
above are flexible. Four snapshots of the length-preserving deformation of the
realization in Figure 1.1, are illustrated in Table 1.1.

Notice however, that in both of the realizations illustrated in Figures 1.1 and
1.2, it appears that the positions of the vertices are rather carefully contrived
and in some sense they do not represent the typical behavior of a realization
of the K3,3 in E2. It is thus natural to ask what will happen if we restrict our
attention to realizations of the K3,3 where the vertices are placed in ”general po-
sition” (generic realizations). The somewhat surprising answer is that all generic
realizations of the K3,3 in E2 are rigid. In view of this, the characterization of
the K3,3 as being generically rigid in E2 seems fully justified.
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Table 1.1: Four snapshots (top left to bottom right) of the length preserving
deformation of a realization of the K3,3.

Going to the other extreme consider the K2,2 graph. It is not difficult to see
that this graph is be generically flexible in E2 i.e. all of its generic realizations
are flexible in E2. An illustration of a flex of generic realization of the K2,2

graph can be seen in Table 1.2.
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Table 1.2: Four snapshots (top left to bottom right) of the length preserving
deformation of a realization of the K2,2 graph.

Summarizing, we have seen so far that the K3,3 is generically rigid in E2,
whereas the K2,2 is generically flexible in E2. A surprising fact, is that a similar
situation holds for any arbitrary graph G i.e. every graph G is either generically
rigid or generically flexible in Ed. In order to prove this, one shows that the
generic realizations of G form an open and dense subset of Cd(G) and moreover,
that the generic realizations of a given graph G are either all rigid or all flexible
in Ed. A graph G is called generically rigid (flexible) in Ed iff one, and thus
all, of its generic realizations is rigid (flexible) in Ed. Intuitively, a graph which
is generically rigid in Ed should be thought as a graph for which an arbitrary
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realization in Ed will be rigid, with high probability. For a detailed account
of the basic notions of the theory of rigid graphs, the reader should consult
Chapter 2.

Notice that the addition of extra edges to a generically rigid graph will
not affect its generic behavior. Consequently, it seems reasonable to focus our
study on the class of generically minimally rigid graphs i.e. graphs that become
generically flexible once any edge is removed.

The preceding discussion suggests that if we ignore some singular realiza-
tions, minimal rigidity can be considered as a property of the underlying graph
rather than a property of the geometry of a specific realization and thus there
should be some purely combinatorial way for detecting it. Indeed, this is the
case for d = 1, where a graph G is generically minimally rigid in E iff G is a
tree. Moreover, this is also true for d = 2, where a graph G = (V,E) is gener-
ically minimally rigid in E2 (or Laman) iff |E| = 2|V | − 3 and additionally, all
of its induced subgraphs on 2 ≤ k < |V | vertices have ≤ 2k − 3 edges. On
the other hand for d ≥ 3 the plot thickens. A combinatorial characterization of
generically minimally rigid graphs in E3 has proven to be elusive, and remains
one of the most important open questions in the area of rigidity theory. An
extensive study of generic rigidity in E2 and E3 can be found in Chapters 3 and
4, respectively.

Laman graphs exhibit a rich combinatorial structure and possess a number
of equivalent characterizations. One of the most important ones, is that they
coincide with the class of graphs that have a Henneberg 2-sequence i.e. graphs
that can be constructed inductively starting for a triangle, followed by a suc-
cession of two allowable operations, the so-called Henneberg I and Henneberg
II steps. We will make use of this fact in Chapter 6, where we will need to
generate all Laman graphs with n ≤ 10 vertices. It is also worth noting that for
d ≥ 3, there is no analogous procedure that enables us to construct all generi-
cally minimally rigid graphs in Ed. The topic of the inductive constructions of
generically minimally rigid graphs is treated in detail in Chapter 5.

Our contribution

Given a generically rigid graph in Ed, it follows by its definition, that for generic
edge lengths it can be embedded into Euclidean d-space in a finite number num-
ber of ways, modulo rigid motions (translations and rotations). The problem
we are dealing with in Chapter 6, is to compute tight bounds on the number of
non-congruent embeddings of Laman graphs and of the graphs that correspond
to 1-skeleta of convex simplicial polyhedra in E2 and E3, respectively.

A crucial observation is to made here: the problem of computing the number
of non-congruent realizations of a graph G can be formulated as an algebraic
one. Specifically, given generic edge lengths lij , ij ∈ E, we can construct a
polynomial system whose real solutions correspond to all possible non-congruent
realizations of G. For a representative case when d = 2, see the system below:
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{
xi = ai, yi = bi, i = 1, 2, ai, bi ∈ R,
(xi − xj)

2 + (yi − yj)
2 = l2ij , ij ∈ E − {12}

This is a square 2n× 2n polynomial system in the unknowns x1, y1, . . . , xn, yn,
where (xi, yi) corresponds to the coordinates of the vertex i in the embedding.
Notice that we have assumed without loss of generality that there exists an edge
between vertices 1 and 2 and this has been fixed in order to discard translations
and rotations as solutions of our system.

In order to bound the number of embeddings of rigid graphs, we have de-
veloped specialized software that constructs all Laman graphs and all 1-skeleta
of simplicial polyhedra in E3 with n ≤ 10. Our computational platform is
SAGE 1. We exploit the fact that these graphs admit inductive constructions,
and construct all of them using the Henneberg operations. The latter were
implemented, using SAGE’s interpreter, in Python. After we construct all the
graphs, we classify them up to isomorhism using SAGE’s interface for N.I.C.E.,
an open-source isomorphism check engine. Then, for each graph we set up its
corresponding polynomial system and for each system we bound the number of
its (complex) solutions by computing its mixed volume (BKK bound).

Our main contribution is twofold: first, we derive an improved lower bound
in E2 and the first non-trivial lower bound in E3:

32b(n−2)/4c ' 2.37n, n ≥ 10, and 16b(n−3)/3c ' 2.52n, n ≥ 9,

by designing a K3,3 caterpillar and a cyclohexane caterpillar, respectively. The
way these bounds are derived is simple enough to allow for improvements.

Second, we give tight bounds for n = 7, 8 in E2 and n = 6, 7 in E3. These
bounds are important for applications and may lead to tighter lower bounds.
We also reduce the existing gap for n = 9, 10 in E2 and for n = 8, 9, 10 in E3

(see Tables 6.2 and 6.3).
Our results appeared in preliminary form in the 25th European Workshop

on Computational Geometry (EuroCG’09) [27]. A state of the art account of
our work can be found in [26], a paper that has been accepted to the 17th
International Symposium on Graph Drawing, which has published conference
proceedings, included in the Springer-Verlag series Lecture Notes in Computer
Science.

1http://www.sagemath.org/



Chapter 2

Rigidity of frameworks

2.1 Rigidity of frameworks

In the classic literature of rigidity theory, a graph G = (V,E) is usually referred
to as an abstract framework. We will use both of these terms interchangeably.
By Ed we denote the d-dimensional Euclidean space i.e. Rd equipped with
the Euclidean metric and by Eucl(d) we denote the group of rigid motions
(translations and rotations) of d-space. A matrix A ∈ Rd×d is called orthogonal
iff AAT = ATA = I. The set of all orthogonal d × d matrices, forms a group
under multiplication, denoted by O(d). The following Theorem is a standard
result of Linear Algebra.

Theorem 2.1.1. Any rigid motion T ∈ Eucl(d) has the form T (x) = Ax + b,
where A ∈ O(d) and b ∈ Rd.

We continue with some basic definitions.

Definition 2.1.2. A realization of an abstract framework in Ed consists of
a graph G = (V,E) together with a map p : V 7→ Rd, where p(i) = pi =
(p1

i , . . . , p
d
i ) ∈ Rd should be interpreted as the point in d-space to which the i-th

vertex of G is assigned to. A realization of G will be denoted by G(p), where
p = (p1, . . . , p|V |). Sometimes, this will be also referred to as a framework or an
embedding of G in Ed.

Definition 2.1.3. By Cd(G) we will denote the space of all realizations in Ed

of the abstract framework G = (V,E) i.e.

Cd(G) =
{
p = (p1, . . . , p|V |) ∈ Ed|V | ∣∣ G(p) is a realization of G in Ed

}
The space Cd(G) will also be referred to as the configuration space of G.

As a simple example, let G be K3 graph. Then C2(G) consists of all triples of
points in the plane, with the property that the distances between them satisfy
the triangle inequality.

9



10 Rigidity of frameworks

Definition 2.1.4. Every abstract framework G = (V,E) determines a map,
called the rigidity map, defined as

fG : Cd(G) 7→ R|E| where fG(p) = (. . . , ||pi − pj ||2, . . .)

and the edges of G are ordered lexicographically.

Definition 2.1.5. Two frameworks G(p), G(q) are called equivalent iff

||pi − pj || = ||qi − qj ||, ∀ij ∈ E

Notice that for a given framework G(p), the set of realizations that are
equivalent to it is just f−1

G

(
fG(p)

)
.

Definition 2.1.6. Two frameworks G(p), G(q) are called congruent iff

||pi − pj || = ||qi − qj ||, ∀i, j ∈ V

Equivalently, two frameworks G(p), G(q) are congruent iff the map

T : Ed 7→ Ed with T (pi) = qi, ∀i ∈ V

can be extended to a rigid motion of Ed. For an example of equivalent and
congruent frameworks see Figure 2.1.

1 2

3 4

1

2,3 4

1 2

3 4

1 3

2 4

Figure 2.1: Two equivalent and two congruent frameworks.

Definition 2.1.7. Let p = (p1, . . . , pn) ∈ Ed|V |. By Mp we will denote the set
of points in Ed|V | that are congruent to p i.e.

Mp =
{
q ∈ Ed|V | ∣∣ q = T (p), where T ∈ Eucl(d)

}
The set Mp can be shown to be a smooth manifold for ”almost all” choices

of p and moreover if points p1, . . . , p|V | are affinely independent then Mp is
d(d+1)/2 dimensional since it arises from the d(d−1)/2 dimensional manifold of
orthogonal transformations of Ed and the d dimensional manifold of translations
of Ed. It is clear that Mp ⊆ f−1

G

(
fG(p)

)
and it is exactly the nature of this

inclusion near p that determines the rigidity or flexibility of G(p).

Definition 2.1.8. Let G = (V,E) be an abstract framework. The framework
G(p) is rigid in Ed iff there exists a neighborhood U of p in Ed|V | such that

Mp ∩ U = f−1
G

(
fG(p)

) ∩ U
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Equivalently, the frameworkG(p) is rigid iff [p] is isolated in f−1
G

(
fG(p)

)
/Mp.

Definition 2.1.9. A flex of a framework G(p) is a function

χ = (χ1, . . . , χ|V |) : [0, 1] 7→ Rd|V |

that satisfies the following three conditions:

• χ is continuous

• χ(0) = p

• χ(t) ∈ f−1
G

(
fG(p)

)−Mp, ∀t ∈ (0, 1]

Example 2.1.10. Let G = ({v1, v2, v3, v4}, {v1v2, v2v3, v3v4, v4v1}) and G(p)
the framework seen in Figure 2.2, where p(v1) = (0, 0), p(v2) = (1, 0), p(v3) =
(1, 1), p(v4) = (0, 1). To prevent the square from moving in the plane by transla-
tions and rotations we fix two vertices at points (0, 0) and (1, 0). Now imagine
that the two vertical rods start to move simultaneously, in a clockwise direction,
with the same (constant) speed. This defines a flex of the square framework,
which is depicted in Figure 2.2 and it is described by the family of solutions:

x3(t) =
(

1 + t,
√

1− t2
)
, x4(t) =

(
t,
√

1− t2
)
, for t ∈ [0, 1]

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.2: A flex of the square framework.

Definition 2.1.11. A framework G(p) will be called flexible iff it has a flex χ.

Are the notions of non-rigidity and flexibility equivalent? One would expect
the answer to be affirmative, as is it indeed the case by the following Theorem.

Theorem 2.1.12. [4, Proposition 1] Let G = (V,E) be an abstract framework.
The following are equivalent:

• G(p) is not rigid in Ed

• G(p) is flexible in Ed

• there exists a flex χ with χ(0) = p such that χ(t) /∈Mp for some t ∈ (0, 1]
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2.2 Infinitesimal rigidity of frameworks

Let χ be a flex of a framework G(p). It can be shown using ”elementary”
differential geometry [5] that the existence of a flex for G(p) implies the existence
of a smooth flex for G(p). So from now on, we will assume our flexes to be
differentiable functions.

By the definition of a flex we have that

||χi(t)− χj(t))|| = ||pi − pj ||,∀t ∈ [0, 1]

so
(χi(t)− χj(t)) · (χi(t)− χj(t)) = ||pi − pj ||2,∀t ∈ [0, 1]

Differentiating and evaluating at t = 0 we obtain that

(χi(0)− χj(0)) · (χ′i(0)− χ′j(0)) = 0,∀ij ∈ E
and since χi(0) = pi it follows that

(pi − pj) · (χ′i(0)− χ′j(0)) = 0,∀ij ∈ E (2.1)

The coefficient matrix of the system above, will play an important role and a
special name is reserved for it.

Definition 2.2.1. The coefficient matrix of the system of equations (2.1) is
called the rigidity matrix of the framework G(p) and it will be denoted by R(p).

Equivalently, the rigidity matrix of a framework G(p) can be also defined
as the Jacobian matrix of the rigidity map fG, multiplied by 1/2. It follows
from its definition, that the dimension of the rigidity matrix is |E| × d|V |. The
archetypical form of the rigidity matrix can be seen in table 2.1.

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . (p1

i − p1
j ) . . . (pd

i − pd
j ) . . . (p1

j − p1
i ) . . . (pd

j − pd
i ) 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .


Table 2.1: The archetypical form of the rigidity matrix.

It is clear that the rigidity matrix will be large even for small examples so it
is common to use a more ”compact” notation, by assigning d-dimensional vector
entries to a |E| × |V | matrix. An example can be seen in table 2.2.

In terms of the rigidity matrix, the system of equations (2.1) can be re-
expressed as

R(p) · (χ′1(0), . . . , χ
′

|V |(0) = 0

i.e.
(χ
′

1(0), . . . , χ
′

|V |(0)) ∈ Ker R(p)
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R(p) =


. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
0 . . . (pi − pj) . . . (pj − pi) . . . 0
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .


Table 2.2: A more usual ”compact” notation for the rigidity matrix.

Figure 2.3: Two infinitesimal flexes of a triangular framework, that correspond
to a translation and a rotation, respectively.

Definition 2.2.2. Any element (p
′

1, . . . , p
′

|V |) ∈ Ker R(p) will be called an
infinitesimal motion (or infinitesimal flex) of the framework G(p).

For examples of infinitesimal flexes, see Figures 2.3 and 2.4.
Notice that there will always exist some trivial infinitesimal motions, namely

the initial velocity assignments that correspond to rigid motions of Ed. We
proceed by giving the precise definition of the infinitesimal flexes that correspond
to rigid motions and by computing the dimension of the space spanned by them.

Definition 2.2.3. A flex χ = (χ1, . . . , χ|V |) of a framework G(p) will be called
trivial flex iff there exists a family {Tt| t ∈ [0, 1]} of rigid motions of Ed such
that:

• T0 = Id

• χi(t) = Tt(pi), ∀t ∈ (0, 1]

See Figure 2.5 for an example of a trivial flex.

Figure 2.4: A infinitesimal flex of a realization of the triangular prism graph in
E2, that does not correspond to a rigid motion of E2.



14 Rigidity of frameworks

Figure 2.5: A trivial flex of a square framework.

Definition 2.2.4. An infinitesimal flex (p
′

1, . . . , p
′

|V |) of a framework G(p) will
be called trivial iff it is the derivative at t = 0 of some trivial flex χ of G(p).

Now, let χ be a trivial flex of G(p) and let {Tt| t ∈ [0, 1]} be the family of
rigid motions of Ed as above. By Theorem 2.1.1 it follows that for each t ∈ [0, 1]
there exists a matrix At ∈ O(d) and a vector bt ∈ Rd such that

Tt(x) = Atx+ bt, ∀x ∈ Rd

and since T0 = Id, it follows that A0 = I and b0 = 0.
By definition, (χ

′

1(0), . . . , χ
′

|V |(0)) is a trivial infinitesimal flex of framework
G(p) that satisfies

χ
′

i(0) =
d

dt
Tt(pi)

∣∣∣
t=0

=
d

dt
At

∣∣∣
t=0

pi +
d

dt
bt
∣∣
t=0

The vectors d
dtbt

∣∣
t=0

correspond to infinitesimal translations and span a d di-
mensional space. Thus, in order to compute the dimension of the space spanned
by all trivial infinitesimal flexes of G(p), it suffices to compute the dimension of
the space spanned by the matrices d

dtAt

∣∣∣
t=0

, which correspond to infinitesimal
rotations.

Since A is orthogonal, it follows that

0 =
d

dt
AT

t (pi)
∣∣∣
t=0

A0 +AT
0

d

dt
At(pi)

∣∣∣
t=0

=
d

dt
AT

t (pi)
∣∣∣
t=0

+
d

dt
At(pi)

∣∣∣
t=0

and thus the matrix d
dtAt(pi)

∣∣∣
t=0

is antisymmetric. Since the space of anti-

symmetric matrices is (d2 − d)/2-dimensional we have that:

Theorem 2.2.5. Let G(p) be a realization of the abstract framework G = (V,E)
in Rd such that aff {p1, . . . , p|V |} = Ed. Then the dimension of the space of
trivial infinitesimal flexes is d(d+1)

2 .

Now, let G(p) be a framework in Ed, such that aff {p1, . . . , p|V |} = Ed.
Theorem 2.2.5 implies that

dim Ker R(p) ≥ d(d+ 1)
2

and thus

rank R(p) ≤ d|V | − d(d+ 1)
2
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Definition 2.2.6. Let G(p) be a framework in Ed with aff {p1, . . . , p|V |} = Ed.
Then, G(p) will be called infinitesimally rigid (or first order rigid) in Ed iff

rank R(p) = d|V | − d(d+ 1)
2

A framework G(p) will be called infinitesimally flexible in Ed iff

rank R(p) < d|V | − d(d+ 1)
2

Intuitively, this definition says that a framework G(p) is infinitesimally flexi-
ble iff there exist non-trivial infinitesimal motions i.e. iff there exists some initial
velocity assignment, that does not correspond to that of a rigid motion of the
ambient space.

Example 2.2.7. The framework illustrated in Figure 2.6 is infinitesimally rigid.
Indeed, if one goes in the trouble of computing its rigidity matrix, he will end
up with the following one:

R(p) =



−3 0 3 0 0 0 0 0 0 0 0 0
−2 −1 0 0 2 1 0 0 0 0 0 0
0 −3 0 0 0 0 0 3 0 0 0 0
0 0 −1 1 1 −1 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 3 0 0
0 0 0 0 −3 0 0 0 0 0 0 3
0 0 0 0 0 0 −3 0 3 0 0 0
0 0 0 0 0 0 −1 1 0 0 1 −1
0 0 0 0 0 0 0 0 −2 −1 2 1


A simple computation shows that the rank of R(p) is equal to 9 = 2|V | − 3 and
thus the framework G(p) is infinitesimally rigid.

p1 = (0, 0) p2 = (3, 0)

p3 = (2, 1)

p4 = (0, 3) p5 = (3, 3)

p6 = (1, 2)

Figure 2.6: An example of an infinitesimally rigid framework in E2.
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By its definition, an infinitesimal motion (p
′

1, . . . , p
′

n) of a framework G(p)
satisfies

(pi − pj) · (p′i − p
′

j) = 0, ∀ij ∈ E
and thus

(pi − pj) · p′i = (pi − pj) · p′j , ∀ij ∈ E
which in turns is equivalent to the following: for every bar ij, the velocities

p
′

i, p
′

j that correspond to its endpoints have equal projections in the direction
of the bar. This is a very useful observation in constructing small examples of
infinitesimally flexible frameworks.

Example 2.2.8. The flattened triangular prism, illustrated if Figure 2.7, is
infinitesimally flexible in E3. Indeed, there exist an infinitesimal motion which
assigns zero velocity to the vertices of the outer triangle and all other vertices
are assigned velocities which are perpendicular to the plane of the prism.

Figure 2.7: An infinitesimal flex of the flattened triangular prism in E3.

2.3 Statics of frameworks

Consider a framework G(p) in Ed and suppose that the various bars of the
framework are subject to forces of tension or compression, directed along its
bars. More precisely, associated with every bar ij is a scalar ωij such that
ωij(pi − pj) is the force exerted by the bar on vertex i and ωij(pj − pi) is
the force exerted by the bar on vertex j. Intuitively, the scalar ωij gives the
magnitude of the force per unit length.

If ωij < 0, the force is called a tension on bar ij, otherwise it is called a
compression. Notice that bar i exerts forces on vertices i, j that are equal in
magnitude but opposite in direction.

Definition 2.3.1. Let G = (V,E) be an abstract framework. A stress of the
framework G(p) is a collection of scalars ωij such that
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∑
j∈N(i)

ωij(pi − pj) = 0,∀i ∈ {1, . . . , |V |}

Intuitively, a stress of a framework G(p) can be thought of as an assignment
of springs to the rods of the framework, each one with spring constant ωij , such
that the net force exerted on each vertex is equal to zero.

The study of stresses of frameworks is important because, roughly speak-
ing, their existence indicates that some edges of the abstract framework are
redundant.

Definition 2.3.2. A stress is called trivial iff ωij = 0, ∀ij ∈ E. We say a
framework G(p) is independent (or stress free) iff it admits only the trivial
stress.

In view of the definitions above, the following Corollary is immediate.

Corollary 2.3.3. A framework G(p) is independent iff rank R(p) = |E|.
Definition 2.3.4. A framework G(p) will be called isostatic iff it infinitesimally
rigid and stress free.

Theorem 2.3.5. Let G = (V,E) be an abstract framework with |V | ≥ d and
let G(p) be a framework in Ed. The following are equivalent:

1. G(p) is isostatic.

2. |E| = d|V | − d(d+ 1)/2 and G(p) is independent.

3. G(p) is infinitesimally rigid and removing any rod leaves an infinitesimally
flexible framework.

2.4 Generic behavior of abstract frameworks

We know that an abstract framework G = (V,E) can have rigid, rigid but
infinitesimally flexible and flexible realizations. For yet another example, see
Figure 2.8.

Figure 2.8: An infinitesimally rigid, rigid but infinitesimally flexible and a flex-
ible realization of the triangular prism graph in E2.
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Let’s take a closer look at Figure 2.8. The reader may have already noticed
that the location of the vertices in the second and third frameworks is rather
carefully contrived, while in some sense the first framework represents the typical
behavior of a framework of the triangular prism graph in E2.

This seems to suggest that if we ignore some ”singular” realizations, then
rigidity (and flexibility) in Ed can be considered as a property of the abstract
framework G, rather than a property of a specific framework.

Definition 2.4.1. Let G = (V,E) be an abstract framework and let

rd(G) := max
{

rank R(p) | p ∈ Rd|V |}
Point p will be called a generic point of G iff rank R(p) = rd(G).

The set of generic points will be denoted by G. We will now establish that
almost all points are generic, where ”almost all” can be interpreted both topo-
logically and measure theoretically.

Definition 2.4.2. Let G = (V,E) be an abstract framework with |V | = n. The
d-dimensional indeterminate rigidity matrix of G, denoted by R(n, d) is defined
similarly to the rigidity matrix of a realization G(p) for G, where each (pi)j ∈ R
is replaced by the indeterminate (xi)j.

For an example of a indeterminate rigidity matrix see Figure 2.3.
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . (x1

i − x1
j ) . . . (xd

i − xd
j ) . . . (x1

j − x1
i ) . . . (xd

j − xd
i ) 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .


Table 2.3: The archetypical form of the d-dimensional indeterminate rigidity
matrix.

Now, let G be an abstract framework and let P (x) be the polynomial ob-
tained as the sum of the squares of the determinants of all rd(G)× rd(G) sub-
matrices of R(n, d). It is not difficult to verify that:

Lemma 2.4.3. Point p is a generic point of G iff P (p) 6= 0.

Consequently, the generic points form an open and dense subset of Ed|V |.
Notice that the preceding discussion implies that our definition of genericity

coincides with the analogous concept in algebraic geometry, where a property
is said to be generic iff it it holds on the complement of an algebraic variety i.e.
the zero-set of a polynomial system.

For a1, . . . , an ∈ Rd, let aff{a1, . . . , an} ⊆ Rd denote the set

aff{a1, . . . , an} =

{∑
λiai

∣∣∣∑λi = 1

}
i.e. the smallest flat containing a1, . . . an.
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Theorem 2.4.4. [4, Section 3] Let G = (V,E) be an abstract framework and
let p = (p1, . . . , p|V |) ∈ Ed|V | be a generic point with m = dim aff {p1, . . . , p|V |}.
Then

G(p) is rigid in Ed iff rd(G) = d|V | − (m+ 1)(2n−m)
2

and

G(p) is flexible in Ed iff rd(G) < d|V | − (m+ 1)(2n−m)
2

Corollary 2.4.5. Let G = (V,E) be an abstract framework and let p = (p1, . . . , p|V |) ∈
Ed|V | be a generic point with aff {p1, . . . , p|V |} = Ed. Then

G(p) is rigid in Ed iff rd(G) = d|V | − d(d+ 1)
2

and

G(p) is flexible in Ed iff rd(G) < d|V | − d(d+ 1)
2

Notice that the counts stated in Corollary 2.4.5 are independent of the choice
of the specific generic point p. It thus follows that the generic frameworks whose
affine span is the entire ambient space, are either all rigid or all flexible.

Since it has been established that the generic points form an open dense
subset of Ed|V |, it should be clear that Corollary 2.4.5 leads to a notion of
generic or typical behavior for an abstract framework G = (V,E).

Definition 2.4.6. An abstract framework G will be called generically rigid in
Ed iff G(p) is rigid for one (and thus for all) generic point p ∈ Ed|V |, whose
affine span is Ed.

In other words, given a specific generic framework, its rigidity or flexibility
is a property of the structure of the underlying graph, rather than the actual
geometry of the embedding. This suggests that there must be some purely com-
binatorial way for determining the generic properties of an abstract framework.
This subject is treated in detail in Sections 3.1 and 4.1.

In order to get a feel for the things to come, we will briefly discuss the case
d = 1. It should be clear that an abstract framework is generically rigid in E
if and only if it is connected. Thus, an an abstract framework G is generically
minimally rigid in E iff G is a tree. Moreover, there is a purely combinato-
rial criterion on the vertices and edges of a connected graph which determine
whether it is a tree: the number of edges must equal the number of vertices
minus 1.

So for d = 1, our suspicion that generic minimal rigidity should be a purely
combinatorial property is confirmed.



20 Rigidity of frameworks

Figure 2.9: A rigid but infinitesimally flexible framework in E2.

2.5 Equivalence of the notions of rigidity and
infinitesimal rigidity

It is natural to ask for the connections (if any) between the notions of rigidity
and infinitesimal rigidity. Are they equivalent and if not does one of them imply
the other?

It should come as no surprise that if a framework G(p) is infinitesimally rigid
then it is also rigid. Indeed, if a framework cannot move even infinitesimally,
then it is surely not able to actually move. More formally, suppose for the sake
of contradiction that G(p) is infinitesimally rigid but flexible. Then G(p) has
a flex χ and the initial velocity assignment of χ to the vertices of G(p) would
imply that G(p) is infinitesimally flexible which is absurd.

On the other hand, there exist rigid frameworks that are infinitesimally flex-
ible and thus the two notions are not equivalent. One such example is depicted
in Figure 2.9. Intuitively, we can think of the infinitesimal motion of the frame-
work in Figure 2.9 as ”screwing down” in a counterclockwise direction the inner
triangle of the prism while the outer triangle remains fixed.

We should here note that, frameworks which are rigid but infinitesimally
flexible are in some sense singular: an infinitesimal flex, while not being re-
alizable in an ideal motion of the framework, will certainly give rise to some
swaying or sagging in any physical model of bars and joints. Thus, for engi-
neering applications, infinitesimal rigidity is a superior concept than that of
rigidity.

But there is important observation to be made about the framework in
Figure 2.9. This framework is clearly non-generic, since the three lines defined
by adjacent vertices of the inner and outer triangle have a common point of
intersection.

It is thus natural to ask for the existence of a generic framework which is
rigid and in the same time infinitesimally flexible. The answer surprisingly is
that this cannot happen. Specifically, we have the following Theorem:

Theorem 2.5.1. [5, Section 3] Let G(p) be a generic framework in Ed. Then
G(p) is rigid iff it is infinitesimally rigid.

That is, the two notions coincide for generic frameworks.
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2.6 Generic global rigidity

Consider the point reconstruction problem: given a set of points in Euclidean 3-
space, we wish to determine their relative location (up to rigid motions), where
the only information available to us is some subset of their pairwise distances.
It is clear that in order for this problem to be well defined, the underlying graph
of distances has to be generically rigid in E3. But still, the generic rigidity of
the underlying graph is not enough to ensure a unique solution to the point
reconstruction problem, because as we have seen, a generically rigid graph can
have more than one (but in any case finitely many) non-congruent realizations.

If we insist for a unique solution to the point reconstruction problem, we
have to resort to the the stronger notion of global rigidity. Intuitively, a d-
dimensional framework is globally rigid iff it is the only framework in Ed with
the same underlying graph and the same edge lengths, up to rigid motions. We
note that the problem of recognizing whether an abstract framework is globally
rigid is strongly NP-hard [48].

A surprising application of global rigidity to global optimization is high-
lighted in [35]. Clearly, the point reconstruction problem can be naturally
phrased as a non-linear global optimization problem with a cost function that
penalizes realizations for unsatisfied distance constraints. A simple example
would be the following cost function:

f(p1, . . . , pn) =
∑
ij∈E

(||pi − pj ||2 − d2
ij

)2
In [35], B. Henderickson presents an algorithm that follows the divide and
conquer paradigm, which enables him to avoid solving the large optimization
problem by instead, solving a sequence of smaller ones. This is exactly where
global rigidity comes into play. The solutions to the smaller problems can be
merged to obtain a solution for the initial optimization problem, because the
small optimization problems were defined on globally rigid subcomponents of
the underlying graph.

The formal definition of global rigidity follows.

Definition 2.6.1. Let G = (V,E) be an abstract framework and let G(p) we a
realization of G. Then, G(p) is called globally rigid (or uniquely realizable) iff
every other realization of G which is equivalent to G(p), is also congruent to it.

Definition 2.6.2. An abstract framework G = (V,E) is called generically glob-
ally rigid in Ed iff G(p) is globally rigid for all generic points p ∈ Ed|V |.

For d = 1 it is easy to see that:

Theorem 2.6.3. An abstract framework is generically globally rigid in E iff G
is 2-vertex connected.

We continue, with an investigation on conditions that are necessary for
generic global rigidity. Clearly, rigidity is a necessary condition for an abstract
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framework to be globally rigid. On the other hand, there exist rigid graphs
which are not globally rigid and thus the two notions are not equivalent. For
such an example, see fig. 2.10.

Figure 2.10: A generically rigid abstract framework G in E2 along with a par-
ticular realization. This abstract framework is not generically globally rigid.

This is a simple, yet instructive example that will help us understand why
this abstract framework fails to be globally rigid. And the reason is simple
enough: given any generic realization of G, one can always reflect the two
triangles along their common base, thus obtaining four equivalent but non-
congruent embeddings.

Let us now investigate, when can this type of non-uniqueness occur in the
general d-dimensional problem. Similarly as before, there must be a few vertices
about which a portion of the graph can be reflected and these vertices are said to
form a mirror. In order for the reflexion to be possible, there must be no edges
between the two parts of the graph separated by the mirror. Clearly, the mirror
vertices must lie in a d − 1 dimensional subspace and moreover notice that in
a generic embedding in Ed, at most d vertices can lie on a d − 1 dimensional
subspace. Thus, the size of mirror cannot exceed d. By the definition of a
mirror, there can be no edges between the two components separated by the
mirror and thus the removal of the vertices of the mirror disconnects the graph.

Consequently, in order to exclude the possibility for the existence of mirrors
we need to ensure that there exist no vertex sets of size at most d, whose removal
disconnects the graph. Clearly, we have just established the following:

Lemma 2.6.4. [34, Theorem 3.1] Let G = (V,E) be generically globally rigid
in Ed. Then G is (d+ 1)-vertex connected.

We will now focus our attention for the case d = 2. Unfortunately, 3-
connectivity is not sufficient to ensure the unique realizability of an abstract
framework G in E2. As an example, consider the Desargues (triangular prism)
graph, which is 3-connected but can have as many as 24 embeddings.

Again, let us investigate why the Desargues graph fails to be globally rigid
in E2. The reader is referred to fig. 2.11.

In the leftmost picture of fig. 2.11 we can see a realization of the Desargues
framework, where edge af has been removed. Clearly, the quadrilateral bcde
is flexible and suppose we start flexing it, where vertices d, f and c follow the
orbits illustrated with dashed lines.

This brings us to the middle picture of fig. 2.11, where we have flexed the
framework until vertex d is collinear with vertices c and e. We can now start
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Figure 2.11: Three snapshots of a flex of a Desargues framework, where one of
its edges has been removed. The picture is taken from [34].

a new flex of this framework, where again the orbits of vertices f and c are
illustrated in dashed lines. Notice that, vertex c can swing all the way around
and as it does so, the distance between vertices a and f varies.

Eventually we reach the configuration of the rightmost picture in fig. 2.11,
where the distance of vertices a and f is the same as their distance in the
leftmost picture of fig. 2.11. This procedure enables us to construct another
realization for the Desargues framework, which implies that it is not globally
rigid.

Clearly, the problem with the Desargues graph is that once any edge is re-
moved, the resulting graph is generically flexible in E2. The following definition
should come as no surprise.

Definition 2.6.5. An abstract framework G = (V,E) is called generically re-
dundantly rigid in Ed iff G− e is generically rigid in Ed, for all e ∈ E.

Lemma 2.6.6. [34, Theorem 5.9] Let G be a generically globally rigid graph in
Ed with more than d+ 1 vertices. Then G is redundantly rigid in Ed.

Combining Lemma’s 2.6.4 and 2.6.6 we obtain a necessary condition for a
graph to be generically globally rigid in Ed.

Theorem 2.6.7. [34] Let G = (V,E) be a generically globally rigid graph in
Ed. Then, either G is a complete graph on at most d + 1 vertices, or G is
(d+ 1)-connected and redundantly rigid in Ed.
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Hendrickson conjectured that these conditions are also sufficient for the
generic global rigidity of an abstract framework in Ed. Since G is generically
redundantly rigid in E iff G is 2-edge connected and since 2-edge connectivity
implies 2-vertex connectivity, Theorem 2.6.3 implies that this conjecture is true
for d = 1. On the other hand, in [15] R. Connelly showed that the conjecture
is false for d = 3, by constructing a generic realization of the K5,5 graph, which
is not globally rigid. Similar results hold for larger bipartite graphs in higher
dimensions. These appear to be the only known examples of graphs that satisfy
Hendrickson’s condition and are not globally rigid.

On the other hand, using a combination of arguments due to R. Connelly
[15], B. Jackson and T. Jordán [37], it can be shown that Hendrickson’s condition
is also sufficient, for generic global rigidity in E2. We will present a rough sketch
of the proof of this fact.

The first step in proving the sufficiency of Hendrickson’s condition for d = 2,
is the following Theorem due to B. Jackson and T. Jordán. This Theorem
essentially states that the class graphs that are 3-connected and generically
redundantly rigid in E2, have Henneberg constructions, similar to those for
Laman graphs. The operation of an edge addition adds one new edge between
two non-adjacent vertices.

Theorem 2.6.8. [37, Theorem 6.15] Let G = (V,E) be an abstract framework
which is 3-connected and generically redundantly rigid framework in E2. Then
G can be built up inductively from the K4 graph by a sequence of edge additions
and H2 steps.

Now, notice that the K4 graph is globally rigid in E2 and moreover the
operation of an edge addition preserves generic global rigidity in E2. So, in
view of Theorem 2.6.8 it is enough to show that the H2 operation also preserves
generic global rigidity in E2. This was accomplished by R. Connelly in [15].

Theorem 2.6.9. [15, Theorem 1.5] Let G be generically globally rigid in E2

and let G
′

be obtained from G through a H2 step. Then, G
′

is also generically
globally rigid in E2.

Combining Theorems 2.6.7, 2.6.8 and 2.6.9, we obtain the following charac-
terization for generically globally rigid graphs in E2.

Corollary 2.6.10. An abstract framework G = (V,E) is generically globally
rigid in E2 iff either G is a complete graph on at most three vertices or G is
3-vertex connected and redundantly rigid in E2.

Notice that Corollary 3.1 implies that global rigidity in E2 is a generic prop-
erty.

Only recently, a complete characterization for generic globally rigid graphs
in Ed, d ≥ 3 was found. Specifically we have the following:

Theorem 2.6.11. [16, 31] An abstract framework G = (V,E) with |V | ≥ d+ 2
is generically globally rigid in Ed iff rank G = d|V | − d(d + 1), where G is the
so-called ”Gauss map” that takes each smooth point of the image of the rigidity
map to its tangent space.



Chapter 3

Generic rigidity in E2

In this section we deal with the theory of rigid graphs in 2 dimensions. This is
a case that has been extensively studied and is fully-understood.

In Section 3.1 we will present a number of combinatorial characterizations
of minimally rigid graphs in R2, some for their historical importance, some for
their algorithmic implicatons and some whose generalizations might prove to be
useful in obtaining a combinatorial characterization of minimally rigid graphs
in R3.

In Section 3.2 we elaborate on the connections between Laman graphs and
pseudo-triangulations. Specifically we will show that the underlying graph of a
pointed pseudo-triangulation is a Laman graph and moreover that every planar
Laman graph can be embedded in E2 as a pointed pseudo-triangulation.

Lastly, in Section 3.3, we deal with the Laman decision problem: given an
abstract framework G, decide whether it is generically minimally rigid in E2 or
not. We will summarize the various algorithms invented in order to deal with
this problem and we will discuss their complexity.

3.1 Combinatorial characterization

Every rigid body constrained to move in the plane has 3 internal degrees of
freedom that correspond to translations and rotations. On the other hand, |V |
vertices have 2|V | degrees of freedom to begin with and since each edge removes
(at most) one degree of freedom it is clear that a necessary condition for G to
be generically rigid in E2 is that |E| = 2|V | − 3.

This condition fails to be sufficient as can be established from the counterex-
ample in Figure 3.1. This is an abstract framework that is generically flexible in
E2, although it has the right number of edges. Upon closer inspection it should
be clear that the reason it is flexible, is that its edges are not well distributed.
Specifically, the abstract framework in Figure 3.1 consists of a flexible square
(left component) attached to a redundantly rigid K4 (right component).

Notice however that if we take one of the edges from the redundantly rigid

25
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Figure 3.1: A framework that has the right number of edges but is flexible. A
flex of the framework is illustrated in dashed lines.

component of the above graph and attach it to its flexible component, the
resulting graph (see Figure 3.2) is generically rigid in E2.

Figure 3.2: A framework with the right number of edges which is rigid, because
this time its edges are properly distributed.

Clearly, what we need is 2|V | − 3 well distributed edges and this is the basic
intuition behind Theorem 3.1.2. Before stating Laman’s Theorem we need need
the following definition:

Definition 3.1.1. An abstract framework G = (V,E) is called generically min-
imally rigid in Ed iff G becomes generically flexible in Ed once any edge is
removed. Equivalently, an abstract framework G = (V,E) is generically mini-
mally rigid in Ed iff G(p) is isostatic, for one generic point p ∈ Ed|V |.

It is worth noticing that in view of the definition above, an abstract frame-
work G = (V,E) is generically rigid in Ed iff G contains a generically minimally
rigid subgraph in Ed. Thus, for the rest of this essay, we will restrict our atten-
tion to the class of generically minimally rigid frameworks.

We are now ready to state Laman’s Theorem. We notice that the necessity
of the 2n− 3 counts was already known to J.C. Maxwell. Their sufficiency was
proved over 100 years later by G. Laman.

Theorem 3.1.2. [39, 42] An abstract framework G = (V,E) is generically
minimally rigid in E2 iff

• |E| = 2|V | − 3

• |E′ | ≤ 2|V ′ | − 3 for all vertex induced subgraphs (V
′
, E
′
), with |V ′ | ≥ 2

An abstract framework G = (V,E) satisfying the counts above will be said
to be Laman or to have the Laman property.

We continue with some characterizations of Laman graphs in terms of cospan-
ning trees. We start with a characterization due to L. Lovasz and Y. Yemini.
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Theorem 3.1.3. [40] The abstract framework G = (V,E) is minimally rigid in
E2 iff for every pair of vertices a, b in V , the multigraph Gab = (V,E ∪ {a, b})
obtained by adding an edge between vertices a, b (even if edge ab was already
present) is the edge-disjoint union of two spanning trees.

A. Recksi has proved a significant refinement of Theorem 3.1.3. Specifically,
he shows that it suffices to check the graphs Gab, where ab is already an edge
of G. In order to prove this, we need to introduce some additional terminology.

Let G = (V,E) an abstract framework and let P be a partition of V . By
EP (G) will denote the set of those edges ofG which join vertices belonging to dif-
ferent members of P , and GP will denote the graph with V (GP ) = P, E(GP ) =
EP (G) and an edge of GP joins in GP those members of P to which its end-
vertices in G belong. We think of GP as being obtained from G by shrinking
each member of P to a single vertex.

The following Theorem was proved in 1961 independently by W.T. Tutte
and C. Nash-Williams.

Theorem 3.1.4. [54], [44, Theorem 1] A graph G = (V,E) has k edge-disjoint
spanning trees iff

|EP (G)| ≥ k(|P | − 1)

for every partition P of V .

Using Theorem 3.1.4, we can now prove the following:

Theorem 3.1.5. Let G = (V,E) be an abstract framework. Then G consists
of 2 edge-disjoint spanning trees iff the following hold:

• |E| = 2|V | − 2

• |E′ | ≤ 2|V ′ | − 2 for all vertex induced subgraphs (V
′
, E
′
)

Proof. Suppose G is the union of 2 edge-disjoint spanning trees and let V =
{v1, . . . , vn}. Since the two trees are edge-disjoint and spanning it is clear that
|E| = 2|V | − 2. Let (V

′
, E
′
) be a vertex induced subgraph and without loss

of generality suppose that V
′

= {v1, . . . , vk}. By Theorem 3.1.4 it follows that
|EP (G)| ≥ 2(|P | − 1) for every partition P of V so in particular this is also the
case for the partition P =

{
V
′
, {vk+1}, . . . , {vn}

}
. But |EP (G)| = |E| − |E′ |

and |P | = |V | − |V ′ | + 1 so the condition |EP (G)| ≥ 2(|P | − 1) implies that
|E′ | ≤ 2|V ′ | − 2.

On the other hand suppose that G satisfies the counts implied by the The-
orem. We need to show that |EP (G)| ≥ 2(|P | − 1) for every partition P =
{P1, . . . , Pk} of V . By the hypothesis for each of the induced subgraphs (Pi, Ei)
it is true that |Ei| ≤ 2|Pi| − 2, ∀i = 1, . . . , k. So

k∑
i=1

|Ei| ≤ 2(|P1|+ . . . |Pk|)− 2|P |
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and since P is a partition of V

k∑
i=1

|Ei| ≤ 2|V | − 2|P |

So it follows that

|EP (G)| = |E| −
k∑

i=1

|Ei| ≥ 2|V | − 2− 2|V |+ 2|P | = 2(|P | − 1)

Notice that there is a striking similarity between Theorem 3.1.5 and Laman’s
Theorem, so the following characterization of minimally rigid graphs in E2 due
to A. Recksi should come as no surprise.

Theorem 3.1.6. [47] An abstract framework G = (V,E) is minimally rigid in
E2 iff for every edge ij ∈ E the multigraph Gij obtained by doubling edge ij is
the union of two edge-disjoint spanning trees.

Proof. Suppose that G is minimally rigid in E2 and let ij ∈ E. Consider the
multigraph Gij = (V ij , Eij) = (V,E∪ ij), obtained by adding one more copy of
edge ij to G. In order to show that Gij is the edge disjoint union of two spanning
trees, it suffices to show that it satisfies the counts implied by Theorem 3.1.5.
Since G is Laman, it follows that |E| = 2|V | − 3 and thus |Eij | = 2|V ij | − 2.
Now, let (V

′
, E
′
) be a vertex induced subgraph of Gij . Since G is Laman there

are at most 2|V ′ | − 3 edges of G incident with the vertices in V
′
, and thus

|Eij | ≤ 2|V ij | − 2 in Gij .
For the other direction, suppose that for every edge ij ∈ E the multigraph

obtained by doubling edge ij is the union of two edge-disjoint spanning trees.
So, if we fix an edge ij ∈ E and double it, the resulting graph Gij will satisfy the
counts implied by Theorem 3.1.5. Thus, |E| = |Eij |−1 ≤ 2|V ij |−3 = 2|V |−3.
Now, let (V

′
, E
′
) be a vertex induced subgraph of G and let kl ∈ E′ . By the

hypothesis there are at most 2|V ′ | − 2 edges of Gkl incident with the vertices in
V
′

and thus |E′ | ≤ 2|V ′ | − 3 in G.

Before we state and prove the last characterization of Laman graphs due
to H. Crapo we need to introduce some new terminology and to prove some
preliminary results. An nTk partition of a graph G consists of n trees Ti =
(Vi, Ei), such that the edge set of G can be expressed as the disjoint union of
the trees Ti and every vertex of G belongs to precisely k of them. See Figure 3.3
for an example. A graph G will be called nTk iff it has an nTk partition. An
nTk partition of graph G will be called proper iff there are no non-trivial (having
at least one edge) subtrees of the Ti that have the same underlying vertex set.

Proposition 3.1.7. Let G = (V,E) be an nTk graph. Then |E| = k|V | − n.



3.1 Combinatorial characterization 29

Figure 3.3: A proper 3T2 partition of the K3,3 graph.

Proof. Let T1 . . . , Tn be the trees of the nTk partition where Ti = (Vi, Ei). By
the definition of the nTk partition, each vertex belongs to precisely k of the
trees so

∑ |Vi| = k|V |. Since E is the disjoint union of the trees Ti it follows
that

|E| =
∑

(|Vi| − 1) = k|V | − n

Proposition 3.1.8. Let G = (V,E) a graph with the Laman property. Then G
is a 3T2 graph.

Proof. Since G is Laman, by Theorem 5.1.4 it has a Henneberg-2 construction
G1, . . . , Gn, where G1 is the single edge e = uv. We inductively construct the
3T2 partition as follows: For the base case i = 1 we define

T1 = {e}, T2 = {u}, T3 = {v}

Suppose now that we have constructed a 3T2 partition for Gi and that Gi+1 is
obtained from Gi through a H1 step i.e. we add a new vertex n that we connect
to vertices a, b of Gi. By the induction, Gi has a 3T2 partition T1, T2, T3, and
by the definition of a 3T2 partition each vertex belongs to exactly two of the
trees. In particular, let Ta = {Ti1 , Ti2}, Tb = {Tj1 , Tj2} be the sets of trees that
vertices a, b belong to, respectively. We then add edge na to the tree Ta ∩ Tb

and edge nb to the tree Tb − Ta ∩ Tb.
Lastly, suppose that Gi+1 is obtained from Gi through a H2 step i.e. we add
a new vertex n that we connect to vertices {a, b, c} of Gi and additionally we
remove edge ab of Gi. By the definition of a 3T2 partition, every edge of Gi

belongs to exactly one tree so we can assume without loss of generality that
ab ∈ T1. Since the removal of edge ab from Gi destroys the connectivity of T1

it is clear that edges na, nb should be added to T1. Let Tc be the set of trees
to which vertex c belongs. If T1 /∈ Tc then we add edge nc to tree T1. On the
other hand, if T1 ∈ Tc then we place edge nc to either T2 or T3.

Theorem 3.1.9. [19, Theorem 1] Let G = (V,E) be a graph. Then G is
minimally rigid in E2 iff G has a proper 3T2 partition.

Proof. Let G be minimally rigid in E2 and for the sake of contradiction sup-
pose that G has no proper 3T2 partition. By Theorem 3.1.2 G has the Laman
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property and thus by Proposition 3.1.8 G has a 3T2 partition T1, T2, T3, which
cannot be proper by the hypothesis. So there exist T

′

i , T
′

j non-trivial subtrees
of Ti, Tj respectively, that share the same underlying vertex set V

′
. Since the

Tj ’s are edge disjoint it follows that the subgraph of G induced by the vertex
set V

′
has at least 2|V ′ | − 2 edges, which is a contradiction since the Laman

condition is violated.
On the other hand, suppose that G has a proper 3T2 partition T1, T2, T3. Propo-
sition 3.1.7 implies that |E| = 2|V | − 3. Now, assume that G is not minimally
rigid in E2. By Theorem 3.1.2, G will not have the Laman property so let
(V
′
, E
′
) be a subgraph of G with |E′ | ≥ 2|V ′ |−2. Let T

′

i = (V
′

i , E
′

i), i = 1, 2, 3,
be the subgraphs of Ti induced by the vertex set V

′
. Our goal is to show that

two of the T
′

i are trees and one of them is empty. Keeping that in mind we
define ci to be the number of connected components of Ti

′. It is then clear that
|E′i | = |V

′

i | − ci and thus

|E′ | =
3∑

i=1

|E′i | =
3∑

i=1

(|V ′i | − ci) = 2|V | −
3∑

i=1

ci

so
3∑

i=1

ci ≤ 2

Notice that at least two of the ci’s should be strictly positive for otherwise, if
two of the ci’s, say c1, c2, were zero then T

′

1, T
′

2 would be empty which is absurd
since by the definition of a 3T2 partition every vertex of G belongs to exactly
two trees. So exactly two of the ci’s are equal to 1 and one of them equals 0
which in turn means that two of the T

′

i are trees and one of them is empty. But
since each vertex belongs to two trees it follows that the two non-empty trees
have the same underlying set V

′
which is absurd by the definition of a proper

3T2 partition.

3.2 Connections with pseudo-triangulations

Pseudo-triangulations are relatively new objects, initially introduced in the
Computational Geometry community for tackling problems such as visibility
[46, 45], kinetic data structures [1] and motion planning for robot arms [51].
These exhibit rich combinatorial, rigidity theoretic and polyhedral properties,
many of which have only recently have started to be investigated. For example,
once any convex hull edge is removed from a pseudo-triangulation, it becomes
an expansive 1dof mechanism i.e. as it moves, the distance between any pair
of vertices never decreases. Expansive motions were a crucial ingredient in the
solution of the Carpenter’s rule problem [17]

In this Section we will show that the underlying graph of a pointed pseudo-
triangulation is a Laman graph (Corollary 3.2.7) and that any planar Laman
graph can be embedded in E2 as a pointed pseudo-triangulation (Theorem 3.2.8).
We begin our study of pseudo-triangulations with some necessary definitions.
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Definition 3.2.1. An angle ω will be called convex, straight or reflex iff it is
strictly smaller, equal to or larger than π, respectively.

Definition 3.2.2. A vertex v of a polygonal region R will be called convex,
straight of reflex iff the angle spanned by its two incident edges that faces the
interior of R is convex, straight or reflex respectively.

We note that, general position for the vertices which we will usually assume,
implies absence of straight angles.

Definition 3.2.3. A simple polygon with exactly k convex vertices (and an
arbitrary number of reflex vertices) will be called a pseudo-k-gon. The k convex
vertices will be called the corners of the pseudo-k-gon.

Figure 3.4: A pseudo-triangle.

Notice that triangles are pseudo-triangles but the converse is obviously false.

Definition 3.2.4. A vertex v will be called pointed iff one of the angles spanned
by consecutive edges incident to v is reflex. Otherwise v will be called non-
pointed.

Definition 3.2.5. A pseudo-triangulation of a finite pointset P = {p1, . . . , pn}
is a planar subdivision of the convex hull of P into pseudo-triangles.

Figure 3.5: A pseudo-triangulation of a pointset.

A pointed pseudo-triangulation is one in which every vertex is pointed.
The following Theorem exhibits the combinatorial properties of pointed

pseudo-triangulations which imply useful rigidity theoretic consequences: they
are Laman graphs.
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Theorem 3.2.6. [52, Theorem 2.3] Let G = (V,E) be a graph embedded on the
pointset P = {p1, . . . , pn}. The following are equivalent:

1. G is a pointed pseudo-triangulation of P .

2. G is a pseudo-triangulation of P with the minimum possible number of
edges.

3. G is a pseudo-triangulation of P with 2n− 3 edges.

4. G is planar, pointed and has 2n− 3 edges.

Proof. Let |V | = {v1, . . . , vn}, |E| = e and let f denote the number of interior
faces of G. Also, let di = deg vi (notice that is also the number of angles incident
to vi) and ci the number of convex angles incident to vi. Clearly, if vi is pointed
then ci = di − 1 and if vi is non-pointed then ci = di. Let A denote the set of
pointed vertices of G and B the set of non-pointed vertices of G, where b = |B|
(and thus |A| = n− b). It then follows that

2e =
n∑

i=1

di =
∑

ui∈A

(ci+1)+
∑
vi∈B

ci =

(∑
ui∈A

ci +
∑

ui∈B

ci

)
+
∑

ui∈A

1 =
n∑

i=1

ci+(n−b)

Since G is a pseudo-triangulation, every face of its G is a pseudo-triangle
and so it has exactly 3 convex corners. It is then clear that

∑n
i=1 ci = 3f and

thus
2e = 3f + (n− b)

Applying Euler’s formula to G we have that n− e+ (f + 1) = 2 (notice that we
need to add 1 to f , because f is the number of interior faces of G) and using
this to eliminate f from the formula above we obtain that

e = 2n− 3 + b (3.1)

1⇔ 2⇔ 3
Since b is non-negative, formula 3.1 implies that the minimum possible num-

ber of edges is 2n − 3 and this achieved iff b = 0, which by the definition of b
means that G is pointed.

3⇒ 4
Since G is a pseudo-triangulation with 2n − 3 edges, formula 3.1 implies that
b = 0 and thus G is pointed. Additionally every pseudo-triangulation is planar
by definition, so we are done.

4⇒ 3
Since e = 2n − 3, using Euler’s formula we obtain that the number of interior
faces is f = n − 2. Additionally, since G is pointed (thus B = ∅) the total
number of corners of G is equal to

c =
n∑

i=1

ci =
n∑

i=1

(di − 1) = 2e− n = 3(n− 2)
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On the other hand, every interior face in a planar graph must have at least
3 inner convex angles. Since G has n− 2 interior faces it follows that each one
of them must have exactly 3 convex angles and thus every interior face of G is
a pseudo-triangle. Moreover, G is planar by the hypothesis so it follows that G
is a pseudo-triangulation.

Using Theorem 3.2.6 we can now prove the following:

Corollary 3.2.7. [52, Corollary 2.4] The underlying graph of a pointed pseudo-
triangulation of a pointset P = {p1, . . . , pn} is a planar Laman graph.

Proof. LetG = (V,E) be the underlying graph of a pointed pseudo-triangulation
of the pointset P . Theorem 3.2.6 implies that |E| = 2|V | − 3 and it remains to
show that every vertex induced subgraph of G with k vertices has ≤ 2k−3 edges.
Notice that the properties of planarity of pointedness are hereditary in the sense
that, if G is planar and pointed, the same is true for all of its vertex induced
subgraphs. Clearly, Theorem 3.2.6 implies that no induced subgraph of G on k
vertices can have more than 2k − 3 vertices and thus the claim follows.

A natural question to ask is if the converse of Corollary 3.2.7 is also true.

Theorem 3.2.8. [33, Theorem 1] Let G = (V,E) be a planar Laman graph.
Then G can be embedded into E2 as a pointed pseudo-triangulation.

Before giving the details of the proof we need to introduce the concept of
a combinatorial pseudo-triangulation, abbreviated as cpt. Intuitively, a cpt can
be thought of as an abstract model of a pseudo-triangulation, which carries
only the combinatorial information (incidences, convex/reflex angles etc.) of a
pseudo-triangulation. A formal definition follows.

Definition 3.2.9. Let G be a planar 2-connected graph. A combinatorial pseudo-
triangulation (cpt) of G is an assignment of labels (reflex and convex) to the
angles of G such that:

• Every face, excluding the outer one, gets exactly three angles labeled con-
vex.

• The angles incident to the outer face receive only reflex labels.

• Each vertex is incident to at most one angle labeled big. If a vertex is
incident to a big angle then the vertex will be called pointed.

• A degree-2 vertex is incident to exactly one angle labeled big.

The proof of Theorem 3.2.8 goes as follows: we first show that the problem
reduces to the case where the outer face is a triangle. Then we establish that
every planar Laman graph has a Henneberg construction, with all intermediate
graphs being also planar. After that we show that every planar Laman graph
admits a cpt assingment (not necessarily unique). Lastly, we show that at least
one of the computed cpt’s is realizable with straight lines.
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G

G
′

Figure 3.6: Reducing to the case where the outer face is a triangle.

Lemma 3.2.10. [33, Lemma 6] Embedding a planar Laman graph as a pseudo-
triangulation, reduces to the case when the outer face is a triangle.

Proof. Let G = (V,E) be a planar Laman graph, whose outer face has more
than 3 vertices. We construct a new Laman graph G

′
on |V | + 3 vertices as

follows: we add 3 new vertices, which form a triangle, to the outer face of G
so that the original graph is contained in the triangle’s interior. We then join
each triangle vertex with arbitrary vertex on the boundary of G. The reader is
referred to Figure 3.2 for an example of this procedure.

We claim that ifG
′
is realized as a pseudo-triangulation with the new triangle

as its outer face, then G is also realized as a pseudo-triangulation. Clearly, it
suffices to show that in the realization of G

′
, the outer face of G is in convex

position. The way to do that is by showing that all angles of G incident to its
outer face are reflex. But, the three new interior edges of G

′
provide two convex

angles at their endpoint incident to the outer face and at least one convex angle
at their other endpoint. Since the three pseudo-triangles that surround G have
in total 9 convex angles, the claim follows.

Lemma 3.2.11. [33, Lemma 8] Every planar Laman graph admits a combina-
torial pseudo-triangulation assignment.

Proof. The proof goes by induction on the number of vertices of a planar Laman
graph. In what follows, we will depict a face of a cpt as a circle with its 3 convex
angles marked with black dots. Unmarked angles are reflex.

The base case is a triangle and it has a unique cpt labelling.

Figure 3.7: The unique cpt of a triangle.

Suppose now the claim is true for planar Laman graphs on n vertices. We
know that a planar Laman graph on n + 1 vertices is obtained by a planar
Laman graph on n vertices through a H1 or H2 step. Thus, it suffices to show
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how to extend a cpt labelling in order to facilitate the addition of a new vertex
through a H1 or a H2 step. These two cases are treated separately.

In a H1 step, a new vertex v is inserted in a face F (which by induction
already has a cpt labelling) and joined to two old vertices v1, v2. The new
edges vv1, vv2 partition the face F into two new ones. We need to consider the
following cases:

If neither of v1, v2 is among the convex vertices of F , the convex vertices of
F can be split between the two new faces either as 2+1 or 3+0 (see Figure 3.8).

v1 v2

v1 v2

Figure 3.8: Neither of v1, v2 is among the convex vertices of F .

If one of them (say v1) is among the convex vertices of F then the other two
convex vertices are either both in the same new face or they are separated (see
Figure 3.9).

v1

v2

v1

v2

Figure 3.9: Only v1 is a convex vertex of F .

Last case to consider is when both of v1, v2 are convex vertices of F . The
remaining vertex is in one of the newly created faces (see Figure 3.10).

v1

v2

Figure 3.10: Both of v1, v2 are convex vertices of F .

In either one of these cases, the assignment of convex and reflex labels is
what one would expect: a convex vertex is split in two convex ones, a reflex
vertex is split in a reflex one and a convex one and the new point gets exactly
one reflex angle. A representative case is illustrated in Figure 3.11.

In a H2 step, edge v1v2 is first removed, merging two faces of the existing cpt
into a new face F . This process forces some pairs of angles to merge into one.
The rules for assigning labels to merged angles are natural: if one of the angles
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v1 v2 v1 v2 v1 v2

Figure 3.11: A representative case of the labeling process. These are the three
possible cpt extensions of the first cpt in Figure 3.8.

that merged together was reflex than the resulting angle is reflex, otherwise it
is convex. See Figure 3.12 for a representative case.

v1

v2

v1

v2

Figure 3.12: A representative case of the merging process.

Therefore face F has exactly four convex angles. The boundary of F is
separated by v1 and V2 into two chains, each of which contains at least one
convex vertex. Depending on whether v1, v2 are convex or reflex, there are 4
cases to consider (see Figure 3.13): both of them are convex and the other two
convex vertices are distributed as 1-1 to the two chains; one of them is convex
and the other three convex vertices are distributed as 1-2 on the chains; both
of them are reflex and the four convex vertices are distributed as either 2-2 or
1-3 to the chains.

For the last part of the H2 step, a new vertex v is inserted into face F and
gets connected to v1, v2 and some other arbitrary vertex v3. The new edges
vv1, vv2, vv3 partition F into three parts and a tedious but straightforward case
analysis shows that in each one of the four possible cases mentioned above, a
cpt labeling can be constructed. See Figure 3.14 for a representative case.

Finally, combining Lemma’s 3.2.10 and 3.2.11 we obtain that:

Theorem 3.2.12. Every planar Laman graph can be embedded as a pseudo-
triangulation.

The proof follows the same analysis as that of Lemma 3.2.11 and is omitted.
The details of the proof can be found in [33].

3.3 Algorithms for generic 2-rigidity

There is a number of questions of algorithmic nature, concerning generically
rigid graphs in E2, the most important being the following decision problem:
given a graph G determine whether it is Laman i.e. generically minimally rigid
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v1

v2

v1

v2

v1

v2

v1

v2

Figure 3.13: The four possible cases after the removal of edge v1v2.

v1

v2

v1

v2

v3

v1

v2

v3

Figure 3.14: The two possible cpt labelings, following a H2 step.

in E2. Other problems of interest include the construction of a Henneberg 2-
sequence for a given Laman graph G and additionally the identification of the
rigid and flexible subcomponents of a generically flexible graph G. We will focus
our attention on the Laman decision problem. It should be clear by now that
Laman graphs is an extensively studied and well understood class of graphs,
so the existence of efficient polynomial time algorithms for all these problems
should come as no surprise.

We have seen that there is a number of characterizations of Laman graphs
and each of them leads to an associated algorithm for verifying generic minimal
rigidity in the plane. Clearly, some of them are better suited for algorithmic
verification than others. For purposes of comparison we compile a list of them
here, in the form of a Theorem.

Theorem 3.3.1. For a graph G = (V,E) with |V | ≥ 2 the following are equiv-
alent:

1. G is generically minimally rigid in E2;

2. there exists a Henneberg 2-sequence for G;

3. |E| = 2|V | − 3, and for each subgraph G
′

= (V
′
, E
′
) with |V ′ | ≥ 2, |E′ | ≤

2|V ′ | − 3;

4. for every pair of vertices a, b in V , the multigraph Gab = (V,E ∪ ab)
obtained by adding an edge between vertices a, b is the edge-disjoint union
of two spanning trees;
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5. for every edge ij ∈ E the multigraph Gij obtained by doubling edge ij is
the union of two edge-disjoint spanning trees;

6. for each edge ab, the graph G∗ = (V ∗, E∗) obtained by adding two loops at
vertex a and one loop at vertex b satisfies |E∗| = 2|V ∗| and |E′′ | ≤ 2|V ′′ |
for all subgraphs G

′′
= (V

′′
, E
′′
);

7. for each edge ab the graph G∗ = (V ∗, E∗) obtained by adding two loops at
vertex a and one loop at vertex b contains two edge disjoint matchings of
edges to vertices;

8. G has a proper 3T2 partition;

9. G admits a red-black hierarchy (RBH);

10. |E| = 2|V |− 3 and for each e ∈ E the multigraph G4e obtained by quadru-
pling (add three additional copies) of e has no induced subgraph G

′
with

|E′ | > 2|V ′ |;
Clearly, characterization (3) is not suited for algorithmic verification of

Laman graphs, because checking whether a graph satisfies the Laman counts
leads to a poor algorithm since it involves counting the edges in every subgraph,
of which there is an exponential number.

Characterizations (4) and (5), are given in terms of cospanning trees. These
characterizations are better suited for algorithmic verification, thanks to the
existence of polynomial time algorithms for decomposing a graph into two span-
ning trees [23, 29]. This approach leads to the best known algorithm for the
Laman decision problem, which runs in time O(n

√
nlogn).

Characterizations (6) and (7) were employed by K. Sugihara [53] and led to
the first polynomial time algorithm for determining the independence of a set
of edges in 2 dimensions.

Characterization (9) is due to S. Bereg. The RBH for a graph G is a hier-
archical decomposition of the graph into trees which is a certificate for generic
rigidity in the plane [6, Corollary 4]. Moreover, an RBH can be constructed in
O(n2) time [6, Theorem 3] and a hierarchy can be verified to be RBH in O(n)
time [6, Lemma 5]. Having an RBH of a Laman graph G, enables us to compute
its Henneberg 2-sequence in O(n2) time. Additionally, recall that Theorem 3.2.8
implies that every planar Laman graph G can be embedded in the plane as a
pointed pseudotriangulation. By [6, Theorem 8] it follows that using a RBH for
G, such an embedding can be computed in O(n2) time, speeding up a recent
algorithm [33, Section 3.1] by a factor of O(n). O. Daescu and A. Kurdia extend
these results and obtain an algorithm for verifying Laman graphs which runs
in O(Tst(n) + nlogn) time, where Tst(n) is the best time to extract two edge
disjoint spanning trees from G or decide that no such trees exist [20, Theorem
4.3]. Moreover, they speed up the construction of an RBH to O(nlgn).

Characterization (10) leads to a very simple and elegant algorithm first pro-
posed by B. Hendrickson and J. Jacobs [36] and generalized by I. Streinu, A. Lee
and L. Tehran in a number of papers. The basic idea behind the algorithm is
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to grow a maximal set of independent edges Ê one at a time. A new edge will
be added to Ê iff it is independent of the existing set. If 2|V | − 3 independent
edges are found then by Laman’s theorem G will be rigid. So the key to an
efficient algorithm is to be able to determine easily whether or not a new edge
is independent of Ê. Characterization (10) implies that we can do that by qua-
drupling each edge of Ḡ = (V, Ê ∪ e) and then checking that no subgraph has
too many edges. But in fact we can do much better than that. The following
Lemma shows that it is enough to quadruple only edge e.

Lemma 3.3.2. A new edge e is independent of Ê iff the graph G4e has no
induced subgraph with |E′ | > 2|V ′ |.

Proof. For the first direction, let us assume that G4e has no induced subgraph
with |E′ | > 2|V ′ | and for the sake of contradiction suppose that e is not in-
dependent of Ê. It then follows from characterization (10) that there exists
an edge e

′ ∈ Ê ∪ e whose quadrupling creates a subgraph of G4e
′

denoted by
G
′

= (V
′
, E
′
), with |E′ | > 2|V ′ |. Since the edges in Ê are independent, charac-

terization (10) implies that edge e belongs to E
′
. We now consider the following

two cases: edge e
′

either belongs to E
′

or not.

• If e
′ ∈ E′ then since G

′
is an induced subgraph, all 4 copies of e

′
belong

to E
′
. Consider the graph G

′′
= (V

′
, {E′ − 3e

′} ∪ 3e) obtained from G
′

by substituting 3 copies of edge e
′

with 3 copies of edge e. But clearly
G
′′

is a subgraph of G4e with |E′′ | = |E′ | > 2|V ′ | = 2|V ′′ | which is a
contradiction by the hypothesis.

• On the other hand if e
′
/∈ E′ then the graph G

′′′
= (V

′
, {E′−{ei, ej , ek}}∪

3e) obtained by removing any three edges ei, ej , ek ∈ E′ − e and substi-
tuting them with 3 copies of edge e is an induced sugraph of G4e with
|E′′′ | = |E′ | > 2|V ′ | = 2|V ′′′ | which is a contradiction by the hypothesis.

For the other direction, suppose that edge e is independent of Ê. The claim
follows immediately from characterization (10).

The preceding Lemma, reduces the complexity of testing whether a new
edge is independent, to that of counting edges in subgraphs once the new edge
is quadrupled. In order to do this efficiently, we will make use of the pebble
game algorithm described below.

Each vertex is assigned two pebbles which will be used to cover any two of
its incident edges. An edge is said to be covered iff ithas an assigned pebble to
one of its incident vertices. A pebble covering is an assignment of the pebbles
such that all edges of the graph are covered. The goal of the algorithm is to
compute a pebble covering or to establish that no such cover exists.
The pebble game algorithm
Assume that we have a set of edges that are covered with pebbles. For each one
of the four copies of the new edge do:
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• If there is a free pebble at either one of vertices the new edge is incident
to, use that pebble to cover the new edge. Afterwards direct this edge
such that it points away from the vertex that donated the pebble.

• Otherwise perform a DFS in the directed graph of existing edges. If a free
pebble is found then perform the appropriate sequence of swaps such that
the new edge is covered. If no free pebbles are found, return ”no cover”.

The total running time of the pebble game Algorithm is O(|V ||E|). Indeed,
the Algorithm is called |E| times and each DFS takes O(|V |) time. The con-
nection between independence testing and pebble coverings is made explicit in
the following Theorem.

Theorem 3.3.3. A new edge e is independent of Ê iff there exists a pebble
covering for G4e.

Proof. First suppose that there exists a pebble cover for G4e and let G
′

=
(V
′
, E
′
) be a vertex induced subgraph of G4e. Then it must be the case that

|E′ | ≤ 2|V ′ | since the edges in E
′

can only be covered using pebbles from the
vertices in V

′
and there is only 2|V ′ | of them. Thus by characterization (10) it

follows that edge e is independent of Ê.
On the other hand, suppose that that e is independent of Ê and for the

sake of contradiction let us assume that no pebble covering exists for G4e i.e.
the pebble game Algorithm returned ”no cover”. Let |V ′ | be the number of
vertices encountered during that call of the pebble game Algorithm and let
G
′

= (V
′
, E
′
) be the subgraph of G4e induced by V

′
. It is then clear that

|E′ | > 2|V ′ |, for otherwise a free pebble would have been found. But that is a
contraction because of the hypothesis combined with characterization (10).
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Generic rigidity in E3

One of the major open problems in rigidity theory is that of the combinatorial
characterization of generically minimally rigid graphs in 3-space.

In Section 4.1 we will establish that the 3-dimensional analogue of the Laman
condition, fails to be a sufficient condition for generic minimal rigidity in E3.
Consequently, it should come as no surprise that a lot of effort has been spent
in trying to determine appropriate refinements to the Laman condition, so that
it yields a sufficient condition for generic rigidity in E3. Some of these are
presented in the end of this Section.

In Section 4.2 we consider the class of graphs that corresponds to the 1-
skeleta (edge graphs) of convex simplicial polyhedra in E3 and we show that
these graphs are generically minimally rigid in E3.

4.1 Search for a combinatorial characterization

Each point in 3-space has 3 degrees of freedom. Additionally, every body in
3-space has 6 ”internal” degrees of freedom that correspond to translations and
rotations (rigid motions) of R3. Since the addition of an edge destroys at most
one degree of freedom it is clear that if we expect a graph on n vertices to be
rigid in R3 then it should have at least 3n − 6 edges (in order to destroy all
”external” degrees of freedom).

The following ”necessary counts Theorem” is the natural generalization of
the Maxwell-Laman condition to 3-space.

Theorem 4.1.1. Let G = (V,E) a generically minimally rigid graph in E3.
Then the following hold:

• |E| = 3|V | − 6

• |E′ | ≤ 3|V ′ | − 6 for all vertex induced subgraphs (V
′
, E
′
), with |V ′ | ≥ 2

Similar to the planar case, we say that graph G has the Laman property in
R3 iff it satisfies the counts above.

41
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Although the conditions stated above are necessary for a graph to be gener-
ically rigid in R3, they are not sufficient as can be easily established by the
counterexample of the ”double banana” due to W. Whiteley, illustrated in Fig-
ure 4.1. The two ”bananas” can rotate relative to one another along their
implied hinge (dotted line).

Figure 4.1: The double banana.

Since the Laman property ceases to be a sufficient condition for generic
rigidity in E3, it should come as no surprise, that a lot of effort has been put in
trying to determine appropriate refinements, that would yield a combinatorial
characterization of generic rigidity in E3. We now present one of these.

Definition 4.1.2. A graph G is said to be k-vertex connected iff there does
not exist a set of k − 1 vertices whose removal disconnects the graph. The
vertex connectivity of a graph G is the largest k for which the graph is k-vertex-
connected.

As an example consider the graph of the double banana. It is clear that
the graph of the double banana is 2-connected, since there is no vertex whose
removal disconnects the graph. On the other hand, the removal of the two
vertices on the implied hinge disconnects the graph and thus the graph of the
double banana is not 3-connected. It then follows that the graph of the double
banana has vertex connectivity 2.

One can naturally wonder what would happen if we demand vertex connec-
tivity strictly greater than 2. Does that make the Laman property a sufficient
condition for generic rigidity in E3 ? The answer is negative as was established
in [41]. The case k = 3 appears also in [57, Figure 60.1.3].

The proof goes as follows: we first show that a graph G with the Laman
property can have vertex connectivity at most 5; then we present three graphs
that have the Laman property and have vertex connectivity 3,4,5, respectively,
but are flexible. These graphs are slight modifications of the double banana that
are obtained by adding mechanisms (spiders) which increase the connectivity
but in the same time preserve the flexibility.

Lemma 4.1.3. [41, Theorem 1] Let G = (V,E) be a graph that has the Laman
property. Then G has vertex connectivity at most 5.
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b

v2v1

Figure 4.2: The double banana with a 3-spider attached to it.

Proof. Suppose that G = (V,E) has vertex connectivity k. Then G is k-vertex
connected and by definition there does not exist a set of k − 1 vertices whose
removal disconnects the graph. This implies that there exist at least k-vertex
disjoint paths between any pair of vertices of G and thus deg(v) ≥ k, ∀v ∈ V .
Then

|E| = 1
2

∑
v∈V

deg(v) ≥ 1
2
k|V |

and since |E| = 3|V | − 6 it follows that

k ≤ 6− 12
|V |

Thus k ≤ 5, as claimed.

Theorem 4.1.4. [41, Lemma’s 2,3,4] There exists graphs that have the Laman
property and have vertex connectivity 3,4,5, respectively.

Proof. We will only deal with the case k = 3. The other cases are treated
similarly and the reader is referred to [41] for the details.

The Figure below illustrates the simplest spider that converts the double
banana to a flexible graph with connectivity 3. This spider consists of the
single vertex b (spider body) connected by three edges (spider legs) to the two
bananas. Notice that the legs are not connected to the implied hinge vertices.
The intuition of why this graph should be flexible is the following: as the two
bananas rotate along their implied hinge, vertices v1 and v2 move closer of
farther apart, causing vertex b to swing up or down.

It is routine to check that the resulting graph has the Laman property.
Clearly the graph has connectivity 3. To verify that tis graph remains flexible
we compute the dimension of the space of infinitesimal motions. Consider first
the double banana together with the spider body only (without the spider legs).
The space of motions of this graph is at least 10 since we have 3 dof for the
spider body, 6 dof for the double banana that correspond to rigid motions or R3

and 1 dof for the implied hinge. Since each edge reduces the dimension of the
space of motions by 1, adding the three spider legs results in a graph with at
least 7 dof. Since the internal dof are 6 it follows that the graph is flexible.
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4.2 Frameworks given by convex polyhedra in
E3

The origins of the mathematical study of the rigidity of polyhedra can be traced
back at least to L. Euler, who in 1766 conjectured that every polyhedron is rigid
in the following sense: consider a polyhedron P ⊆ E3, viewed as a ”panel and
hinge” structure, meaning that the facets are 2-dimensional panels and the
edges 1-dimensional hinges. Now imagine that, the panels are free to move
continuously in E3, subject to the following constraints: their shape and the
adjacencies between panels is preserved throughout the motion and the relative
motion between adjacent pairs of panels is rotation about their common hinge.
The polyhedron P will be called rigid iff every such motion results in a frame-
work which is congruent to P . The answer to Euler’s conjecture turned out
to be negative and we will now briefly summarize the events that led to this
discovery.

The first major breakthrough occurred in 1813, when A.L. Cauchy verified
the conjecture for the case when P is convex [13]. Specifically, Cauchy proved
the following, now known as the Cauchy Rigidity Theorem:

Theorem 4.2.1. If two 3-dimensional polyhedra convex P and P
′

are combi-
natorially equivalent with corresponding facets being congruent, then P is con-
gruent to P

′
.

For a proof of Cauchy’s Rigidity Theorem the reader is referred to [2]. We
should here note that the convexity assumption is essential for Cauchy’s rigidity
Theorem. For a counterexample where one of the polyhedra is non-convex see
Figure 4.3. Notice however, that the example of Figure 4.3 does not constitute
a counterexample to Euler’s conjecture, since the reflexion that transforms the
one polyhedron to the other is not a continuous motion.

Figure 4.3: Two combinatorially equivalent polytopes with corresponding facets
congruent that are not themselves congruent. The reason is that the second one
is non-convex.

Moreover, in 1975, H. Gluck established the truth of Euler’s conjecture when
the coordinates of the vertices of P are generic [30]. Of course, Gluck’s proof that
almost all polyhedra are rigid, does not imply that flexible polyhedra cannot
exist. It does however mean that, if they do exist, they are extremely rare.

This small window of opportunity attracted the attention of B. Connelly,
who in 1978, provided a counterexample i.e. a flexible polyhedron consisting
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of 18 triangular faces, thus establishing that Euler’s conjecture was false [14].
Illustrated in Figure 4.4 is a ”cut-out” paper model of a flexible polyhedron
due to K. Steffen. The bold edges are to be folded as ”mountains” whereas the
dashed edges as ”valleys”.

A beautiful example of a flexible sur- 

face constructed by Klaus Steffen: The 

dashed lines represent the non-convex 

edges in this "cut-out" paper model. 

Fold the normal lines as "mountains" 

and the dashed lines as "valleys." The 

edges in the model have lengths 5, 10, 

11. 12 and 17 units. 

The rigidity theory of surfaces has even more surprises in store: only very 

recently Connelly, Sabitov and Walz managed to prove that when any such 

flexing surface moves, the volume it encloses must be constant. Their proof 

is beautiful also in its use of algebraic machinery (outside the scope of 

this book). 
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Figure 4.4: A ”cut-out” paper model of a flexible polyhedron.

Consider now a polyhedron P ⊆ E3, only this time, view it as a bar and
joint framework, rather than a panel and hinge structure as we did before.
It is natural to ask, what are the rigidity theoretic properties of a framework
obtained in such a manner. We will prove that if G(p) is a framework obtained
by a convex polyhedron P ⊆ E3, then G(p) is rigid in E3 iff every face of P is
a triangle (P is simplicial).

We start by proving the well-known Cauchy Index Lemma, that Cauchy
used in proving his Rigidity Theorem which is regarded as one of the most
impressive arguments in geometry. We will state it here in a somewhat more
graph theoretical form as opposed to its original statement.

Lemma 4.2.2. [13] Let G = (V,E) be a planar graph, without loops or multiple
edges and suppose that each one of its edges is labeled with a plus or minus sign.
As a result, sign changes may occur as we circle around some vertex of G, say
in a counterclockwise direction. The claim is that, there exists either a vertex
with no sign changes or a vertex with exactly two sign changes.

In fact, we will prove a somewhat sharper assertion from which Lemma 4.2.2
follows. But first we need the following definitions.
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Definition 4.2.3. Let G = (V,E) be a planar graph, without loops or multiple
edges and suppose that each one of its edges is labeled with a plus or minus sign.

The index of vertex v ∈ V , denoted by I(v), is the number of sign changes
encountered as v is circled in the counterclockwise direction.

The index I of G, is the sum of the indices of all the vertices of G i.e.

I =
∑
v∈V

I(v)

See Figure 4.5 for an example of a vertex with index 4.

+

−
−+

−

Figure 4.5: A vertex with index 4.

Notice that by its definition, the index of a vertex v will always be even. We
will now state and prove a Lemma that implies the Cauchy index Lemma.

Lemma 4.2.4. Let G = (V,E) be a planar graph, without loops or multiple
edges and suppose that each one of its edges is labeled with a plus or minus sign.
Then, its index satisfies I ≤ 4|V | − 8.

Proof. We start with a definition, that at first sight will definitely strike the
reader as strange unnatural but is nonetheless useful, for reasons that will be-
come apparent during the proof. Given a (bounded) face f of G, then the
number of edges of f will not be what one would expect it to be i.e. the number
of the boundary edges of f . Instead, the number of edges of f is computed
as follows: we count twice each edge that does not separate f from another
bounded region and once all the other ones. For an example see Figure 4.6.

f1 f2

f3

f4

Figure 4.6: A graph G with four faces (regions). One of them (f4) is unbounded
and each one of the other three has four edges according to or definition.

Let F be the set of faces of G and let Fi be the number of faces with exactly
i edges. Since G contains no loops or multiple edges it follows that F1 = F2 = 0
and thus

|F | =
∑
i≥3

Fi (4.1)
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Additionally, by the way we defined the number of edges of a face f it should
be clear that

2|E| =
∑
i≥3

iFi (4.2)

Another way to compute the index I of G is by circling regions of G. Specif-
ically, we start by orienting G and then we count sign changes that occur as
one moves around each of the faces of G. Since two edges are adjacent iff they
are adjacent in moving around the region to whose boundary the belong, the
total number of sign changes encountered while circling the faces of G will be
the index I of G. For more details see [3], Section 2.2.

Now, since the number of sign changes as one traverses the boundary of a
face with n edges is at most n, it follows that

I ≤ 2F3 + 4F4 + 4F5 + 6F6 + 6F7 + . . . (4.3)

At this point we will make use of the generalized Euler formula for dis-
connected graphs (reference). In particular, if G = (V,E) is a planar graph
with k connected components then the generalized Euler formula implies that
|V | − |E|+ |F | = 1 + k, and thus

|V | − |E|+ |F | ≥ 2 (4.4)

Consequently, 4|V |−8 ≥ 4|E|−4|F | and combining this with Formulas (4.1)
and (4.2) we obtain that

4|V | − 8 ≥
∑
i≥3

(2i− 4)Fi = 2F3 + 4F4 + 6F5 + . . . (4.5)

Clearly, the right hand side of (4.5) dominates the right hand side of (4.3)
and thus it follows that

I ≤ 4|V | − 8

Theorem 4.2.5. Let G(p) be a framework in E3 given by a convex polyhedron
P . Then

rank R(p) = |E|
Proof. Recall that R(p) ∈ R|E|×3|V | and thus R(p)T ∈ R3|V |×|E|. Using some
elementary Linear Algebra we have that

|E| = dim ker R(p)T + dim Im R(p)T = dim Ker R(p)T + dim Im R(p)

and by the definition of the rank of a matrix it follows that

|E| = dim Ker R(p)T + rank R(p)

It is thus enough to show that dim Ker R(p)T = 0 and this is exactly what
we will try to do.



48 Generic rigidity in E3

Let ω = (ωij)ij∈E ∈ KerR(p)T and suppose for the sake of contradiction
that ω is not the zero vector. By the definition of ω we have that∑

j∈N(i)

ωij(pi − pj) = 0,∀i ∈ {1, . . . , |V |} (4.6)

Now, we will use the signs of the coefficients ωij in order to label the edges of G
with plus and minus signs. Specifically, if ωij > 0, then edge ij is labeled with
a plus sign while if ωij < 0 then edge ij is labeled with a minus sign. The edge
ij is left unmarked if ωij = 0.

Consider the graph G
′

induced by the marked edges of G, meaning that the
edges of G

′
are the edges of G that are marked with a plus or minus sign and

the vertices of G
′

are those vertices of G that are incident with at least one
marked edge. We will reach a contradiction by showing that the index of every
vertex of G

′
is ≥ 4 which is absurd by Lemma 4.2.2. Since the index of a vertex

is always an even number it is enough to show that the index of a vertex cannot
be zero or two.

Fixing some arbitrary i ∈ V , Formula 4.6 implies that∑
j∈N(i)

ωij(pi − pj) = 0

and since if j is not a vertex of G
′
ωij = 0, it follows that∑

j∈N ′ (i)

ωij(pi − pj) = 0 (4.7)

where N
′
(i) denotes the set of neighbors of vertex i in G

′
.

Suppose now that I(i) = 0. By the definition of the index of a vertex, this
means that the signs of the scalars ωij for j ∈ N ′(i) are either all positive or
negative. Since P is convex, let η · (pi − x) = 0 be a supporting hyperplane of
P at vertex i, where η is its normal vector. By the definiton of the supporting
hyperplane, all other vertices lie on one side of the plane and thus η · (pi − pj)
is either positive or negative, for all j ∈ N ′(i). Therefore,∑

j∈N ′ (i)

ωij [η · (pi − pj)] 6= 0

that implies ∑
j∈N ′ (i)

ωij(pi − pj) 6= 0

which contradicts Formula (4.7).
On the other hand, suppose that I(i) = 2. Then in the circular order around

vertex i, there exists a set of edges marked with plus followed by a set of edges
marked with minus. Again, since P is supposed to be convex, there exists a
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supporting hyperplane of P at vertex i, with all the edges marked with a plus
sign on one of its sides and those marked with a minus sign on the other. Then,
a similar argument as before concludes the proof.

Now, let G(p) be a framework in E3 given by a convex polyhedron and
suppose that we wish to determine whether it is infinitesimally rigid or not. In
view of Definition 2.2.6 and Theorem 4.2.5 it suffices to check whether |E| =
3|V | − 6.

Lemma 4.2.6. Let P be a polyhedron and let V,E, F be its set of vertices, edges
and facets respectively. Then |E| ≤ 3|V | − 6 and equality holds iff every face of
P is a triangle.

Proof. Let Fi be the number of facets of P which have exactly i boundary
edges. Clearly, F1 = F2 = 0 and |F | = ∑

i≥3 Fi. Since each edge of P belongs
to exactly two facets, it follows that∑

i≥3

iFi = 2|E|

and thus
3|F | = 3

∑
i≥3

Fi ≤
∑
i≥3

iFi = 2|E|

Also notice that equality holds iff Fi = 0,∀i ≥ 4 which in turns means that
|F | = F3 i.e. every face of P is a triangle.

Now, Euler’s formula applied to P implies that |V | − 2 = |E| − |F | and thus

3|V | − 6 = 3(|V | − 2) = 3(|E| − |F |) = |E|+ (2|E| − 3|F |)
Since we established above that 2|E| = 3|F | iff every face of P is a triangle,

the claim follows.

We have finally achieved our goal, namely we are now in the position to
prove the following:

Theorem 4.2.7. Let G(p) be a framework obtained by a convex polyhedron
P ⊆ E3. Then G(p) is rigid in E3 iff every face of P is a triangle (P is
simplicial).

Proof. By definition 2.2.6, G(p) is infinitesimally rigid iff rank R(p) = 3|V | − 6.
Since G(p) is obtained from a convex polyhedron, Theorem 4.2.5 implies that
rank R(p) = |E|. Thus G(p) is infintesimally rigid iff |E| = 3|V | − 6 which in
view of Lemma 4.2.7 happens iff every face of P is a triangle.

At this point it is natural to ask whether Theorem 4.2.7 can be generalized to
arbitrary dimension. The answer is affirmative, and in fact a stronger assertion
due to A. Fogelsanger is true. Specifically, we have the following:

Theorem 4.2.8. [28] For d ≥ 2, the graph of a triangulated d-pseudo-manifold
is generically d+ 1 rigid.
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Notice that Theorem 4.2.7 is a special case of Fogelsangre’s Theorem, when
applied to the sphere.



Chapter 5

Inductive constructions for
generically minimally rigid
graphs

This chapter addresses the following problem: is there some kind of systematic
way to generate all generically minimally rigid graphs in Ed ?

In Section 5.1 we deal with the case d = 2, where the problem is extensively
studied and fully understood. Specifically, we will show that an abstract frame-
work G is generically minimally in E2 iff it can be constructed inductively using
the so-called Henneberg operations.

In Section 5.2 we deal with the general case, where the plot thickens. We
begin by generalizing the Henneberg operations to d-space and we prove that
every graph obtained by a Henneberg d-sequence is generically minimally rigid
in Ed. On the other hand, we will show that the Henneberg d-sequences are not
sufficient to generate all generically minimally rigid graphs in Ed.

The case d = 3 deserves some extra attention, due its importance in applica-
tions and it is dealt with separately in Section 5.3. Here we analyze one of the
most important conjectures concerning generic rigidity in E3: G is generically
minimally rigid graph in E3 iff G has an ”extended” Henneberg d-construction,
in the sense that along with the two Henneberg steps, we are allowed to use two
more operations, the so-called X and V replacement.

Lastly, since we have established in Section 4.2 that the edge graphs (or
1-skeleta) of convex simplicial polyhedra are generically minimally rigid in E3,
it is natural to ask whether these graphs posses a property analogous to that
of generically minimally rigid graphs in E2 i.e. whether they can be inductively
constructed using some kind of Henneberg operations. The answer is affirmative,
as we will establish in Section 5.4. Moreover we will exploit the fact that this
class of graphs can be constructed inductively, in order to prove some properties
about them. Specifically, we will prove that convex simplicial polyhedra always
have an even number of facets and additionally that the the Hirsch conjecture
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is true for them.

5.1 Henneberg constructions in the plane

We start with a simple but important Lemma.

Lemma 5.1.1. Let G = (V,E) be a generically minimally rigid graph in E2.
Then G has at least one vertex of degree 2 or 3.

Proof. Let us assume for the sake of contradiction that deg v ≥ 4,∀v ∈ V . By
Laman’s Theorem we have that |E| = 2|V | − 3 and thus

2|E| = 2(2|V | − 3) =
∑
v∈V

deg v ≥ 4|V |

which is absurd.

We will now introduce what will be our most important tool throughout this
Section.

Definition 5.1.2. Let G = (V,E) be an abstract framework. The Henneberg-I
(H1) step (or vertex addition) applied to G, inserts one new vertex that gets
connected to 2 existing ones.

The Henneberg-II (H1) step (or edge split) applied to G, replaces an edge
by a new vertex that gets connected to its endpoints and to one more arbitrary
vertex.

For an example of a H1 and a H2 step see Figure 5.1.

H1

H2

Figure 5.1: A H1 step and a representative case of a H2 step. The newly added
vertex and the new edges are depicted in red.

Henneberg 2-sequences are a systematic way of generating minimally rigid
graphs in E2 based on the H1 and H2 operations. The formal definition follows:

Definition 5.1.3. A Henneberg 2-sequence for a graph G is a sequence of graphs
G1, . . . , Gn with the following properties :
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• G1 = K3

• Gn = G

• Gi+1 is obtained from Gi, through a H1 or a H2 step, ∀i ∈ {2, . . . , n− 1}.
See Figure 5.2 for an example of a Henneberg 2-sequence for the K3,3 graph.

It is important to notice that the Henneberg 2-sequence for an abstract frame-

H1 H1 H2

Figure 5.2: A Henneberg 2-sequence for the K3,3 graph. At each step, the added
vertex and the new edges are depicted in red.

work G may not be unique i.e. an abstract framework G can have many Hen-
neberg 2-sequences.

The following Theorem by T.S. Tay and W. Whiteley, fully justifies our
interest in Henneberg 2-sequences.

Theorem 5.1.4. An abstract framework G = (V,E) is generically minimally
rigid in E2 iff it has a Henneberg 2-sequence.

Proof. Let G be an abstract framework that is generically minimally rigid in E2.
By Lemma 5.1.1 there exists at least one vertex of degree 2 or 3. We consider
these two cases seperately:

If there is a vertex of degree 2, remove that vertex and its two adjacent edges
i.e. perform a H1 step in reverse. The resulting graph clearly has the Laman
property.

On the other hand, suppose there is a vertex v of degree 3 and let a, b, c be its
3 neighbours. These cannot form a triangle because the Laman property would
be violated on the subgraph induced a, b, c, v. So we can perform a H2 step in
reverse i.e. we remove vertex v and add the missing edge between vetrices a, b, c.
The resulting graph has the Laman property so we can proceed inductively until
the remaining graph is a triangle.

For the other direction we proceed by induction. Suppose that all graphs
on n vertices constructed by Henneberg 2-sequences have the Laman property.
We can proceed by performing either a H1 or a H2 step and we will consider
these two cases separately. Performing either a H1 or a H2 step we obtain an
abstract framework G = (V,E) with |E| = 2|V | − 3, so we only need to check
the second condition implied by Laman’s Theorem. Suppose V

′ ⊆ V and let v
be the new vertex.

Suppose v was added through a H1 step. If v /∈ V ′ then by the induction
hypothesis it follows that |E′ | ≤ 2|V ′ | − 3 . On the other hand if v ∈ V

′
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then by the hypothesis the induced subgraph (V
′ − {v}, E′) will have at most

2(|V ′ | − 1)− 3 edges and thus (V
′
, E
′
) will have at most 2(|V ′ | − 1)− 3 + 2 =

2|V ′ | − 3 edges.
Suppose v was added through a H2 step. Again if v /∈ V ′ we are done by the

induction hypothesis. So suppose v ∈ V ′ and let a, b, c be its three neighbours.
Now, if one of the vertices a, b, c does not belong to V

′
then by the hypothesis

the induced subgraph (V
′ −{v}, E′) will have at most 2(|V ′ |− 1)− 3 edges and

thus (V
′
, E
′
) will have at most 2(|V ′ | − 1)− 3 + 2 = 2|V ′ | − 3 edges.

On the other hand, if all of the vertices a, b, c are included in V
′

it follows
that the induced subgraph (V

′ −{v}, E′) will have at most 2(|V ′ |−1)−4 edges
and thus (V

′
, E
′
) will have at most 2(|V ′ | − 1)− 4 + 3 = 2|V ′ | − 3 edges.

5.2 Henneberg constructions in higher dimen-
sions

We start by generalizing the definitions of the planar Henneberg steps, to arbi-
trary dimension.

Definition 5.2.1. Let G = (V,E) be an abstract framework. The Hd
1 step (or

vertex addition) applied to G, inserts one new vertex that gets connected to d
existing ones.

The Hd
2 step (or edge split) applied to G, replaces an edge by a new vertex

that gets connected to its endpoints and additionally to d− 1 other vertices.

See Figure 5.3 for an example when d = 3. Notice that the H1 and H2 steps
that were introduced in Section 5.1 coincide with the H2

1 and H2
2 steps.

H3
1

H3
2

Figure 5.3: A H3
1 step and a representative case of a H3

2 step. The newly
inserted vertex and the new edges are depicted in red.

The generalization of the definition of the Henneberg 2-sequence to arbitrary
dimension is what one would expect it to be.

Definition 5.2.2. A Henneberg d-sequence for a graph G is a sequence of graphs
G1, . . . , Gn with the following properties :
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• G1 = Kd+1

• Gn = G

• Gi+1 is obtained from Gi, through a Hd
1 or a Hd

2 step, ∀i ∈ {2, . . . , n−1}.
We now continue by proving that if G has a Henneberg d-sequence, then G

is generically minimally rigid in Ed.

Theorem 5.2.3. [58, Propositions 5.1, 5.2] Let G = (V,E) be generically min-
imally rigid in Ed. Every abstract framework obtained by G through a Hd

1 or
Hd

2 step, is also generically minimally rigid in Ed.

Since the Kd+1 graph is generically minimally rigid in Ed it follows that:

Corollary 5.2.4. Every abstract framework G obtained by a Henneberg d-
construction is generically minimally rigid in Ed.

In order to get an idea of the techniques involved in the proof of Theorem
5.2.3, we will prove it only for the special case d = 2 (which is of course Theorem
5.1.4). The details of the proof for the general case are omitted.

We note that the approach taken in this proof, is radically different than
that of Theorem 5.1.4. This should come as no surprise, since the proof of
Theorem 5.1.4 relied heavily on the combinatorial characterization of generically
minimally rigid graphs in E2.

We begin by stating a Lemma due to W. Whiteley, which provides us with
a broad substitution principle.

Lemma 5.2.5. [56, Theorem 2.6] Let G(p) be an isostatic framework in Ed

and let G
′
(p) be a sub-framework on k vertices, which is infinitesimally rigid in

the affine space of its joints. If G
′
(p) is replaced by another sub-framework on

k vertices which is isostatic in the affine space of its joints, then the resulting
framework is isostatic.

We are now ready to prove Theorem 5.2.3 for the special case d = 2.

Proof. Suppose G = (V,E) is generically minimally rigid in E2 and let G∗ =
(V ∗, E∗) be an abstract framework obtained by G through a H1 or a H2 step.
These two cases will be treated seperately.

Adding a vertex through a H1 step: Let v be the added vertex and a, b
the vertices to which it gets attached. In view of Definition 3.1.1, in order to
show that G∗ is generically minimally rigid in E2, it suffices to find a generic
point q ∈ Ed(|V |+1) such that G∗(q) is isostatic.

Let G(p) be an independent realization of G. Place the new vertex v at point
pv, so that it is not collinear with a and b, and let q = (p, pv) be the resulting
generic point. We first prove that G∗(q) is independent.

Suppose that G∗(q) admits a stress (see Figure 5.4). It suffices to show that
it is trivial.

By the definition of a stress, the forces exerted on vertex v must cancel out.
But since v was placed such that it is not collinear with a and b, this can only



56 Inductive constructions for generically minimally rigid graphs

pa pb

pv

Figure 5.4: A stress of G∗(q). The forces exerted on vertex v are depicted in
red.

happen if the forces exerted on v are zero. Now, if we ignore vertex v, the
remaining framework is just G(p), which by hypothesis only admits the trivial
stress. So the stress is trivial and consequently G∗(q) is independent.

On the other hand, it is clear that |E∗| = 2|V ∗| − 3 and thus, in view of
Theorem 2.3.5, G∗(q) is isostatic.

Adding a vertex through a H2 step: Let v be the added vertex, {a, b}
the splitted edge and c the third vertex that v gets connected to. Also, let G(p)
be an independent realization of G, where points pa, pb and pc are not collinear.
Notice that we can find one such, since the independent realizations of G form
an open and dense subset of Ed|V |.

Let G∗(q) be a realization of G∗, where q = (p, (pa + pb)/2). Geometrically,
this means that the new vertex v is placed at the midpoint of segment pa, pb.
Also, let G

′
be the abstract framework obtained by G∗ by removing edge {v, b}

and adding edge {a, p}. By the first case of the Theorem, G
′

is generically
minimally rigid in E2 and let G

′
(q) the corresponding framework for G

′
.

Since qa, qv, qc are not collinear, it follows from the proof of the first part of
the Theorem that the realization G

′
(q) is isostatic. Because of the collinearity

of qa, qv, qb, the segments [qa, qv] and [qv, qb] form an infinitesimally rigid sub-
framework on the affine space of their endpoints (the line defined by pa and
pb). By Lemma 5.2.5, this can be substituted with the isostatic sub-framework
formed by segments [pa, pv] and [pv, pb], thus obtaining an isostatic framework
for G∗. Again, we are done by the same argument as in the first case of the
Theorem.

A natural question to ask, is if the converse of Theorem 5.2.3 is also true
i.e. does every generically minimally rigid graph in Ed have a Henneberg d-
sequence? It is not difficult to see that the answer to this question is negative.
Specifically, notice that every abstract framework that is constructed through a
Henneberg d-sequence, has at least one vertex of degree d or d+ 1 (created by
the last Henneberg step in the sequence). So, it suffices to find a graph which
is generically minimally rigid in Ed, but all of its vertices have degree strictly
greater than d+ 1. For such an example when d = 3, see Figure 5.5.

On the other hand, it is known that given a graph which is generically
minimally rigid graph in Ed, if there exist vertices of degree d or d+1, these can
be removed and the resulting graph will be again generically minimally rigid
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Then one uses the same procedure on G∗. Hence, all minimally rigid graphs can be
generated by the vertex addition and edge splitting operations alone. It is also true
that starting with a single edge only minimally rigid graphs are generated with these
operations in 2-dimensional space.

On the other hand, a minimally rigid graph in 3-dimensional space may have
all vertices of degree larger than 4; |L| = 3|V| − 6 or equivalently 2|L| = 6|V| − 12
guarantees only that some vertices have degree 5 or less. A quick check with the
vertex addition and edge splitting operations in 3-dimensional space tells us that we
can generate vertices of degree 3 and 4 with these operations, but not of degree 5. We
need other types of operations to generate minimally rigid graphs in 3-dimensional
space with all vertices having a degree of 5 or higher, and to remove a vertex of degree
5 from a minimally rigid graph in 3-dimensional space. For example, the graph of an
icosahedron shown in Figure 8 is minimally rigid and has all vertices of degree 5 [27].

Fig. 8. The graph of an icosahedron is minimally rigid and has all vertices of degree 5.

The following theorem is about removing a 5-valent vertex in a minimally rigid
graph.

Theorem 9 (Removing a 5-valent vertex [25]). Let G = (V ,L) be a minimally
rigid graph with a 5-valent vertex a and edges (a, bi), 1 ≤ i ≤ 5. Let G∗ = (V∗,L∗) be
a graph obtained by removing vertex a and the edges (a, bi), 1 ≤ i ≤ 5 from G. Then
one of the following is true (see Figure 9):

1. for some choice of two non-adjacent edges with vertices drawn from b1, b2, . . .,
b5, the graph obtained by inserting these edges is minimally rigid in 3-dimen-
sional space.

2. for two choices of adjacent pairs of edges with vertices drawn from b1, b2, . . .,
b5 (not all adjacent with a single vertex), the two graphs obtained from G∗ by
inserting these pairs are both minimally rigid in 3-dimensional space.

Figure 5.5: The edge graph of the icosahedron is generically minimally rigid in
E3 but all its vertices have degree 5.

in Ed. Specifically, we have the following Theorem concerning the removal of
vertices of degree d and d+ 1.

Theorem 5.2.6. [58, Propositions 5.1, 5.3] Let G = (V,E) be generically min-
imally rigid in Ed.

If G has a vertex v of degree d, then the abstract framework obtained by
removing v and all its incident edges is generically minimally rigid in Ed.

If G has a vertex v of valence d+ 1, then there is a choice of vertices among
the neighbors of v (say u and w) such that, the graph obtained by removing v
and all its incident vertices and adding an edge uw is generically minimally
rigid in Ed.

5.3 Spatial Henneberg constructions

For the remainder of this section we will focus on the case where d = 3, which
undoubtedly is the most important one, when it comes to applications. Let us
first summarize what we know so far.

By Theorem 5.2.3 it follows that all graphs obtained by K4 through a se-
quence of H3

1 and H3
2 steps, are generically minimally rigid in E3. Moreover, by

Theorem 5.2.6 we know that we can remove vertices of degree 3 and 4 by per-
forming inverse Henneberg steps while preserving the property of being generi-
cally minimally rigid in E3. On the other hand, the counterexample of Figure 5.5
implies that the H3

1 and H3
2 generate a proper subclass of the generically mini-

mally rigid graphs in E3.
Notice that the problem with the graph of the icosahedron is that all its

vertices have degree strictly greater than 4, so they cannot be created using the
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H3
1 and H3

2 steps. A natural idea, that will enable us to cope with this ”de-
generacy” would be to introduce new Henneberg steps that will insert vertices
of degree 5 and higher. But there is a catch here. How many new Henneberg
steps do we need? Our strategy seems to imply that we need to introduce one
such step for every possible degree, so infinitely many? Fortunately not, as the
following Lemma implies.

Lemma 5.3.1. Let G = (V,E) be generically minimally rigid in E3. Then G
has at least one vertex of degree 3,4, or 5.

The proof of the Lemma is similar to that of Lemma 5.1.1 and is omitted.
Lemma 5.3.1 clearly implies that in order to find some way to generate all
generically minimally rigid graphs in E3 we need to develop additional methods,
that will enable us to cope with degree 5 vertices. We continue with a Theorem
that provides us with a way of removing degree 5 vertices, while preserving
generic rigidity.

Theorem 5.3.2. [58, Proposition 4.5] Let G = (V,E) be generically minimally
rigid in E3and let v ∈ V , a degree-5 vertex, with edges {vi, v}, i = 1, . . . , 5.
Then, one of the following is true:

• for some choice of non-incident edges e and e
′

among vertices vi (X con-
figuration), the graph obtained by removing vertex v and adding edges e
and e

′
is generically minimally rigid in E3. For an example see Figure 5.6.

• for two choices of incident pairs of edges e, e
′

and d, d
′

(V configuration),
which are not incident to the same vertex, the two graphs formed by remov-
ing vertex v and adding these pairs are both generically minimally rigid in
E3. For an example see Figure 5.7.

v

v1
v2 v3

v4
v5

v1
v2 v3

v4
v5

e
e
′

Figure 5.6: Replacement of a 5-valent vertex v with an X configuration.

Now what about adding degree 5 vertices? Unfortunately there is no simple
procedure for adding degree 5 vertices, although there are some partial results
(for example [58, Proposition 4.10]). However, it is conjectured that the con-
verse of Theorem 5.3.2 is also valid and this is usually referred to as the 3D
replacement conjecture. We note that no analogue conjecture exists for d ≥ 4.

Conjecture 5.3.3. [57, Conjecture 60.1.16]
X replacement: Let G = G

′ ∪ ab ∪ cd be a generically minimally rigid
graph in E3, where the a, b, c, d are distinct. Then, the graph G∗ obtained by
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v

v1
v2 v3

v4
v5

v1
v2 v3

v4
v5

v1
v2 v3

v4
v5

e
e
′

d

d
′

Figure 5.7: Replacement of a 5-valent vertex v with a V configuration. Notice
that according to Theorem 5.3.2, there are always two possible V configurations,
that we can use to replace vertex v.

G
′

through the insertion of a new degree 5 vertex, that gets attached to vertices
a, b, c, d and an arbitrary vertex e, is generically minimally rigid in E3. See
Figure 5.8 for an example.

Double V replacement: Let G1 = G
′ ∪ab∪ bc and G2 = G

′ ∪a′b′ ∪ b′c′ be
two generically minimally rigid graphs in E3, with b 6= b

′
. Then, the graph G∗

obtained by G
′

through the insertion of a new degree 5 vertex, that gets attached
to 5 vertices from the set {a, a′ , b, b′ , c, c′} is also generically minimally rigid in
E3. See Figure 5.9 for an example.

a

b

c

d
e

a

b

c

d
e

Figure 5.8: The X replacement.

There is important observation to be made here. Notice that for d = 2,
the Henneberg sequence for a graph G is a certificate for generic rigidity in
E2. However, in view of Conjecture 5.3.3, it seems reasonable to assume that
we cannot expect a simple Henneberg sequence to verify that a graph G is
generically minimally rigid in E3. The natural pattern to consider here is a tree
of graphs.

Intuitively, imagine a directed rooted tree with G as it root, where all the
nodes of the tree are indexed by graphs. Specifically, the leaf nodes of the
tree correspond to the K4 graph and every path from a leaf node to the root
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a

b

c

d
e

a

b

c

d
e

a

b

c

d
e

Figure 5.9: The double V replacement.

corresponds to a Henneberg 3-construction forG. If a vertexH has one incoming
edge H

′ → H, this means that graph H was obtained by H
′

either through a
H3

1 or a H3
2 or a X replacement step. If a vertex H has two incoming edges

H
′ → H and H

′′ → H, this means that graph H was obtained by graphs H
′

and H
′′

through a V replacement step. A formal definition follows.
Let G = (V,E) be a graph and v ∈ V . By G − v we will denote the graph

obtained by G through the removal of v and of its incident edges.

Definition 5.3.4. A Henneberg 3-tree for a graph G is a directed rooted tree
whose vertices are indexed by graphs, such that:

• G is the root

• the direction of every edge is towards the root

• any vertex of the tree has at most two entering edges

• if a vertex has no entering edges then it corresponds to the K4 graph

• for each edge H
′ → H we have V (H

′
) = V (H)− v, for some v ∈ V (H)

• if a vertex H has one entering edge H
′ → H then one of the following is

true:

– degHv=3 and E(H
′
) = E(G− v)

– degHv = 4 and E(H
′
) = E(G−v)∪ab, for some vertices a, b adjacent

to v in H

– degHv = 5 and E(H
′
) = E(G−v)∪ab∪cd for some distinct neighbors

a, b, c, d of v in H
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• if a vertex H has two entering edges H
′ → H and H

′′ → H then degHv =
5 and E(H

′
) = E(G−v)∪a′b′ ∪b′c′ and E(H

′′
) = E(G−v)∪a′′b′′ ∪b′′c′′ ,

where b
′ 6= b

′′
, a
′ 6= c

′
, a
′′ 6= c

′′
and the 5 neighbors of v in H are among

the set {a′ , a′′ , b′ , b′′ , c′ , c′′}
In view of Definition 5.3.4, the contents of this Section can be summarized

in the following:

Theorem 5.3.5. If a graph is generically minimally rigid in E3 then there exists
a Henneberg 3-tree for G.

Conjecture 5.3.6. If there exists a Henneberg 3-tree for G then G is generically
minimally rigid in E3.

5.4 Constructions of the 1-skeleta of simplicial
polyhedra

We start with a fundamental Theorem due to E. Steinitz, which characterizes
the graphs that correspond to 1-skeleta of 3-dimensional convex polyhedra.

Theorem 5.4.1. A graph G is the 1-skeleton of a convex polyhedron in E3 iff
G is simple, planar and 3-vertex connected.

For a proof of this Theorem the reader is referred to [32, Section 13.1]. We
continue with a useful Lemma.

Lemma 5.4.2. [22, Corollary 4.4.7] Every triangulation with at least four
vertices is 3-vertex connected.

Now, combining Theorem 5.4.1 and Lemma 5.4.2 we have that:

Corollary 5.4.3. A graph G = (V,E) is the 1-skeleton of a convex simplicial
polyhedron iff G is a triangulation with at least four vertices.

We now introduce the Henneberg steps that we will use in order to construct
all 1-skeleta of convex simplicial polyhedra. We will call these H1, H2 and H3

and they are illustrated in Figure 5.10. Notice that the H1 and H2 steps,
coincide with the H3

1 and H3
2 steps.

We continue with a Lemma similar in flavor to Lemma 5.1.1.

Lemma 5.4.4. Let G = (V,E) be the 1-skeleton of a convex simplicial polyhe-
dron in E3. Then G contains at least one vertex of degree 3,4 or 5.

Proof. Suppose on the contrary that deg v ≥ 6,∀v ∈ V . Then∑
v∈V

deg v ≥ 6|V | ⇔ 2|E| ≥ 6|V | ⇔ 3|V | − 6 ≥ 3|V |

which is absurd. Finally by Theorem 5.4.1, since G is 3-vertex connected, every
vertex has degree at least 3, thus establishing the claim.
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H1

H2

H3

Figure 5.10: The Henneberg steps that will enable us to construct all 1-skeleta
of convex simplicial polyhedra.

We are now in a position where we can state and prove our main Theorem.

Proposition 5.4.5. [10] Graph G is the 1-skeleton of a convex simplicial poly-
hedron in E3 iff it has a construction that begins with the 1-skeleton of the
3-simplex followed by a sequence of H1, H2, H3 steps.

Proof. Let G be the 1-skeleton of a simplicial polyhedron, so by Corollary 5.4.3,
G is a triangulation. By Lemma 5.4.4 there exists at least one vertex of degree
3, 4 or 5, and we choose one with minimum degree. Suppose without loss of
generality that the minimum degree is 5 (similar considerations hold for the
other cases). The reader is referred to Figure 5.11. Since the graph is planar

Figure 5.11: A representative case of the proof, where a degree-5 vertex is
removed.

none of the diagonals of the pentagon can present. Thus we do a H3 step
in reverse, by removing the red vertex and adding two diagonals in such a
way, so that the pentagon becomes triangulated. The resulting graph G′ is a
triangulation, so in view of Corollary 5.4.3 it is the 1-skeleton of a simplicial
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polyhedron. If G′ has exactly 4 vertices, then it is the 3-simplex and we reached
the base case. Otherwise, an inductive argument completes the proof.

For the other direction, every graph produced by a H1, H2, H3 sequence that
begins with a 3-simplex is clearly a triangulation with at least 4 vertices and
thus by Corollary 5.4.3, it is the 1-skeleton of a simplicial polyhedron.

Since we have established the existence of an inductive procedure that en-
ables us to construct all 1-skeleta of 3-dimensional convex simplicial polyhedra,
one is immediately tempted to explore the possibility of exploiting these con-
structions, in order to prove facts about this important class of graphs. We will
now offer two such examples, but first some definitions are in order.

Definition 5.4.6. The diameter of a graph G = (V,E) denoted by δ(G), is the
longest path between any two vertices of the graph i.e.

δ(G) = max{d(u, v)|u, v ∈ V }
where d(u, v) is the number of edges in a shortest path connecting u and v.

Definition 5.4.7. For f > d ≥ 2, let ∆(d, f) denote the maximal diameter of
all 1-skeleta of d-dimensional polyhedra, with at most f facets.

As an example, it is easy to verify that ∆(2, f) = bn
2 c. In 1957, in a letter to

G.B. Dantzig, W.M. Hirsch conjectured that ∆(d, f) ≤ f − d. This conjecture
is known to be true for d < 4 and for various special cases but the general status
of the problem is open [21, 43, 38].

The value of ∆(d, f) is a lower bound on the number of iterations for the
simplex algorithm with any pivot rule and thus determining the behavior of the
∆(d, f) function is closely related to the question of whether there is some pivot
rule for which the simplex algorithm is strongly polynomial. For more details
concerning the Hirsch conjecture, the reader is referred to [59, Section 3.3].

Keeping our promise, we present the first Lemma concerning convex simpli-
cial polytopes, whose proof relies on the fact that this class of graphs can be
constructed inductively using the Henneberg steps.

Lemma 5.4.8. Every convex simplicial polytope P has an even number of
facets.

Proof. By Theorem 5.4.5 we know that every 1-skeleton of a convex simplicial
polytope has a Hennenberg construction that starts with the 1-skeleton of the
3-simplex and continues with the H1, H2 and H3 steps. It is clear that each
Henneberg step increases the number of triangles in the triangulation by two and
thus the number of facets of the corresponding polytope will also be increased
by the same number. Since every Hennenberg construction begins with the
3-simplex which has 4 facets the claim is established.

We continue with our second result.

Corollary 5.4.9. The Hirsch conjecture is true for the 1-skeleta of convex
simplicial polyhedra in E3.
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Proof. The proof goes by induction on the number 2k of facets of a convex
simplicial polyhedron.

For the base case k = 2, since the only convex simplicial polyhedron with 4
facets is the 3-simplex it is clear that ∆(3, 4) ≤ 1.

Suppose now that the theorem is true for all polyhedra with up to 2k facets.
We need to show that ∆(3, 2k+2) ≤ 2k−1 so let P be a polyhedron with 2k+2
facets and let S3,P1, . . . ,Pk−2,Pk−1 = P be its Hennenberg sequence, where S
denotes the 1-skeleton of the 3-simplex. By Lemma 5.4.8 the polytope Pk−2 has
2k facets and thus by the induction hypothesis we obtain that δ(Pk−2) ≤ 2k−3.
Let n be the new vertex, u, v two old vertices and a one of n′s neighbour. Now
there are three cases to consider:

• Pk−1 is obtained by Pk−2 through a H1 step (see Figure 5.12).

a

b c

n

u

Figure 5.12: Pk−1 is obtained by Pk−2 through a H1 step.

Since a H1 step removes no edges it follows the maximum distance between
all the old vertices is less than 2k − 3 < 2k − 1. It remains to show that
the distance between any old vertex u and the new vertex n is at most
2k− 1. But d(u, n) = d(u, a) + 1 ≤ 2k− 3 + 1 = 2k− 2 < 2k− 1, thus the
claim is established.

• Pk−1 is obtained by Pk−2 through a H2 step (see Figure 5.13).

a

b

c du v

n

Figure 5.13: Pk−1 is obtained by Pk−2 through a H2 step.

Let ac be the edge that was removed. We first show that the distance
between any pair of old vertices u, v in Pk−1 is at most 2k − 2.

By the induction hypothesis we know that there existed a path P between
vertices u, v in Pk−2, with length at most 2k− 3. If ac /∈ P then d(u, v) ≤
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2k−3 < 2k−1 in Pk−1. On the other hand, if ac ∈ P , we construct a new
path P

′
between vertices u and v, where P

′
= P −{ac}∪{cn}∪{na} and

length(P
′
) = length(P )− 1 + 2 ≤ 2k− 3− 1 + 2 = 2k− 2 < 2k− 1. Thus

we have established that d(u, v) ≤ 2k− 2 for every pair of old vertices u, v
in Pk−1.

It remains to show that d(u, n) ≤ 2k − 1 for every old vertex u in Pk−1.
Picking any neighbor of n, for example vertex a, we have that d(u, n) =
d(u, a) + 1 ≤ 2n− 1.

• Pk−1 is obtained by Pk−2 through a H3 step (see Figure 5.14).

a
b

c
d

en

u v

Figure 5.14: Pk−1 is obtained by Pk−2 through a H3 step.

Let ac and ec be the edges that were removed. We first show that the
distance between any pair of old vertices u, v in Pk−1 is at most 2k − 2.

By the induction hypothesis we know that there existed a path P between
vertices u and v in Pk−2, whose length was at most 2k−3. If path P does
not involve any of the edges that were removed the claim is trivially true.
So suppose that path P involves at least one of the edges ac, ec.

If path P contains exactly one of the egdes ac, ec then the claim follows
by the same argument that was used in the previous case. On the other
hand, if path P contains both edges, then P contains a loop L based
on vertex c. Since L contains at least three vertices it follows that the
path P

′
= P − L connects vertices u and v and moreover length(P

′
) ≤

length(P )− 3 ≤ (2k − 3)− 3 < 2k − 2.

Finally we need to show that d(u, n) ≤ 2n − 1, for every old vertex u
in Pn−1. Picking any neighbor of n, say a for example, we have that
d(u, n) = d(u, a) + 1 ≤ 2n− 2 + 1 = 2n− 1, thus establishing the claim.





Chapter 6

Counting the number of
embeddings of minimally
rigid graphs

In this chapter our goal will be to compute tight bounds on the number of
distinct planar and spatial Euclidean embeddings of generically minimally rigid
graphs, up to rigid motions, as a function of the number of vertices. In order
to accomplish this, we define a square polynomial system, obtained the edge
length constraints, whose real solutions correspond precisely to the different
embeddings.

An example for d = 3 can be seen below. Here (xi, yi, zi) are the coordinates
of the i-th vertex, and 3 vertices (which define a facet) are fixed to discard
translations and rotations:{

xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 = l2ij , ij ∈ E − {12, 13, 23}

Notice that all nontrivial equations are quadratic; there are 2n − 4 for Laman
graphs, and 3n− 9 for 1-skeleta of simplicial polyhedra, where n is the number
of vertices. The classical Bézout bound on the number of roots of a polynomial
system is equal to the product of the polynomials’ degrees, and yields 4n−2 and
8n−3, respectively. It is indicative of the hardness of the problem that efforts to
substantially improve these bounds have failed.

Specifically, for the planar case the best known upper bound is
(
2n−4
n−2

) ≈
4n−2/

√
π(n− 2) and for the spatial case 2n−3

n−2

(
2n−6
n−3

) ≈ 8n−3/
(
(n−2)

√
π(n− 3)

)
,

when restricted to the class of graphs that correspond to 1-skeleta of convex
simplicial polyhedra. Both of these bounds were obtained in [9] using complex
algebraic geometry.

Mixed volume (or BKK bound) exploits the sparseness of the equations to
bound the number of common roots, it is always bounded by Bézout’s bound
and typically much tighter. Nonetheless, mixed volume yields an upper bound

67
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of 4n−2 in E2 [50] and an upper bound of 8n−1 in E3 [49], when restricted to
the class of graphs that correspond to 1-skeleta of convex simplicial polyhedra.
Notice again that both of these bounds fail to improve on the Bézout bound.

Passing to lower bounds, the best known ones in E2 are 24b(n−1)/2c '
2.21n and 2 · 12b(n−3)/3c ' 2.29n/6 1, obtained using a ”caterpillar” and a
”fan”construction, respectively [9]. Both of them are based on the Desargues
(or triangular prism) graph (Figure 6.4), which admits 24 embeddings [9].

In applications, it is crucial to know the number of embeddings for specific
(small) values of n. The most important results in this direction are that the
Desargues graph admits 24 embeddings in E2 [9] and that the K3,3 graph admits
16 [55] and 32 [26] embeddings in E2. Additionally it is also known that the
cyclohexane graph admits 16 embeddings in E3 [25].

Our main contribution is twofold: first, we derive an improved lower bound
in E2 and the first non-trivial lower bound in E3:

32b(n−2)/4c ' 2.37n, n ≥ 10, and 16b(n−3)/3c ' 2.52n, n ≥ 9,

by designing a K3,3 caterpillar and a cyclohexane caterpillar, respectively. The
way these bounds are derived is simple enough to allow for improvements.

Second, we give tight bounds for n = 7, 8 in E2 and n = 6, 7 in E3; these
are important for applications, and may lead to tighter lower bounds. We
also reduce the existing gap for n = 9, 10 in E2, and n = 8, 9, 10 in E3, see
Tables 6.2 and 6.3. For this, we have reformulated the corresponding polynomial
system to remove spurious solutions, since we prove that (6.1) cannot yield tight
bounds. Further, we have implemented specialized software that generates all
rigid graphs, for small n, up to isomorphism, and computes the respective mixed
volumes. Our results indicate that mixed volume can be of general interest in
enumeration problems.

Some of these results appeared in [27] in preliminary form. A more detailed
account of our results can be found in [26].

6.1 Mixed volume basics

In this section we introduce our main algebraic tool, of which we will make
extensive use throughout the rest of this chapter. Specifically, we will study
how the geometry of polytopes can be used to predict the number of solutions
of a square polynomial system. For background see [7, 12, 18] and references
therein. We start with some necessary definitions.

Definition 6.1.1. Given a polynomial f ∈ C[x1, . . . , xn], its support is defined
to be the set of exponents that corresponding to monomials of f .

For example, the support of the polynomial f(x, y) = x2 + y2 +xy+ 1 is the
set {(2, 0), (0, 2), (1, 1), (0, 0)}.

1This corrects the exponent of the original statement.
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Definition 6.1.2. The Newton polytope of the polynomial f ∈ C[x1, . . . , xn],
denoted by NP(f), is a polytope in Rn defined as the convex hull of the points
in the support of f .

For two examples see Figure. 6.1.

(0, 0) (1, 0)

(0, 1)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 6.1: The Newton polytopes of the polynomials f(x, y) = x + y + 1 and
f(x, y, z) = x+ y + z + 1, respectively.

We proceed by describing two operations induced the vector space structure
of Rn, that will be used to form new polytopes from old ones.

Definition 6.1.3. Let P,Q be polytopes in Rn and let λ ≥ 0 be a real number.
The Minkowski sum of P and Q, denoted by P +Q, is defined as

P +Q = {p+ q | p ∈ Pand q ∈ Q}

where p+ q denotes the usual vector sum in Rn.
Additionally, the polytope λP is defined as

λP = {λp | p ∈ P}

where λp is the usual scalar multiplication in Rn.

See Figure 6.2 for an example of the Minkowski sum of two polytopes.
Now, let P1, . . . , Pn be a collection of polytopes in Rn and let λi ∈ R, λi ≥ 0,

for i = 1, . . . , n. Consider the Minkowski sum of the scaled polytopes λ1P1 +
· · ·+λnPn ∈ Rn. It is a known fact that the n-th dimensional Euclidean volume
voln(λ1P1 + · · ·+ λnPn) is a homogeneous polynomial of degree n in the λi.

Definition 6.1.4. The coefficient of the monomial λ1λ2 · · ·λn in voln(λ1P1 +
· · ·+ λnPn) is defined to be the mixed volume of the polytopes P1, . . . , Pn and is
denoted by MVn(P1, . . . , Pn).

Among other things, the mixed volume is linear in each argument i.e.

MVn(. . . , aPi + βP
′

i , . . .) = aMVn(. . . , Pi, . . .) + βMVn(. . . , P
′

i , . . .)

and it generalizes the usual volume in the sense that if P1 = · · · = Pn = P , then
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P1

P2

P1 + P2

Figure 6.2: The Minkowski sum (shaded) of the two polygons P1 (solid line)
and P2 (dashed line).

MVn(P, . . . , P ) = n!voln(P )

For an extensive study of the properties of the mixed volume, the reader is
referred to [18, Chapter 7].

In what follows, we focus on the topological torus C∗ = C − {0}. We now
state a fundamental Theorem due to D.N. Bernstein.

Theorem 6.1.5. [7] Let f1, . . . fn ∈ C[x1, . . . , xn] and consider the square poly-
nomial system f1 = . . . = fn = 0. Then, the number of isolated solutions in
(C∗)n is bounded above by the mixed volume of the Newton polytopes of the fi.
Moreover, this bound is tight for a generic choice of coefficients of the fi’s.

In addition to Bernstein’s original paper, there are also closely related papers
by Kushnirenko and Khovanskii. For this reason, the mixed volume bound on
the number of solutions given by Theorem 6.1.5 is sometimes referred to as the
BKK bound.

In the same paper Bernstein obtains an explicit condition, now known as
Bernstein’s Second Theorem, that describes when a choice of coefficients is
generic. Before we state the Theorem we need the following definition:

Definition 6.1.6. Given v ∈ Rn − {0} and a polynomial f ∈ C[x1, . . . , xn], we
denote by ∂vf the polynomial obtained by keeping only those terms of f , whose
exponents minimize the inner product with v.

Notice that, the Newton polytope of the polynomial ∂vf is just the face
of the NP (f), which supported by v. We are now ready to state Bernstein’s
second Theorem.
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Theorem 6.1.7. [7] Let f1, . . . fn,∈ C[x1, . . . , xn] and consider the square poly-
nomial system f1 = . . . = fn = 0. If for all v ∈ Rn − {0} the face system
∂vf1 = . . . = ∂vfn = 0 has no solutions in (C∗)n, then the mixed volume of
the fi is exactly equal to the number of solutions in (C∗)n, and all solutions are
isolated. Otherwise, the mixed volume is a strict upper bound on the number of
isolated solutions.

6.2 Algebraic formulation of the problem

Let G = (V,E) with |V | = n, be a generically minimally rigid graph in Ed

and let G(p) be a specific realization of G in the plane. Moreover, let lij =
||pi − pj ||, ij ∈ E, be the corresponding lengths that are induced to the edges
of G by the framework G(p).

A crucial observation is to made here: the problem of computing the number
of realizations of G, which are equivalent but non-congruent to G(p) can be
formulated as an algebraic one.

Specifically, we can construct a polynomial system, whose real solutions
correspond to all possible realizations of G which are non-congruent to G(p)
but induce the same edge lengths lij . For a representative case when d = 2, see
system (6.1) below:

xi = ai, yi = bi, i = 1, 2, ai, bi ∈ R,
(xi − xj)

2 + (yi − yj)
2 = l2ij , ij ∈ E − {12} (6.1)

This is a square 2n× 2n polynomial system in the unknowns x1, y1, . . . , xn, yn,
where (xi, yi) corresponds to the coordinates of the vertex i in the embedding.

Notice that, the equations of this system can be divided in two distinct
groups (the first and second line of system (6.1)). The equations of the second
group merely express our interest in frameworks which are equivalent to G(p).
So, what does the first group of equations stand for? Thinking geometrically,
we see that the effect of the first group of equations is to fix the edge defined by
vertices v1 and v2 (where we have assumed without loss of generality that there
exists one between them). This is necessary in order to discard the solutions
of system (6.1) which correspond to rigid motions (translations and rotations)
of E2, for otherwise the system would have an infinite number of real solutions.
This is why these equations are usually referred to as the ”pin down” equations.

Clearly, in order to bound the number of embeddings of a minimally rigid
graph G, it is enough to bound the number of real solutions of system (6.1).
Since this task is overwhelmingly difficult, we restrict ourselves with bounds on
the number of complex roots of our system.

Perhaps the most famous bound on the number of roots of a polynomial
system is the classical Bézout bound, which is just the product of the degrees
of the polynomials. Thus in our case, the Bézout bound is equal to 4n−2 and
8n−3 for d = 2, 3, respectively.

Since system (6.1) is quite sparse, it is reasonable to assume that the BKK
bound introduced in Section 6.1 will yield better results then the Bézout bound.
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However, this is not the case (at least for d = 2) as was established in [50].
Specifically, we have the following:

Theorem 6.2.1. [50, Theorem 8] For any Laman graph on n vertices, the mixed
volume of system (6.1) is exactly 4n−2.

We should here note that, it is indicative of the hardness of the problem that
all efforts to substantially improve the Bézout bound have essentially failed.
Along with the 4n−2 bound of [50], the best known upper bounds are

(
2n−4
n−2

) ≈
4n−2/

√
π(n− 2) and 2n−3

n−2

(
2n−6
n−3

) ≈ 8n−3/
(
(n − 2)

√
π(n− 3)

)
, for the planar

and spatial case, respectively [8, 9]. These bounds were obtained using complex
algebraic geometry.

In trying to explain why the mixed volume of system (6.1) fails to give some-
thing better than the Bézout bound, a first observation is that the formulation
system (6.1), does not satisfy Bernstein’s second Theorem and consequently,
the computed mixed volume is not a tight bound an the number of solutions in
(C∗)2n. This was observed in [50] for the case d = 2. In, [27] we extend this to
the case when d = 3. We now go briefly through the proof of this fact.

For d = 3, the corresponding formulation to that of system (6.1) is the
following 3n× 3n square polynomial system:


xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 = l2ij , ij ∈ E − {12, 13, 23} (6.2)

We have assumed here without loss of generality that edges 12, 13, 23 define
a facet. Choosing direction v = (0, 0, 0, 0, 0, 0, 0, 0, 0,−1, . . . ,−1) ∈ R3n, the
corresponding face system is:{

xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 = 0, ij ∈ E, i, j 6∈ {1, 2, 3},
x2

i + y2
i + z2

i = 0, ij ∈ E : i /∈ {1, 2, 3}, j ∈ {1, 2, 3}.

This system has

(a1, b1, c1︸ ︷︷ ︸
v1

, . . . , a3, b3, c3︸ ︷︷ ︸
v3

, 1, 1, γ
√

2︸ ︷︷ ︸
v4

, 1, 1, γ
√

2, . . . , 1, 1, γ
√

2︸ ︷︷ ︸
vn

) ∈ (C∗)3n

as a solution, where γ = ±√−1. Consequently, according to Theorem 6.1.7, the
mixed volume is not a tight bound on the number of solutions in (C∗)3n.

To remove this degeneracy we will apply an idea of Ioannis Z. Emiris pro-
posed to the authors of [50] at EuroCG’08. Specifically, we will introduce new
variables for common subexpressions that appear in the polynomials of the sys-
tem. Surprisingly enough, the introduction of new variables which increases the
Bézout bound, can nontheless decrease the BKK bound [24].

In order to remove spurious solutions at toric infinity, we introduce new
variables si = x2

i + y2
i + z2

i , for i = 1, . . . , n. This yields the 4n× 4n polynomial
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system seen below:8<:
xi = ai, yi = bi, zi = ci, i = 1, 2, 3,
si = x2

i + y2
i + z2

i , i = 1, . . . , n,
si + sj − 2xixj − 2yiyj − 2zizj = l2ij , ij ∈ E − {12, 13, 23}

(6.3)

This system is equivalent to system (6.2) and this is the formulation we
will be using from now on, although we were not able to show that it satisfies
Bernstein’s second Theorem. However, in practice, it yields better results (i.e.
lower mixed volumes) than formulation (6.2).

For the rest of this capter, we will focus our attention on the class of Laman
graphs and of the 1-skeleta of convex simplicial polyhedra. In order to bound
the number of embeddings of of both of these graph classes, we have developed
specialized software that constructs all Laman graphs for n ≤ 9 and all 1-skeleta
of simplicial polyhedra in E3 with n ≤ 10. The reason we are able to do this is
because both of these graph classes admit inductive Henneberg constructions,
as explained in Section 5.

Our computational platform is SAGE 2 and the Henneberg steps are imple-
mented, using SAGE’s interpreter, in Python. After we construct all the graphs,
we then classify them up to isomorhism using SAGE’s interface for N.I.C.E., an
open-source isomorphism check engine, keeping for each graph the Henneberg
sequence with largest number of H1 steps.

For each one of these graphs we then set up its corresponding polynomial
system and for each system we bound the number of its (complex) solutions by
computing its mixed volume, using [12]. Notice that for every Laman graph,
in order to discard translations and rotations, we assume that one edge is of
unit length, aligned with an axis, with one of its vertices at the origin. In E3, a
third vertex also needs to be fixed so as to belong to a coordinate plane. The
corresponding coordinates are given specific values and are no longer unknowns.

We should note here that, the business of fixing an edge in E2 (a facet, in E3)
can have a somewhat unexpected consequence : depeding on the choice of the
edge (facet) to fix, we obtain systems that might have different mixed volumes.
But, since all of these systems bound the actual number of embeddings, we use
the minimum of the computed mixed volumes as an upper bound to the number
of embeddings.

For our computations, we used an Intel Core2, at 2.4GHz, with 2GB of
RAM. We tested more that 20 000 graphs and computed the mixed volume of
more than 40 000 polynomial systems. The total time of experiments was about
2 days. Tables 6.2 and 6.3 summarize our results.

6.3 Planar embeddings of Laman graphs

Recall that the class of Laman graphs coincides the class of generically mini-
mally rigid graphs in E2 and moreover they can be constructed by a Henneberg

2http://www.sagemath.org/
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sequence, which starts with a triangle, followed by a sequence of Henneberg-
1 (or H1) and Hennenerg-2 steps (or H2). We represent each Laman graph
by 4s4 . . . , sn, where si ∈ {1, 2}, and s4, . . . , sn is its Henneberg sequence. A
Laman graph G is called of type H1 if it can be constructed using only H1 steps,
and of type H2 if a H2 step is necessary in order to construct G.

We start with a simple Lemma, which establishes the effect of a H1 step on
the number of embeddings of an abstract framework G = (V,E).

Lemma 6.3.1. A H1 step exactly doubles the number of embeddings of a gener-
ically minimally rigid graph G = (V,E) in E2.

Proof. Let G = (V,E) be a generically minimally rigid graph and let k be the
maximum number of non-congruent embeddings of G in E2, over all generic
admissible edge length assignments. We will first show that a H1 step at least
doubles the number of embedings. Let G

′
be a graph obtained by G through a

H1 step. The claim is that each embedding of G induces exactly two embeddings
for G

′
.

So, let G(p) be an embedding of G. In order to obtain an embedding of G
′

we
need to insert one new vertex through a H1 step. By the the definition of the H1

step, it should be clear that the new point lies on the intersection of two circles,
centered at the two vertices the H1 step is applied to, see Figure 6.3. So, if we
choose the radii of the two circles to be sufficiently large, then the two circles
are guaranteed to have two points of intersection in each of the k embeddings
of G and thus we get two points where the new vertex can be placed. For each
one of these two points we obtain one embedding for G

′
and the claim follows.

G(p)
. .................

................
.................
..................

.................

.................

.................

..................
.................
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.................

................. ..................................
...............
..

...............
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....

.............

....

.............
....

...............
...
...............
..

................ ................. .................

1

Figure 6.3: A realization of G and the two points (intersection points of the two
circles) where the new vertex can be placed at.

On the other hand, given an embedding of G
′
, if one removes the new vertex

and its incident edges the resulting framework is an embedding of G. Notice that
the same thing happens for the symmetric embedding G

′
, where by symmetric

we mean the embedding where the new vertex is placed in its symmetric position.
Since G has at most k embeddings it follows that G

′
cannot have more than 2k

embeddings.

Corollary 6.3.2. [9, Proposition 5.2] The number of embeddings in E2 of a H1

graph on n vertices, is at most 2n−2 and this is tight.
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Proof. A H1 graph on n vertices has a Laman sequence that starts with a
triangle and continues with n−3, H1 steps. Since a triangle has two embeddings
and since aH1 step exactly doubles the number of embeddings, the claim follows.

At this point it is worth noticing that for the special class of H1 graphs, the
mixed volume of system (6.3) is 2n−2 and thus, in this case, it is a tight bound
on the number of embeddings [50, Lemma 6]. The same thing holds for d = 3
and a detailed proof can be found in the next Section. We now continue with
some lower bounds.

Theorem 6.3.3. [9, Lemma 5.3] There exist edge lengths for which the Deasr-
gues graph can be embedded in E2 in at least 24 ways.

Proof. Recall that the Desargues framework has a Henneberg construction and
thus it is generically minimally rigid in the plane. Since it is minimally rigid, if
we remove any edge, the resulting framework will be generically flexible in E2

(see Figure 6.4)

Figure 6.4: The Desargues framework and a generically flexible framework in
E2 obtained by it, through the removal of an edge.

Now, consider some generic realization of the generically flexible framework
we constructed above. See Figure 6.5 for an example.

Figure 6.5: A generic realization of the generically flexible framework, con-
structed above.

Let us discard (for now) the lower triangle of the generic framework depicted
in Figure 6.5. Our goal now, is to compute appropriate lengths for the three
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erased edges, such that the corresponding framework can be embedded in at
least 24 ways in the plane.

After the removal of the lower triangle, the resulting framework is the 4-bar
mechanism illustrated in Figure 6.6.

Figure 6.6: The 4-bar mechanism obtained by the framework of Figure 6.5,
together with a 4-bar mechanism obtained by it, by reflecting the upper triangle.

Clearly, once an edge of this framework is pinned down, the other vertices
trace algebraic curves. Moreover, it is a known fact, that as this mechanism
moves, the top vertex traces a curve of degree 6 reference (see Figure 6.7) and
the same thing is true for the 4-bar mechanism, where the upper triangle is
reflected (the second framework in Figure 6.6).
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Fig. 4. The 4-bar mechanism obtained from the Desargues graph, in two embeddings of the coupler triangle.

be able to put the three edges easily back in a way that would give as many embeddings
as possible for the given edge lengths, it would help if two of these edges would stay at
a fixed distance (i.e. have an edge between them, or belong to a rigid component of the
mechanism, which we will assume is grounded when the curve is traced). To achieve
this goal, we use a floating center idea: place a circle anywhere, of any radius, as long
as it gives the desired number of crossings with the curve traced by the mechanism.
Then join the center via two bars to the grounded bar of the mechanism: this yields the
grounded triangle of the Desargues configuration. To complete the construction, add a
bar between the center of the circle and any of the intersection points. This can be done
in as many ways as we had crossings. An additional set of embeddings is obtained by
flipping (about the grounded edge) the two edges that were used to ground the center of
the floating circle.

It turns out that the Desargues graph has all the properties to make this construction
work.

The construction is illustrated in Figs. 4 and 5. Figure 4 shows, in two embeddings,
the mechanism obtained by removing a vertex of degree 3. It is assumed that the bottom
edge is grounded and the motion of the mechanism is guided by the rotation of one of the
adjacent edges around a grounded vertex. The curves traced by the degree 2 vertex of the

(a) (b) (c)

Fig. 5. (a) one of the coupler curves, the “floating” circle and their six crossings. The bottom bar is grounded
to the plane, the upper three vertices are mobile and the top vertex traces the curve. (b) The two coupler curves
and a placement of a circle crossing each of them in six points. (c) The symmetric placement of the circle from
the middle picture induces another 12 crossings.

Figure 6.7: The bottom bar is pinned down to the plane and as the mechanism
moves, the top vertex traces an algebraic curve of degree 6, illustrated in light
gray.

Now, place a circle in such a way, so that it intersects each one of the two
degree 6 curves at six points, that are distinct. Such a circle is illustrated in
Figure 6.8.

Now, we claim that if the two deleted triangle edges are assigned edge lengths
equal to the distance between the bottom vertices and the center of the circle,
respectively, and the other deleted edge, is assigned length equal to the radius
of the circle, then the corresponding framework has 24 embeddings.
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Fig. 4. The 4-bar mechanism obtained from the Desargues graph, in two embeddings of the coupler triangle.

be able to put the three edges easily back in a way that would give as many embeddings
as possible for the given edge lengths, it would help if two of these edges would stay at
a fixed distance (i.e. have an edge between them, or belong to a rigid component of the
mechanism, which we will assume is grounded when the curve is traced). To achieve
this goal, we use a floating center idea: place a circle anywhere, of any radius, as long
as it gives the desired number of crossings with the curve traced by the mechanism.
Then join the center via two bars to the grounded bar of the mechanism: this yields the
grounded triangle of the Desargues configuration. To complete the construction, add a
bar between the center of the circle and any of the intersection points. This can be done
in as many ways as we had crossings. An additional set of embeddings is obtained by
flipping (about the grounded edge) the two edges that were used to ground the center of
the floating circle.

It turns out that the Desargues graph has all the properties to make this construction
work.

The construction is illustrated in Figs. 4 and 5. Figure 4 shows, in two embeddings,
the mechanism obtained by removing a vertex of degree 3. It is assumed that the bottom
edge is grounded and the motion of the mechanism is guided by the rotation of one of the
adjacent edges around a grounded vertex. The curves traced by the degree 2 vertex of the

(a) (b) (c)

Fig. 5. (a) one of the coupler curves, the “floating” circle and their six crossings. The bottom bar is grounded
to the plane, the upper three vertices are mobile and the top vertex traces the curve. (b) The two coupler curves
and a placement of a circle crossing each of them in six points. (c) The symmetric placement of the circle from
the middle picture induces another 12 crossings.

Figure 6.8: A circle that intersects each one of the two curves at 6 points.

Indeed, suppose we place the deleted vertex at the center of the circle and
let p1, . . . , p12, be an arbitrary labeling of the 12 intersection points of the two
curves with the circle. Then, each pi induces an embedding of the Desargues
framework with the edge lengths prescribed above.

To see why this is true, fix some i ∈ {1, . . . 12} and suppose pi lies on the
curve traced by the top vertex of the 4-bar mechanism in Figure 6.7. Since pi lies
on the coupler curve, this means that the 4-bar mechanism can be flexed so that
the location of the top vertex coincides with that of pi. Then, if all the removed
edges are added, we obtain one embedding of the Desargues framework with the
prescribed edge lengths. Since we have 12 distinct intersection points, it follows
that the same procedure allows us to construct 12 distinct embeddings. An
example, taken from the Phd thesis of R. Steffens [49] can be seen in Figure 6.9.
Moreover, by reflecting each one of these 12 embeddings about the bottom bar,
we obtain twelve more and thus obtain a total of 24 embeddings.

Based on the existence of edge lengths, for which the Desargues graph has (at
least) 24 embeddings, we can construct graphs which will provide us with general
lower bounds. The first such example, is the so-called Desargues ”caterpillar”
framework, introduced in [9].

Given a number of Desargues frameworks, we can ”glue” them together
along an edge, in a ”caterpillar” fashion. For an example with 3 copies, see
Figure 6.10

One can use induction on the number of Desargues copies in the caterpillar,
in order to show that the resulting graph has the Laman property. A straight-
forward calculation gives the following:

Lemma 6.3.4. [9, Lemma 5.4] There exist edge lengths for which the Desargues
caterpillar framework has 24b(n−2)/4c ≈ 2.21n embeddings.
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Figure 5.3. 12 embeddings of the Desargues graph.

incident edge is removed. Figure 5.3 shows a situation with 24 embeddings. 12 of them
are shown here and the remaining 12 are obtained by reflecting each embedding at the
horizontal axis.

Husty and Walter [HW07] apply resultants to show that K3,3 can have up to 16
embeddings and give as well specific edge lengths leading to 16 different embeddings.

Both approaches rely on the special combinatorial structure of the specific graphs. The
general bound in [BS04] for the number of embeddings of a graph with 6 vertices yields(
2·(6−2)

6−2

)
= 70. In this case the BKK bound gives a closer estimate. Namely the mixed

Figure 6.9: Twelve embeddings of the Desargues framework taken from [49].

In order to get a better lower bound we will use another iterative construc-
tion, known as the Desargues ”fan” construction, which was also introduced in
[9].

This time, we fix a bar in the plane and place on it a 4-bar mechanism. We
also fix the positions of the symmetric triangles and the corresponding circles
that give the 24 embeddings. Then, we perturb the 4-bar mechanism (but
not the base triangle) several times to obtain a fan-like gluing of Desargues
congurations. For an example with 3 copies, see Figure 6.11.

Again, using induction on the number of copies of the Desargues framework,
it is easy to show that the resulting framework has the Laman property and
moreover:

Lemma 6.3.5. [9, Proposition 5.6] There exist edge lengths for which the De-
sargues ”fan” framework has 2 · 12b(n−3)/3c ≈ 2.29n/6 embeddings.

We continue with another lower bound that has been extensively used (cf.
[50]) although there seems to be no rigorous proof of this fact. In [55, Section



6.3 Planar embeddings of Laman graphs 79

Figure 6.10: A Desargues caterpillar framework, with 3 copies.

Figure 6.11: A Desargues fan framework, with 3 copies. The edges connecting
the triangles were removed, for the sake of clarity.

4], D. Walter and M. Husty show that there exist edge lengths for which the
K3,3 graph has 16 embeddings. It turns out that more than that is true:

Theorem 6.3.6. The K3,3 graph has 32 embeddings for the edge lengths pre-
scribed in [55, Section 4].

The proof of this fact is straightforward i.e. if one solves the corresponding
polynomial system using the edge lengths prescribed in [55, Section 4] the result
is 32 real solutions. This computation was performed by E.P. Tsigaridas and
the results are illustrated in Table 6.1.

Now, we establish a new lower bound for general n by constructing a K3,3

caterpillar. The way to do that is by ”gluing” together copies of the K3,3 graph
so that each new copy has exactly one edge in common with the previous one.
For an example with 3 copies see Figure 6.12.

Using induction on the number of K3,3 copies, it is easy to show that the
resulting graph is Laman.

Theorem 6.3.7. There exist edge lengths for which the K3,3 caterpillar con-
struction has 32b(n−2)/4c ' 2.37n embeddings, for n ≥ 10.

Proof. Notice that each copy of the K3,3 adds 4 vertices, except the first one
which adds 6 vertices. So, given a K3,3 caterpillar on n vertices, it follows that
n = 6 + 4k, where k is the number of K3,3, copies excluding the first one. Thus
k + 1 = (n− 2)/4 and since there exist edge lengths for which the K3,3 has 32
embeddings, the claim follows.

Now, one can easily verify that every 42 graph is isomorphic to a 41 graph
and that every 412 graph is isomorphic to a 411 graph. Consequently, all
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Figure 6.12: A K3,3 caterpillar with three copies.

Laman graphs on 4 and 5 vertices are of type H1, so in view of Corollary 6.3.2
it follows that:

Lemma 6.3.8. The maximum number of Euclidean embeddings for Laman
graphs on 4 and 5 vertices is equal to 4 and 8, respectively. Moreover, these
bounds are tight.

A simple case analysis shows that the first time a H2 step is necessary in
order to construct all Laman graphs is for n = 6. Moreover, up to isomorphism,
there are only two H2 graphs on 6 vertices. Specifically, we have that:

Theorem 6.3.9. The only H2 graphs on 6 vertices are the K3,3 and the De-
sargues graph.

Lemma 6.3.10. The maximum number of Euclidean embeddings for Laman
graphs on n = 6, 7 and 8 vertices is 32,64 and 128, respectively. Moreover,
these bounds are tight.

Proof. Using our software (see Section 6.1), we constructed all Laman graphs
on n = 6, 7 and 8 vertices, and computed the mixed volumes of the respective
polynomial systems, thus establishing the upper bounds. On the other hand, we
obtain matching lower bounds starting with the K3,3, which has 32 embeddings,
and applying H1 steps, which exactly double the number of embeddings.

We end this section with Table 6.2 which summarizes our results for n ≤ 10.
For n = 9, 10, the upper bounds are obtained by our software, whereas the lower
bounds follow from the Desargues fan [9] and Theorem 6.3.7, respectively.

6.4 Spatial embeddings of the 1-skeleta of sim-
plicial polyhedra

This section extends the previous results to 1-skeleta of convex simplicial poly-
hedra. We have already seen that these graphs are generically minimally rigid in
E3 (Theorem 4.2.7) and moreover they can be constructed using the appropriate
Henneberg steps (Proposition 5.4.5). For more details, see Section 4.2.

Again, we start with a Lemma which determines the effect a spatial H1 step
has on the number of embeddings of an abstract framework G. Notice that this
Lemma applies to any abstract framework and not just to those that correspond
to 1-skeleta of simplicial polyhedra.
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Lemma 6.4.1. A spatial H1 step exactly doubles the number of embeddings of
a generically minimally rigid graph in E3.

Proof. Since 3 spheres intersect generically in two points, a spatial H1 at most
doubles the number of spatial embeddings. Moreover, since we can choose
the edge lengths to be appropriately large, we are guaranteed that the three
spheres will intersect and thus a spatial H1 step exactly doubles the number of
embeddings.

Corollary 6.4.2. The number of embeddings in E3 of a H1 graph on n vertices,
is at most 2n−2 and this is tight.

We will continue by showing that for the special case of H1 graphs, the
mixed volume of the polynomial system using formulation (6.3) is exactly 2n−2

and thus a tight bound on the number of embeddings. The proof for the case
d = 2 can be found in [50, Lemma 6]. We start with a key Lemma, which will
enable us to decouple the mixed volume calculation in smaller pieces.

Lemma 6.4.3. [11] Let P1, . . . , Pk be polytopes in Rm+k and Q1, . . . , Qm poly-
topes in Rm ⊆ Rm+k. Then

MVm+k(Q1, . . . , Qm, P1, . . . , Pk) = MVm(Q1, . . . , Qm) ·MVk(π(P1), . . . , π(Pk))

where π : Rm+k 7→ Rk denotes the projection on the last k coordinates.

Let G be an abstract framework on n vertices and suppose that we perform
a spatial H1 step where we add vertex vn+1 that gets connected to vertices vk, vl

and vm. Using formulation (6.3), our system gets four new equations, namely:

sn+1 − x2
n+1 − y2

n+1 − z2
n+1 = 0 (6.4)

sn+1 + sk − 2xn+1xk − 2yn+1yk − 2zn+1zk − l2n+1,k = 0 (6.5)

sn+1 + sl − 2xn+1xl − 2yn+1yl − 2zn+1zl − l2n+1,l = 0 (6.6)

sn+1 + sm − 2xn+1xm − 2yn+1ym − 2zn+1zm − l2n+1,m = 0 (6.7)

Let Q1, . . . , Q4n be the Newton polytopes of the 4n old equations and let
P1, . . . , P4 be the Newton polytopes of the four new equations (6.4)-(6.7). Since
the variables sn+1, xn+1, yn+1, zn+1 appear only in equations (6.4)-(6.7) it fol-
lows that Qi ⊆ R4n, i = 1, . . . , 4n and Pi ⊆ R4n+4, i = 1 . . . 4 so in view of
Lemma 6.4.3 we obtain that

MV4n+4(Q1, . . . , Q4n, P1, . . . , P4) = MV4n(Q1, . . . , Q4n)·MV4(π(P1), . . . , π(P4))

On the other hand, since

π(P1) = conv{(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 1)}
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and

π(P2) = π(P3) = π(P4) = conv{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 0, 0)}
a straightforward calculation using for example the PHC pack3 shows that

MV4(π(P1), . . . , π(P4)) = 2

and thus it follows that

MV4n+4(Q1, . . . , Q4n, P1, . . . , P4) = 2 ·MV4n(Q1, . . . , Q4n)

Lemma 6.4.4. The mixed volume of the polynomial system that corresponds to
a H1 graph on n vertices, using formulation (6.3), is exactly 2n−2.

Proof. The proof goes by induction on the number of vertices of a H1 graph.
The clam is true for the base case i.e. the 1-skeleton of the 3-simplex as one can
easily establish using for example the PHC pack. Suppose now, that the claim
is true for H1 graphs up to n vertices. Since a H1 graph on n + 1 vertices is
obtained from a H1 graph on n vertices through a H1 step and since a H1 step
exactly doubles the mixed volume of the polynomial system, the claim follows.

From now on, we will focus our attention on graphs that correspond to 1-
skeleta of convex simplicial polyhedra. Notice that for n = 4, the only convex
simplicial polytope is the 3-simplex. Thus it follows that:

Lemma 6.4.5. The 1-skeleton of a convex simplicial polyhedron on 4 vertices
has at most 2 embeddings and this bound is tight.

For n = 5, it is known that all 1-skeleta of convex simplicial polyhedra are
isomorphic to the graph illustrated in Figure 6.13 [10].

Figure 6.13: The only 1 skeleton of a convex simplicial polytope on 5 vertices.

Clearly, this graph is obtained from the graph of the 3-simplex after a H1

step, so in view of Theorem 6.4.1 we have that:

Lemma 6.4.6. The 1-skeleton of a convex simplicial polyhedron on 5 vertices
has at most 4 embeddings and this bound is tight.

The first interesting case is when n = 6. Again, it is known that there exist
only two non-isomorphic graphs G1, G2 for n = 6 [10]. These are illustrated in
Figure 6.14.

3http://www.math.uic.edu/ jan/
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Figure 6.14: All 1-skeleta of convex simplicial polyhedra on 6 vertices.

Theorem 6.4.7. The 1-skeleton of a simplicial polyhedron on 6 vertices has at
most 16 embeddings and this bound is tight.

Proof. We start with the upper bound. Using our software, we computed that
the mixed volume of the polynomial system that corresponds to graph G1 is
equal to 8. On the other hand, since all facets ofG2 are symmetric, we arbitrarily
fix one of them and compute the mixed volume of the corresponding polynomial
system. In this case the mixed volume turns out to be 16, so the upper bound
for n = 6 is 16.

We now turn to the lower bound. The graph of the cyclohexane molecule,
is essentially a 6-cycle. For the rest of the conversation the reader is referred
to Figure 6.15. In [25] it is shown that for equal bond lengths (edge lengths)
L1, . . . , L6 and equal bond angles φ1, . . . , φ6, there exist 16 different realizations
of the cyclohexane graph. See Figures 6.16 and 6.17 for two of them.

Now, notice that for constant bond lengths (edge lengths) L1, . . . , L6 and
constant bond angles φ1, φ2, φ3, each of the triangles T1 = 4(p1, p2, p6), T2 =
4(p2, p3, p4), T3 = 4(p4, p5, p6) is fixed and thus the edges p2p6, p2p4, p4p6 have
constant length. Similarly, the edges p1p3, p3p5, p5p1 also have constant length.
Consequently, the 16 computed realizations of the cyclohexane molecule can be
viewed as realizations of graph G2 and thus the lower bound follows.

We now pass to general n and establish a new lower bound using the cy-
clohexane ”caterpillar” construction. Specifically, we ”glue” together copies of
cyclohexanes so that they share a common triangle. For an example with 2
copies see Figure 6.18.

Theorem 6.4.8. There exist edge lengths for which the cyclohexane ”caterpil-
lar” construction has 16b(n−3)/3c ' 2.52n embeddings, for n ≥ 9.

Proof. Each new copy of the cyclohexane adds 3 new vertices except the first
one, which adds 6 vertices. So, given a cyclohexane caterpillar on n vertices it
follows that n = 6+3k, where k is the number of cyclohexanes in the caterpillar
excluding the first one. Thus k+1 = (n−3)/3 and since there exist edge lengths
for which the cyclohexane has 16 embeddings, the claim follows.

We conclude this Section with Table 6.3, which summarizes our results.
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Figure 6.15: A picture of the cyclohexane molecule taken from [25].

Upper bounds for n = 7, . . . , 10 are computed by our software. The lower
bound for n = 9 follows from Theorem 6.4.8. All other lower bounds are ob-
tained by applying H1 to a graph with one vertex less.
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Figure 6.16: A ”chair” configuration of
the cyclohexane graph.

Figure 6.17: A ”boat” configuration of
the cyclohexane graph.

Figure 6.18: A Cyclohexane ”caterpillar” with 2 copies.
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n = 3 4 5 6 7 8 9 10
lower 2 4 8 32 64 128 288 1024
upper 2 4 8 32 64 128 512 2048
H1 4 41 411 4111 414 415 416

4112 4132 4142 4152
H2 41421

41422

Table 6.2: Bounds and Henneberg sequences for Laman graphs for n ≤ 10. Bold
text indicates the graph yielding the upper bound.

n = 4 5 6 7 8 9 10
lower 2 4 16 32 64 256 512
upper 2 4 16 32 160 640 2560
H1 4 41 411 4111 414 415 416

412 4122 4132 4142 4152
41222 41322 41422

H2 41221 41321 41421
41223 41323

413212

413212
413221
41224

H3

Table 6.3: Bounds and Henneberg sequences for 1-skeleta of simplicial polyhedra
for n ≤ 10, where 4 denotes the 1-skeleton of the 3-simplex. Notice that up to
n = 10 there is no need to apply a H3 step. In fact, the first time a H3 step is
necessary is for n = 13 [10]. Bold text indicates the Henneberg sequence of the
graph that gives the upper bound.
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[37] B. Jackson and T. Jórdan. Connected rigidity matroids and unique real-
izations of graphs. Technical report, Egerváry research school on combina-
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