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Lucas Pseudoprimes

By Robert Baillie and Samuel S. Wagstaff, Jr.

Abstract. We define several types of pseudoprimes with respect to Lucas sequences
and prove the analogs of various theorems about ordinary pseudoprimes. For exam-
ple, we show that Lucas pseudoprimes are rare and we count the Lucas sequences
modulo n with respect to which n is a Lucas pseudoprime. We suggest some powerful
new primality tests which combine Lucas pseudoprimes with ordinary pseudoprimes.
Since these tests require the evaluation of the least number f(n) for which the Jacobi

symbol (f(n)/n) is less than 1, we evaluate the average order of the function f

1. Introduction. A pseudoprime to base a (or psp(a)) is a composite number 7
such that @"~! =1 (mod n), i.e., n satisfies the conclusion of Fermat’s “Little Theo-
rem” even though # is not prime. Pseudoprimes have been studied intensively. (See
[17] and the references there.) In the present work we consider various analogs of
pseudoprimes in which ¢”~! — 1 is replaced by a term of a Lucas sequence. We will
assume that n is odd except in Theorem 1.

Let D, P and Q be integers such that D = P2 —4Q # 0 and P > 0. Let U, =0,
Uu, =1, Vo =2, and V, = P. The Lucas sequences Uy and V, are defined recur-
sively for k = 2 by

Uy =PU;_, — QU _,, Vi = PV, — OVi_y-

We will write U, (P, Q) for U, when it is necessary to show the dependence on P and
Q. For k = 0, we also have

Ue = @ =Y =), ¥V, =a* + pF,

where a and f are the distinct roots of x2 — Px + Q = 0. The values of the residues
of Uy and ¥V (mod n) may be computed quickly for individual large & by a sequence
of operations determined by the binary expansion of k; see [1].

For odd positive integers n, let e(n) denote the Jacobi symbol (D/n), and let
6(n) = n — e(n). If nis prime, and if (1, Q) = 1, then

(1) Ué(n) =0 (mod n).

If n is composite, but (1) still holds, then we call n a Lucas pseudoprime with param-
eters P and Q (or lpsp(P, Q)).
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There are two points of view one can take about lpsp’s. One can study divisibil-
ity properties of Lucas sequences. This we do in Sections 2 and 3. In the former,
we count the number of ways n can be an lpsp and derive some interesting corollaries.
In the latter we consider analogs of Euler and strong pseudoprimes; see [17].

On the other hand, in Sections 5 and 6 we use lpsp’s to devise tests for primal-
ity which are almost always correct. In Section 4, we lay the groundwork for these
tests by showing that lpsp’s are rare. Pseudoprimes have long been studied as special
cases in simple primality tests for large numbers. The best tests for the primality of
n which we propose require the selection of a D such that the Jacobi symbol (D/n)
= —1. We estimate the cost of choosing such D in Section 7. Our conclusion is that
only a couple of trials are necessary on the average before one is found.

Malm [13] has formulated a primality test which uses Lucas sequences, but his
test is quite different from the ones we will propose.

Good general references for properties of Lucas sequences which we do not
prove are the papers of Lucas [12] and Lehmer [10].

The authors thank Hugh Williams for valuable discussions, especially of Section
2. We thank Carl Pomerance for providing the second corollary to Theorem 1. Sec-
tion 7 could not have been written without suggestions from P. D. T. A. Elliott. We
are grateful to the Computer-Based Education Research Laboratory and to the Com-
puting Services Office of the University of Illinois for providing the computer time
used in this research.

2. Simple Divisibility Properties of Lucas Sequences. The following three con-
gruences hold when # is an odd prime and (n, Q) = 1:

) Vs my = 2001 7€0D/2 (mod n)  provided (1, D) = 1,
3) U, = e(n) (mod n),
(4) V=V, =P (modn).

Congruences (1)—(4) hold rarely when #» is an odd composite number. Assuming
(n, 2PQD) = 1, any two of the congruences imply the other two.

Rotkiewicz [18] has shown that, when Q = +1 and (P, Q) # (1, 1), there are
infinitely many odd composite numbers # satisfying (1), (3), and (4) simultaneously.
Yorinaga [24], [25], [26] has studied the sequence of Fibonacci numbers (P = 1,
Q = —1), and gives a table of the composite n < 707000 which satisfy (3). (Con-
trary to the last sentence of the review of [25], four psp(2)’s appear in Yorinaga’s
table, namely 219781, 252601, 399001, and 512461.) E. Lehmer [11] showed that
there are infinitely many primes p for which n = U, p satisfies (1) for the Fibonacci
numbers. Thus there are infinitely many lpsp(1, —1).

Given n, how many pairs (P, Q) satisfy (1)? Let us first consider the corre-
sponding question for pseudoprimes. We allow even n here.

THEOREM 1. Let n =11 p?i be a positive integer. Then the number of bases
a (mod n) for which n is a psp(a) is
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[t -1,p, - 1).
Proof. The number of such bases a is the number of solutions (mod #) of the
congruence
(5) f)=x""1-1=0 (mod n).

Consider first the congruences
(6) f(x) = 0 (mod p;"),
(7 f(x) =0 (mod p;).

By Theorem 2.27 of [15], congruence (7) has §; = (n — 1, p; — 1) distinct solutions
(mod p,). Note also that s; 2 2 if n is odd, for in that case, » — 1 and p; — 1 are
both even. By Theorem 123 of [9], each solution y of (7) corresponds to one solu-
tion of (6) (smce ') # 0 (mod n)) and vice versa, so (6) also has s; distinct solu-
tions (mod p; ’) Finally, according to the Chinese Remainder Theorem (5) has

IT's; distinct solutions (mod #n), including the two trivial solutions x = + 1 (mod n).

COROLLARY 1. Every odd composite number n is a psp to at least two non-
trivial bases (mod n) unless n is a power of 3.

Let B(n) denote the number of bases modulo 7 to which # is a pseudoprime.
Let ¢ denote Euler’s function.

COROLLARY 2 (POMERANCE). If we ignore a set of n of asymptotic density
zero, then we have B(n) = o(n) as n — .

Proof. 1t is well known [6] that for a fixed prime g, the normal order of the
number of prime factors of # which are =1 (mod gq) is (log log n)/(g - 1). Let S,
be the set of all positive multiples of g. By the fact just mentioned, the set T, of
n in S which have fewer than (log log n)/(2(g — 1)) prime factors =1 (mod q)
has den51ty zero. If nisin S q but # is not in Tq, then ¢(n) is divisible by g to at
least the (log log n)/(2q — 2) power. But g{n — 1 for such n and hence

&(n) n

<
q(log logn)/(2q—2) q(log logn)/(2q-2)

B(n) < = o(n),
as n —> oo, nESq, né& Tq.

Now let 0 < e <1 be given. It follows easily from Mertens’ theorem that
there is a K so that the density of the set T, of n which have no prime factor below
K, is less than €. Let U, be the union of T, and all the sets T, for each prime ¢
< K. Then U, has density <e and B(n) = o(n) as n — oo, n & U..

Let x, = 10. For k > 1, choose x, so that (a) X, > x2_ 1> (b) forall z > x,,
the number of n <z with n € U, 1k 18 <2z/k, and (c) we have B(n) < n/k for every
n>x, withn¢ U, Ik (Once x,_, is chosen, any sufficiently large number will
serve as x; . This is clear for (a), true for (b) because U, ;i has density <1/k, and
true for (c) because B(n) = o(n) as n — o, n & U..)
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Let U=U;=,(n€U, kX <n <X, 4 }- It follows easily from properties (a)
and (b) that U has density zero. Property (c) gives B(n) = o(n) asn — o, n ¢ U
This proves the corollary.

Remarks. 1. One can improve Corollary 2 if one uses the methods of Erdos
[7]. One can prove that B(n) = o(n) as n —> oo avoiding a set of integers, the sum of
whose reciprocals converges.

2. If n is odd, the bases to which n is a psp occur in pairs: if #is a psp(a),
then n is a psp(n — a). Every odd number is a psp(1) and a psp(—1) (the trivial bases).

3. Experimentation indicates that the number of bases for which a composite
n is a psp is usually small compared to n. We illustrate Corollary 2 for the 421502
odd composite numbers n < 10°. We found that 255341 of them (that is, more than
60%) have fourteen or fewer nontrivial pseudoprime bases modulo #. The number of
nontrivial psp bases for 7 is less than 0.0001x for 292440 (or nearly 70%) of them.

One may conveniently list all of the Lucas sequence parameters modulo 7 with
fixed D as follows: Begin with any such pair (P, Q,) and use the iterative scheme
Pipy =P+ 2,0, =K+ + 1.

When p is an odd prime not dividing Q, let w(p) = w(p; P, Q) denote the rank
of apparition of p in the Lucas sequence U, (P, Q), i.e., the least positive kK such that
plU,. The rank exists since (1) holds for prime n. Furthermore, p | Uy if and only
if wp) k.

THEOREM 2. Let D be an integer. Let n =11 pi! be an odd positive integer such
that (n, D) = 1. Then the number of distinct values of P modulo n, for which there
is a Q such that P* — 4Q = D (mod n) and (1) holds, is

I1 @), 5@y~ 1) =11 - @/m), p, - @/p)) - 1):

Remark. This formula counts the trivial Lucas sequence with P = 0 (mod n).

Proof. let p* exactly divide n. We first count the values of P modulo p, then
modulo p®. We have p|Uj (n)(P, Q) if and only if w(p; P, Q)16(n), and hence if and
only if w(p; P, 0)1(6(n), 5(p)). By Theorem 2 of Williams [22], if d|6(p) and d >
1, then there are ¢(d) distinct values of P modulo p such that w(p; P, Q) = d. Since
U, =1, no Phas w(p; P, Q) = 1. Thus the number of distinct P’s modulo p is

) #(d) = (5(n), 5(p)) — 1.
d1(6(n),6(p))

d>1
Let
T (x) = [’g]< k >xk—271Dr
K .
r=0 \2r +1

Then (see, e.g., Williams [22])

T,(P) =2"1U (2 Q).
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Hence the values of P modulo p such that p | Uy (n)(P, Q) (which we have just counted)
are the zeros of T ,,)(x) (mod p). The derivative of T} (x) is kT;_, (x). We claim
that

5(m)T; (n)—l(P) # 0 (mod p),

whenever T (n)(P) =0 (mod p). Clearly, p16(n). If p| T (n)(P) and p | T (n)~l(P)’
then p | Ues(n) and p| U(S(n)—l' This cannot happen unless p | Q because U8(n) =
PU&(n)——l - QUé(n)_z. If p | P also, then p | D, which is excluded. Finally, if p|Q,
but p4P, then ptU, for every k > 1. This proves the claim.

From this claim and Newton’s method modulo p* (see Section 2.6 of [15]), it
follows that for each zero of Ta(n)(x) modulo p there is exactly one zero of Ta(n)(x)
modulo p® congruent to it modulo p. Thus T (n)(x) has exactly (6(n), 6(p)) — 1
zeros modulo p%*. By Theorem 2.18 of [15], Ta(n)(x) has IT ((8(n), 6(p;)) — 1) zeros
modulo 7.

COROLLARY. Every odd composite number n is an lpsp(P, Q) for at least three
pairs P, Q with distinct values of P modulo n.

Proof. It suffices to find a D for which 4 |5(n) and 4 |§(p) for some prime
divisor p of n. If n is divisible by two distinct primes p, ¢ and ¢ exactly divides n to
an odd power, then choose D so that 4 |§(p), (D/r) = 1 for each prime r|n, r # p
or q, and (D/q) has the proper sign to make 4|8(n). Each condition restricts D mod-
ulo a different prime divisor of n, so all can be satisfied. If n is a square divisible by
p, choose D so that (D, n) = 1 and 4|8(p). Then 4|8(n) = n — 1. Finally, if n is
an odd power of a prime p, choose D so that 4 [§(p). Then 4|58(n) because (D/n) =
(D/p) and n = p (mod 4).

Another question one might ask is this: Given an odd »n, for how many dis-
tinct D’s, modulo n (D # 0 (mod n)), do there exist at least one pair P, Q satisfying
(1) and P # 0 (mod n)? The answer depends on the prime factors of n. We illustrate
the answer in the case when # is the product pq of two primes. According to Theo-
rem 2, we should count D if and only if at least one of the GCD’s,

(rq — (D/pq), p — (D/p)), (pq — (D/rq), ¢ — (D/q)),

exceeds 2. Compute these GCD’s for each of the four choices of * 1 for (D/p), (D/q),
and let H (0 < H < 4) be the number of choices for which the GCD exceeds 2.

There are ((p — 1)/2)((q@ — 1)/2) distinct D’s modulo n for each of the H choices of
the signs. Thus the number of D’s modulo n for which there is a pair P, Q satisfying
(1) and P # 0 (mod n) is H(p — 1)(g — 1)/4.

In Sections 5 and 6, we shall consider lpsp n for which e(n) = —1. We remark
here that the numbers 3(4k — 1) and 9(4k + 1), where the binomial factor is prime,
cannot be such lpsp’s, except for the trivial case P = 0 (mod n). Forn = 3(4k — 1)
=1 (mod 4) implies that both GCD’s

m+1,3+)=(+1,4k-1%1)=2,
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so that by Theorem 2, there is only one value of P modulo n which makes » an lpsp.
With n = 9(4k + 1), we have (n + 1, 3 £ 1) = 2, as before. Now e(4k + 1) = e(n)
= —1, whence (n + 1,4k + 1 — (= 1)) = 2, and the second assertion follows from
Theorem 2.

3. Euler and Strong Lucas Pseudoprimes. We recall the definitions of Euler
and strong pseudoprimes, which are introduced (see [17]) because these numbers are
rarer than ordinary pseudoprimes.

An odd composite number 7 is an Euler pseudoprime to base a (or epsp(a)) if
(g, n) =1 and

a2 = <%> (mod n).

An odd composite number n is a strong pseudoprime to base a (or spsp(a)) if,
with n — 1 =d - 2% d odd, we have either

() @ =1 (mod n), or

(i) A =1 (mod n), for some r with 0 <r <s.

We make the analogous definitions for Lucas pseudoprimes. An odd composite
number # is an Euler Lucas pseudoprime with parameters P, Q (or elpsp(P, Q)) if
(n, QD) = 1 and

Utn—enyy/2 = 0 (mod n) if (Q/n) = +1

or

Vinenyy/2 = 0 (mod n) if (Q/n) = —1.

An odd composite number 7 is a strong Lucas pseudoprime with parameters P,
Q (or slpsp(P, Q)) if (n, D) = 1 and, with 8§(n) = d - 2%, d odd, we have either

(i) U; =0 (mod n), or

(ii) Vd-z’ = 0 (mod n), for some r with 0 <r <s.

Every prime n satisfies the conditions of each of these four definitions (with the
word “composite’” omitted), provided (n, 20D) = 1.

Suppose #n is an slpsp(P, Q), but (n, Q) > 1. Let the prime p divide (n, Q). If
p4P, then psU, for every k > 1. If p|P, then p|D and (n, D) > 1. Thus, if n is an
slpsp(P, Q), then (n, 2QD) = 1. This fact is the analog of the property: if n is an
spsp(a), then (n, 2a) = 1.

Parberry [16, Theorems 4 and 1] has shown that there are infinitely many
elpsp(1, —1). Our Theorem 5 below generalizes his Theorem 1. Williams [22, Theorem
7] proved that there do not exist a composite number # and a discriminant D such
that (n, D) = 1 and 7 is an elpsp(P, Q) for every pair P, Q for which P? —4Q = D,
(P, Q) =1,and (n, QD) = 1.

Theorems 3 and 4 of [17] show that every spsp(a) is an epsp(a) and that every
epsp(a) which is =3 (mod 4) is an spsp(a). Theorems 3 and 4 which follow are the
analogous results for Lucas pseudoprimes.
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THEOREM 3. If n is an slpsp(P, Q), then n is an elpsp(P, Q).

Proof. As was remarked above, we have (1, 20D) = 1 and hence (Q/n) # 0.
Let the prime factorization of n be p, - - * p,, where perhaps some primes are repeated.
Define k; by 245 8(p;) and assume k; <k, <<k, It follows easily from the
definition of slpsp(P, Q) that there is an integer k = 0 with 2% Il co(p?) for all prime
powers p? for which p? lln. Since w(p?)/w(p) is 1 or a power of p, and hence odd,
we have 2% | w(p;) for each j. Then k < k. Leti=>0 be the number of j with k;
= k. Then (any empty product is 1)

i t ]
n=T] Q" +e@p) - I e@)=em <1 + 2k Ze{p]-)) (mod 2K*1),
j=1 j=i+1 j=1 /
so that 2% 18(n) or 2% | §(n) according as i is odd or even.
Since U,,, = U,V and n is an slpsp(P, Q), we know that either n| Uy, OF
n| Vs (ny2- Let p? In. Since 2% Il wx(p?), we have either p? | Uy (n)/2 OT pP |V, (n)/2
according as 251 |§(n) or 2¥ 18(n). We conclude that either n| Uy )2 T Vs (ny/2
according as i is even or odd.
Note that (Q/p) = —1 if and only if p| ¥V} (p)/2- The latter relation holds pre-
cisely when the exponent of 2 in w(p) equals the exponent of 2 in §(p). Thus (Q/p’-)
= —1 or +1 according as j < i orj >1i. Hence

©/m = TT(@Ip) = V',
I3

and we have proved that n| Uy )/, or n| Vs, , according as (Q/n) = +1 or (Q/n)
= —1, i.e., that n is an elpsp(p, Q).

THEOREM 4. If n is an elpsp(P, Q) and either (Q/n) = —1 or §(n) = 2 (mod 4),
then n is an slpsp(P, Q).

Proof. 1f (Q/n) = —1, then n|Vy )/, , 50 n is an slpsp(P, Q). If 8(n) =2
(mod 4), then d = §(n)/2 is the odd number in the definition of slpsp. Either U, or
V; is divisible by n because 7 is an elpsp(P, Q). Thus one of the two cases of the
definition of slpsp(P, Q) holds.

The following theorem has been proved by Parberry [16] in the case of the
Fibonacci numbers. In that situation (P = 1, Q = — 1), the hypothesis that n is an
epsp(— 1) holds trivially. A nontrivial example of our theorem is n = 133, P = 25,
0 = 31.

THEOREM 5. Suppose (n, 20D) = 1, U, = e(n) (mod n), and n is an lpsp(P, Q).
If n is an epsp(Q), then n is an elpsp(P, Q).

Proof. Begin with the well-known identity U,, , = U, V, + Q°U,_,, valid for
all positive integers @, b. Take a = (n — e(n))/2 and b = (n + €(n))/2. Then

@) Un = Un—emp2Vin+empz + Qinmetmnrz Ue(ny = €(n) (mod n)
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by the second hypothesis. Since U; =1 and U_, = —-1/Q, we have Q(”_e(”))/te(n)
= e¢(n)Q" /2 Hence, from (8),

©) Usmyr2Vinsenyy 2 = €1 — Q"~D/2) (mod n).

Thus, Us (12 V(n+ e(ny)/2 = 0 (mod n) if and only if Q""1)/2 = 1 (mod n). The
third hypothesis gives

Now suppose (Q/n) = + 1. Then Q*"1)/2 =1 (mod n) because n is an epsp(Q).
We must show 7| Ué(n)/2‘ Suppose instead that there is a prime p with p€ ln, but
cause (n, Q) = 1, we find that p | Vo = 2, a contradiction. Hence #n | Uy (n)/2 when
(Q/n) = +1.

If (Q/n) = —1, then Q™12 = —1 (mod n), and so

Usny/2Vin+enyy2 = 2€(n) (mod n)
by (9). Hence (U (,,)/,, 1) = 1 and we have n| Vs (ny)2 by (10).

4. The Distribution of Lucas Pseudoprimes. The expression (log x log log x)!/?
will be used often in this section. Denote it by S(x). Erdos [7] proved that the num-
ber of psp(2)’s not exceeding x is <x exp(—c,S(x)) for some positive constant ¢, and
all sufficiently large x. His proof is easily modified to yield the same inequality for
the number of psp(a)’s (@ # —1, 1) up to x. A simple consequence [19] of this in-
equality is that, for each @ # * 1, the sum of the reciprocals of all the psp(a)’s is a
convergent series. Thus the psp(a)’s are rare compared to the primes, and hence the

odd n satisfying @ !

=1 (mod n) are almost exclusively primes. We call such odd »
probable primes to the base a. (John Brillhart suggested the term “probable prime”
with this meaning.) In this section we will prove that the lpsp’s are rare compared to
the primes. Then it makes sense to define a Lucas probable prime with parameters
P, Q to be any odd r satisfying (1).

A probable prime test to base a is a testing of the truth of '~! = 1 (mod n).
A Lucas probable prime test is a testing of the truth of (1). In the next section
we will describe a combination of a probable prime test with a Lucas probable
prime test which seems to distinguish primes from composites much more effectively
than either test does alone.

We will need two lemmas for the proof that Ipsp’s are rare. The first appears
in Erdos [7], where it is derived as an easy consequence of a theorem of de Bruijn
[2]. The second follows from elementary divisibility properties of Lucas sequences

and was mentioned in [17]. Recall that w(p) is the rank of apparition of the prime p.

LEMMA 1. Let N(p,, . . ., p,: x) denote the number of integers <x composed
only of the primes p|, . . ., p,. Put k" =x. Then, for u < log x/log log x, we have
Np,, ..., g x)<xexp(—cyulogu),

where ¢, is a positive constant.
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LEMMA 2. If the prime p divides the lpsp n, then n = e(n) (mod w(p)).

THEOREM 6. Given P and Q, let L(x) denote the number of lpsp(P, Q)’s not
exceeding x. Then there is a positive constant c, such that

L(x) < x exp(—c;35(x)),
for all sufficiently large x.

Proof. Split the Ipsp(P, Q)’s not exceeding x into two classes. Let the first class
contain those Ipsp’s n for which w(p) < exp(S(x)) for every prime factor p of n.
Clearly these lpsp’s are composed of the prime factors of

(11) U,, 1 <t < exp(S(x)).

The smallest integer with at least ¢ distinct prime factors is the product of the first ¢
primes, which is approximately ¢/, by the prime number theorem. Since U, =

(o = B)/(ee — B), the number of distinct prime factors of U, cannot exceed a constant
plus ¢z. Hence, the total number k of prime factors of all the numbers (11) satisfies

exp(S(x))
k< Y (g + 1) <exp(28(x)),
t=1

for all large enough x. Apply Lemma 1 with u = c4(log x/log log x)1/2. We find that
the number of lpsp’s of the first class up to x is less than x exp(—c,S(x)).

Every Ipsp n of the second class has a prime factor p with w(p) = exp(S(x)). By
Lemma 2, we have n = e(n) (mod w(p)). We also have n =0 (mod p) and n > p, so
that n = p(w(p) — 1). Let p,, ..., p, be the primes < x such that w(p) > exp(S(x)).
Then the number of 1psp < x of the second class is less than

¥

2
x Z piw(pi)

i=1

< 2x exp(—S(x)) Z L < x exp(—¢,;S8(x)).
p<x p

This inequality and the corresponding one for the first class give Theorem 6.

COROLLARY. For a fixed P and Q, the sum of the reciprocals of all Ipsp(P, Q)'s
converges.

The details of the proof are just like those in the proof of Theorem 4 of [19]
and so are omitted.

We have seen that probable prime tests and Lucas probable prime tests are each
good tests for primality in that the probability of failure tends to zero as the number
being tested increases without bound. We know that the probability of failure is less
than exp(—cgS(x)) for numbers near x. There is no good reason to believe that this
probability approaches zero much more rapidly. (See the remarks on the density of
Carmichael numbers in [17].)

We now prove that L(x) exceeds a constant times log x. The lpsp’s which we
construct are in fact slpsp’s.

THEOREM 7. Let P and Q be relatively prime positive integers for which P? —
4Q is positive but not a square. Then there is a positive constant c(P, Q) such that
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the number R(x) of slpsp(P, Q)’s not exceeding x satisfies R(x) > c(P, Q)log x, for all
sufficiently large x.

Proof. Let Q' be Q divided by its largest square divisor. Let n =1 if Q' =
1 (mod 4) and n = 2 if Q' =2 or 3 (mod 4). Rotkiewicz [27] has proved, under our
hypotheses on P and Q, that if 4 > 7 is an odd integer and m = hnQ’, then U, has
at least two prime factors p and g not dividing mU U, ---U,_,. Letn=pq. It
is easy to see that n is an sipsp(P, Q) because w(p) = w(q) = m. Hence RU,,) >
(h = 5)/2 for odd h. There is a constant k = k(P, Q) > 1 such that U, <k™ for
allm>5. Since m < 2hQ we have R(k*"2) > (h — 5)/2 for all odd 4 > 7. This in-

equality is enough to prove the theorem.

5. Powerful Tests for Primality. Let n be a large odd integer, and suppose we
wish to determine whether 7 is prime or composite. The usual procedure is to first
test n for “small” factors. If none is found, we perform a probable prime test to
some convenient base. If n passes this test, (i.e., if # is a probable prime), we apply
several more probable prime tests to different (perhaps randomly chosen) bases. If
n passes all of these probable prime tests, then # is almost certainly prime, and then
we proceed to attempt to prove that n is prime by using the factors of n? — 1, n? + 1,
and n® £ n + 1;see [1], [20], [21], [23].

The problem with this method is that the probable prime tests are dependent.
Suppose ¢, and @, (¥ 1 (mod n)) are chosen in advance. If nis a psp(a, ), then n
is very likely one of those few numbers which is psp to many bases, so that 7 is
more likely than average to be a psp(e,). For example, a psp(2) is psp
to far more bases than is the average odd composite number of the same size. In fact,
of the 21853 psp(2)’s < 25 - 10%, 4709 of them are also psp(3); 2522 of them are
psp(2), psp(3), and psp(5) simultaneously; and 1770 of them are psp(2), psp(3),
psp(5), and psp(7) simultaneously [17]. If the events “n is a psp(a,)” and “nis a
psp(a,)” were independent, we would expect that none of the first 21853 psp(2)’s
would be a pseudoprime to base 3, 5, or 7.

It would be better to use two probable prime tests which are independent, that
is, where n being a probable prime of the first type does not affect the probability of
n being a probable prime of the second type. In fact, we describe a method which
seems to do slightly better than mere independence. Namely, we have observed em-
pirically that if n is a psp(a), then # is less likely than a typical composite to be an
Ipsp(P, Q), provided P and Q are chosen properly, and vice versa. If n passes both a
probable prime test and a Lucas probable prime test, we can be more certain that it
is prime than if it merely passes several probable prime tests or several Lucas probable
prime tests.

The “worst” composite numbers from the point of view of a probable prime
test are the Carmichael numbers, i.e., odd composite n which will pass a probable
prime test for any base a with (g, n) = 1. We noticed that when fifty small Car-
michaels were checked for probable primality with a Lucas probable prime test, they
all failed; i.e., the Lucas test indicated that they were composite. All of the 21853
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psp(2)’s under 25 - 10° also failed our Lucas tests with P and Q chosen by methods
A and B below. These were our first hints that a combination of a probable prime
test and a Lucas probable prime test might be an excellent way to distinguish prime
from composite numbers.

How should we choose P and Q7 First, D should not be a square (mod n).
For if D = b?, 5o that (D/n) = 1 and P=b + 2, then Q=b + l and U, | =
(@" ' - 1)/(Q — 1), so that the Lucas test is merely an ordinary probable prime test
in disguise. A good way to prevent such accidents is to require that (D/n) = —1. We

state two algorithms for choosing the parameters:

A. Let D be the first element of the sequence 5, -7, 9, ~11, 13, . .. for which
(D/n)y=-1. Let P=1 and Q = (1 — D)/4.

B. Let D be the first element of the sequence 5,9, 13, 17, 21, . . . for which
(D/n) = —1. Let P be the least odd number exceeding D'/?2 and Q =
(P* - D)/4.

Method A was suggested by John Selfridge. It does not try D = —3 first be-
cause then we would have P = Q = 1, and this produces a periodic Lucas sequence
for which (1) holds for all odd n.

The first ten lpsp that arise when P and Q are chosen by method A are: 323,
377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, and 10877. The first ten lpsp from
method B are: 323, 377, 1349, 2033, 2651, 3569, 3599, 3653, 3827, and 4991.

Two points should be remembered in any practical implementation of these (or
other) parameter selection methods. Our purpose is to devise a test for primality. If
we encounter a D with (D/n) = 0 in the search for a D with (D/n) = —1, then we
have found a factor of n and we should stop the test. Thus, we terminate the search with
the first D for which (D/n) < 1. The second point is that if # is a square, then (D/n)
> —1 for every D. Thus, if (D/n) = 1 for all of the first few D’s, we should pause and
check whether n is a square. (The number of iterations required by Newton’s method
to compute [#!/?] is O(log log n), so this can be done quickly.) If n is a square, we
stop the test. Otherwise, we resume the search for an appropriate D. In Section 7 we
prove that the average number of D’s which must be tried is less than 2.

Of course, the probable prime and Lucas probable prime tests can be made even
more powerful by using their strong versions. To be specific, we recommend this
test for primality of a large odd number #n:

Step 1. If n is divisible by any prime less than some convenient limit (e.g.,1000),
then n is composite.

Step 2. If n is not a strong probable prime to base 2, then n is composite.

Step 3. Choose parameters P and Q by method A or B. (This step might include
a test whether n is a square.)

Step 4. If n is not a strong Lucas probable prime with parameters P and Q,
then 7 is composite. Otherwise, n is almost certainly prime.

This procedure will always decide that primes above 1000 are prime. It can fail
for numbers greater than 1000 only by asserting that a composite number is prime.
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It certainly makes no mistakes for n < 25 - 10°. Does it always work correctly?

One could modify Steps 2 and 4 as follows. If n is a psp(2) or lpsp, Step 2’ or
4' often produces at least one (not necessarily prime) factor of n. Let n—1 =d - 2°,
and n + 1 = e - 2%, with d and e odd.

Step 2'. Letx, = 292" (mod n), 0 <r<s),andg, = (x,~ 1,n). If1<g,
<n, so g,|n, then n is composite. If n is not a strong probable prime to base 2, then
n is composite.

Step 4'. Lety, = Vo (mod n), for 0<r<r. If1 <(U, ny<norif1<
(v,» n) <n, then n is composite. If n is not a strong Lucas probable prime, then n
is composite.

Each GCD involves a loop of O(log n) iterations. If n is a psp(2), Step 2 will
give a factor of n unless n is an spsp(2). (For example, 341 can be factored this way,
since 285 =32 (mod 341), and (28% — 1,341) = 31.) If n is a psp(a) but not an
spsp(a), then n can be factored this way because the multiplicative order of the prime
factors of n are not all divisible by the same power of 2. This means that for some
r, 0 <r<s, a??" is congruent to 1 modulo some, but not all, of the prime powers
that divide n. If n is an Ipsp(P, Q) but not an slpsp(P, Q), then Step 4’ will give a
factor of n.

If n is a prime power, then n can be factored very easily. If n is not a
prime power, then one can show that there exists a base @ such that n is a psp(a) but
not an spsp(a). If one had a method for finding such an a, then one could factor n
in just O(log n) additional steps!

Remarks. 1. Steps 4 and 4’ terminate at a subscript <(n + 1)/2. It is easy to
continue and compute U, , ; and V, | (mod n) by several doublings of the subscript.

2. If Step 4 or 4’ does not indicate that n is composite, then we can also check
whether V, ., =20 (mod n). This congruence must be satisfied if # is prime provided
(n, 20D) = 1. This check involves almost no additional work, because V. =

n+1

(V(n+1)/2)2 =20+ D/2 where Vin+1y/2 is used to compute U, and Q(# T 1)/2

n+1?
is easily obtained from the previously computed power of Q.

3. There is another check we can do that is almost “free”. If # is prime and
(n, Q) = 1, then Q"*1/2 = g - 9("=1)/2 = . (Q/n) (mod n). This congruence can
be easily checked, since Q**1)/2 (mod n) is used to calculate Var1- HOQ=1%1,
this condition holds trivially. If the algorithm for selecting P and Q produces Q = %1,
we can simply choose a different (P, Q) pair having the same D; see methods A* and
B* in Section 6. This check on the value of Q**1)/2 amounts to a built-in Euler
probable prime test. It is very rare to have both U, ; =0 (mod n) and Q12 =
(Q/n) (mod n), (with Q # 1) unless n is prime. The smallest # for which both con-
gruences are true is n = 65, Q = 14, |P| = 12, 13, 17, 22, or 27, and Q = — 14, |P|
=6, 19, 21, 26, or 31. (Of course, by “rare”, we mean that unless you try many
(P, Q) pairs for each n, you probably will not find one for which both congruences
are true!)

We will see in Section 6 that these additional checks are extremely powerful,

especially if Q # +1.
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Now let us look at the results of the computer calculations and the evidence for
independence of the probable prime and Lucas probable prime tests. First, as noted
above, the psp(2) under 25 - 10° and several small Carmichaels failed our Lucas prob-
able prime test.

By Theorem 3, every slpsp is an elpsp. Of course, every elpsp is an Ipsp. Figure
1 shows the least integer of each of these three types with respect to each of the two
methods of choosing parameters. For example, 3827 is the first 1psp but not elpsp
for method A which is an elpsp but not slpsp for method B.

FIGURE 1
The least element of each set is shown
Method A
lpsp
slpsp elpsp
5459 1159 1829
Method B
lpsp
75077 2018839 56279 1349
3441239 230159 3827 elpsp
3599
slpsp
5777 16443839 323 3569

In Table 1, we give the number of lpsp’s up to x with respect to parameter se-
lection methods A and B. Once the parameters have been chosen, we can consider
Euler and strong lpsp’s. The numbers of these lpsp’s are also given in Table 1. That
table also shows the number of numbers <x which are Ipsp, elpsp, or slpsp for both
methods simultaneously. The growth rates are very much like those of the psp(a)’s
which are reported in [17]. Note that there are more lpsp for method B than for
method A. This occurs because on those occasions where (5/n) = 1, method A elim
inates multiples of 7, 11, etc., but method B does not. If we consider only those
numbers that have no prime factor <1000 (as in Steps 1—4 above), then there is
little difference between methods A and B.

It is certainly not true that no psp is an Ipsp. (Recall Corollary 1 to Theorem
1 and the Corollary to Theorem 2.) Our experience is that if n is a psp(e), and you
try many Lucas sequences with (D/n) = — 1, you can often find one for which n is
an Ipsp. For example, n = 341 is a psp(2); it is also an lpsp(7,2). (We exclude all
the trivial cases @ =0 or £ 1 (mod #) and »n|P here.) Likewise, most lpsp n with
(D/n) = —1 are psp(a)’s for only a few bases a. The point is that if you prescribe a
base  and a method for choosing Lucas sequence parameters so that (D/n) = —1,
then very few n will be both psp(a)’s and lpsp’s. Indeed, it appears that such n are
far less numerous than either psp(a)’s or Ipsp’s.
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TABLE 1
Count of Lucas pseudoprimes up to x

X =

103 104 105 lO6 107 108
Method A.
1lpsp 2 9 57 219 659 1911
elpsp 0 3 17 80 269 833
slpsp 0 2 12 58 178 505
Method B.
1lpsp 2 15 70 248 750 2119
elpsp 2 7 40 142 441 1265
slpsp 2 4 23 84 261 711
Methods A and B simultaneously.
lpsp 2 4 29 87 246 660
elpsp 0 1 5 18 57 156
slpsp 0 1 5 17 49 125

Further support for our proposal is provided by Theorems 1 and 2. When D is
fixed, and (D/n) = —1, the number of distinct values of P modulo 7 for which n|U, , ,
isM((n+1,p;£1)—1), where’n =1 p?", and the choice of +1 depends on D and
p;- Most of the GCD’s (n + 1, p; = 1) would have to be large for there to be many
Lucas sequences with respect to which # is an lpsp. Likewise, n is a psp(a) for
Il (n— 1, p; — 1) distinct values of @ modulo n. Thus, most of the GCD’s (n — 1, p; — 1)
must be large for n to be a pseudoprime to many bases. Now, the GCD’s (n + 1,
p;—1)and (n— 1, p; — 1) cannot both exceed 2. Furthermore, it seems very difficult
for both GCD’s (n + 1, p; + 1) and (n — 1, p; — 1) to be large fractions of p;, at
least for most prime factors p; of n. Hence it is nearly impossible for a number to be
both a psp to many bases and an lpsp for many values of P, as long as (D/n) = — 1.

On the other hand, suppose that (D/n) = +1. The GCD’s in question are
(n—1,p;,—(Dfp;))and (n — 1, p; —1). Asabove,(n—1,p; + 1)and (n—1,p; — 1)
cannot both exceed 2, but whenever (D/p,;) = +1, then the GCD’s are the same, so
that both can be large. Thus, in many cases we would expect that if # is an lpsp(?, Q)
for many values of P with (D/n) = + 1, then n might also be a psp(a) for many
values of a. The computer calculations bear this out.

Table 2 gives the distribution modulo m of the lpsp’s under 108 for several
small m. Note that the residue class —1 (mod m) has more Ipsp’s than any other
class. This shows that if # is a typical lpsp (with (D/n) = —1), then n + 1 has many
small prime divisors. The analogous table to Table 2 for psp(2)’s is given in [17]. It
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shows that the class +1 (mod m) contains the lion’s share of the psp(2)’s, at least
for small m. If nis a typical psp(2), then n — 1 has many small prime divisors. Since
(n—1,n + 1) = 2, these facts support our proposal that the combination of a probable

prime test with a Lucas probable prime test is a very discriminating test for primality.
In fact, since the psp(2) and lpsp have a tendency to fall into different residue classes
(mod m), it may even be that any dependence between the probable prime and Lucas
probable prime tests works in our favor. If this were so, or even if the tests were in-
dependent, we would not expect to find a number which is both a psp(2) and an

Ipsp until far beyond our search limit.

Number of Lucas pseudoprimes below 108 in each residue class

Modulus Class lpsp
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TABLE 2

Method A
elpsp Slpsp

24 4
107 72
702 429
167 167
666 338
130 81

64 64

41 41
598 319

0 0

90 63
106 73

39 30

95 65

57 47
446 227

80 80
161 137

87 87
505 201

41 28
154 93

11 2

27 16
146 97

13 2

39 28
402 239

27 27

24 4
140 140

80 45

0 0
562 289

lpsp

16
281
1822

558
1561

279
391
364
1085

120
243
269
237
252
250
748

267
571
291
990

99
419
7
86
414
9
96
989

82
13
473
199

1349

Method B
elpsp

135
1121

280
985

150
274
237
604

53
155
169
149
148
41
450

138
278
142
707

44
251

43
261

48
609

39

241
96

880

slpsp

92
619

280
431

92
169
132
318

85
108
87
86
78
261

138
203
142
228

30
141

29
146

33
332

39

241
53

378

Note that if (D/n) = —1 and n =1 (mod 4), then 7 is an elpsp(P, Q) if and
only if n is an slpsp(P, Q) by Theorem 4, because in this case, §(r) = 2 (mod 4).
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TABLE 3
Number and percentage of numbers below 108 with exactly
k prime divisors, counting multiplicity

k =
2 3 4 5 6 7
All composites 7 17 24 24 17 10 5
Method A
lpsp 1127 485 267 32 0 0
7 59 25 14 2 0 0
elpsp 509 188 119 17 0 0
o 61 23 14 2 0 0
slpsp 430 63 12 0 0 0
% 85 12 2 0 0 0
Method B
lpsp 1295 561 219 38 6 0
% 61 26 10 2 0 0
elpsp 81% 312 119 15 4 0
% 64 25 9 1 D 0
slpsp 595 104 10 2 0 0
% 84 15 1 0 0 0

Table 3 shows the numbers of Ipsp, elpsp, and slpsp below 108 with exactly &
prime divisors, counting multiplicity. The values shown for all composites were com-
puted from the asymptotic formula

x  (loglog x)k!
log x (k—1)!

for the number of integers up to x with exactly k prime factors. The Ipsp and elpsp
are somewhat skewed in the direction of having fewer prime divisors than the “average”
number. The slpsp are even more skewed in this direction. This tendency is similar
to that reported in [17] for psp(2), epsp(2) and spsp(2).

6. Other Congruence Conditions. We have defined Lucas pseudoprimes to be
odd composite numbers n that satisfy congruence (1), and we have seen that if we re-
quire (D/n) = —1, the lpsp tend to be psp to very few bases. We now consider the
other congruences, namely, (2), (3), and (4), which must hold if » is prime and
(n, 20D) = 1. Unless stated otherwise, in this section n will be an odd composite number
which is not a square.
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The n’s which are squares were omitted from the calculations. (Squares are easy
to spot, and are of little interest in prime testing.) Congruence (2) is satisfied, for
example, if n is the square of an odd prime p, if Q = 1, and (D/p) = +1. (Proof:
2V, = (Vi) + D(U(p_l)/2)2, and V,_; = (V,_1y2)* —20°712 50
Vpor = D(U(p_l)/2)2 +20®~1/2 =0 + 2 (mod p?). Then use 2V,,, = V,V,
+ DU, U, repeatedly, to obtain 271V, , | = (V,_y)* (mod p?), for k= 2,3, ...,

p+1)

TABLE 4

Counts of odd, composite, nonsquare n < x satisfying
congruence (1), (2), (3), or (4); D, P, Q from method A or A*

X

Congruence (D/n) Method 103 104 103 106 107 108

A or A*
(1) -1 A 2 9 57 219 659 1911
(1) 1 A 0 7 37 134
(2) -1 A 0 2 4 18
(2) -1 A* 1 1 1 1 1 1
(2) 1 A 0 9 34 103
(3) -1 A 7 62 471 3789
(3), 3,n)=1 -1 A 0 4 22 172
(3), (39,n)=1 -1 A 0 1 3 13
(3), (39,n)=1 =1 A* 0 0 1 2 9 13
(3) 1 A 10 70 494 3868
(3), (39,m)=1 1 A 0 4 26 91
(4) -1 A 0 2 4 20
(4) -1 A* 2 3 3 4 9 17
(4) 1 A 0 4 22 78

(1,2,3,4) -1 A 0 1 3 11 38 105
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TABLE 5
Counts of odd, composite, nonsquare n < x satisfying
congruence (1), (2), (3), or (4); D, P, Q from method B or B*

Congruence (D/n) Method 103 104 105 109 107 108

B or B¥
(1) -1 B 2 15 70 248 750 2119
(1) 1 B 5 25 93 289
(2) -1 B 3 8 41 124
(2) -1 B* 1 1 2 2 2 2
(2) 1 B 1 22 79 259
(3) -1 B 4 7 29 91 249
(3) -1 B* 0 0 1 1 3 3
(3) 1 B 2 18 73 230
(4) -1 B 2 8 32 116
(4) -1 B* 2 3 3 4 9 29
(4) 1 B 2 24 87 298
(1,2,3,4) -1 B 2 4 25 81 228 620

Tables 4 and 5 show the counts of the n < x which satisfy at least one of the
congruences (1)—(4). We first tested all four congruences with both choices of sign of
(D/n), where P and Q were chosen by methods A and B. Most of the n satisfying (3)
when P and Q were chosen by method A were divisible by 3 or 13. (For example,
let n = 3p, p prime, p = 1 (mod 8), and let D = —7 so that P = 1 and Q = 2.

Then (D/3) = —1. If (D/p) = 1, then it is not hard to show that U, =-1 (mod p)
and that U, =-1 (mod 3), so that. U, =—1 (mod n).) If we exclude n with (39, n)
> 1 in congruence (3), we find that when (D/n) = —1, almost every n which satisfies
congruence (2), (3), or (4) had Q = +1. The only exceptions were:
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Congruence Method n D P ) Searched n <
3) A 186961 -7 1 2 108
4) A 530881 —11 1 3 10°
(2) B 64469 13 5 3 10°
(3) B 1940611 17 5 2 107
4) B 137149 17 5 2 109

By contrast, many # satisfied (1) with 0 # 1.

We decided to test these congruences again, but this time we would force Q to
be other than + 1. In particular, we used these methods for choosing D, P, and Q
(with (D/n) = —-1):

A*. Choose D, P, and Q as in method A above. If @ = —1, reset P and Q accord-
ingto: P<= 5,0 <« 5.

B*. Choose D, P, and Q as in method B above. If Q = 1, reset P and Q accord-
ingto: Q<«P+Q+1,P<P+2.

In A*, we get P = Q = 5 from two applications of the transformation Q <P+ Q + 1,
P < P + 2, starting with P = 1, Q = — 1. If D = 5, methods A* and B* are equiva-
lent: both give P = Q = 5. Also, as in methods A and B, if we encounter a D with
(D/n) = 0, we consider n to be composite and we do not do a Lucas test on this 7.

We checked congruences (2), (3), and (4) using methods A* and B* for n < 108,
and these counts are also shown in Tables 4 and 5. All of the n < 108 that satisfied
congruences (2), (3), or (4) are listed in Table 6. We do not know why the 7 satis-
fying congruence (2), (3), or (4) are so rare when (D/n) = —1 and Q # + 1. Note
that when P and Q are chosen by method A*, there is only one composite n < 108
for which (2) holds!

Hugh Williams noticed that if »n is prime, (D/n) = —1, and (20, n) = 1, then

(*) V,py =200 D12 (Qfn) (mod n?).

This follows from the identity V%k = Dng + 40Q%**. From this we obtain V,21+1 =
40" *! (mod n?). The proper sign for the right side of (*) is determined from the
fact that V, ., = 2Q (mod n).

Congruence (*) is even stronger than, and implies, congruence (2). The two
composite n listed in Table 6 which satisfy (2) were tested in congruence (*) with the
same P and Q as in Table 6. Neither of these n satisfied (). Thus, (*), with D, P,
and Q chosen by method A* or B*, detects all composites <108,

Another result we noticed in the calculations was that the # which satisfied
congruences (1), (2), or (3) were almost always pseudoprimes to few or many bases
depending on whether (D/n) = —1 or (D/n) = + 1. The n satisfying (4) with either
(D/n) = £ 1, however, often seem to be psp to more bases than are the n which satis-
fy (1), (2), or (3) with (D/n) = —1.
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TABLE 6
0dd, composite, n < 108 satisfying congruence (2), (3),
or (4); D, P, Q from method A* or B*. (D/n) = —1
Method A* Method B*

n D P Q n D P Q
Congruence (2)

913 5 5 5 913 5 5 5

64469 13 5 3

Congruence (3)

61807 5 5 5 61807 5 5 5
186961 -7 1 2 1 940611 17 5 2
1 012051 -7 1 2 8 226373 5 5 5

1 821419 -7 1 2
3 043921 -7 1 2
5 665981 -7 1 2
6 317009 -7 1 2
6 684221 -7 1 2
8 226373 5 5 5
28 083221 =7 1 2
50 273929 -7 1 2
57 644501 -7 1 2
66 784709 -7 1 2

Congruence (4)

27 5 5 5 27 5 5 5

203 5 5 5 203 5 5 5

7083 5 5 5 7083 5 5 5
530881 -11 1 3 137149 17 5 2

2 861101 =7 1 2 1 024651 17 5 2
3 342827 5 5 5 2 704801 13 5 3
3 581761 ~-11 1 3 3 342827 5 5 5
6 906901 17 1 =4 4 504501 17 5 2
8 163167 5 5 5 8 163167 5 5 5
12 490201 ~7 1 2 10 024561 29 7 5
14 834403 5 5 5 13 199089 13 5 3
17 064007 5 5 5 14 676481 17 5 2
20 964961 -7 1 2 14 834403 5 5 5

34 745047 5 5 5 16 666651 29 7 5
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TABLE 6 (continued)

40 160737 5 5 5 17 064007 5 5 5
55 462177 5 5 5 26 582219 33 7 4
70 561921 -7 1 2 29 993761 13 5 3

30 958201 17 5 2
30 996001 17 5 2
31 405501 17 5 2
34 196401 13 5 3
34 745047 5 5 5
40 160737 5 5 5
43 620409 17 5 2
47 706949 21 7 7
55 462177 5 5 5
75 447101 13 5 3
90 698401 21 7 7

99 085829 13 5 3

Note: Of those n satisfying (3) with P and Q chosen

by Method A*, only those with (39, n) = 1 were counted.

We also tested the psp(2)’s under 25 -+ 10° in congruences (1) through (4), with
D, P, and Q chosen by methods A, B, A*, and B*, with (D/n) = —1. No psp(2)
satisfied (1) or (2). There was one solution (»n = 1210 383801, D = 13, P =1, and
Q = —3 chosen with A and A*) to congruence (3). There were many solutions to
congruence (4).

We now consider the n for which two (and hence all) of congruences (1)—(4) are
true simultaneously, assuming (n, 2PQD) = 1.

Rotkiewicz [18] proved several theorems to the effect that if Q = +1 and if
(P, Q) # (1, 1), then there are infinitely many composite n for which (1), (3), and (4)
are true simultaneously, but he says little about what happens if Q # 1. He does
state the following result: U, _p/,) =0 (mod n) and U,, = (D/n) (mod n) are true
simultaneously if and only if o = «, " =8 (mod n) when (D/n) =+1,0r o =4,4" =
a (mod n) when (D/n) = —1. These latter congruences imply that, with (D/n) = + 1,
we have Q" = Q (mod ») (since of = Q). But if n and Q are given and if @ # 1,
then Q" = Q (mod n) holds very rarely. Are there infinitely many composite n satis-
fying all of (1)—(4) for a given Q # *1? The first such n with (D/n) = -1 isn =
51, withP=+17,Q =35,and P=+24, Q = 16.

Tables 4 and 5 also show the counts of the lpsp < 10® with P and Q chosen by
methods A and B which also satisfy (2), (3), and (4); for all of these n, the Q’s deter-



1412 ROBERT BAILLIE AND SAMUEL S. WAGSTAFF, JR.

mined by algorithm A or B were either £ 1. The first few for method A are: n =
5777, n = 10877, n = 75077, and n = 100127 (for these, P =1, Q = —1). The
first few for method B are: n = 323, n = 377, n = 3827, and n = 5777 (for these,
P=3,0=1).

When we tested the n < 10% with methods A* and B*, we found that no »
satisfied more than one congruence (1)—(4). Also, we found no n where both U, _ |
=0 and Q"' =1 (mod n). These results, along with the rarity of n satisfying (2)
with Q # %1, justify the remarks in Section 5 that, in a probable prime test, one
should check the conditions ¥, ., =2Q and Q"**1)/2 = 9 - (Q/n) (mod n).

To summarize, a good primality test might include these congruence tests:

(1) Test whether n is an sprp(2);
then, with D, P, and Q chosen by method A* or B*:

(2) test whether # is an slprp(P, Q);

(3) verify congruence (2);

(4) verify that the (known) value of Q" *1)/2 is congruent to Q - (Q/n)
(mod n);

(5) verify congruence (*).

7. The Cost of Choosing D with (D/n) < 1. In Section 5 we described two
ways of choosing the parameters for a Lucas sequence. Both methods began by find-
ing the first D in a certain sequence, for which (D/n) < 1. We compute here the aver-
age number of D’s which must be tried until a suitable one is found. The maximum
number of D’s tested in the worst case is also discussed. We will assume in this sec-
tion that 7 is known not to be a square, even though this differs from what we did in
Section 5.

We begin with the related problem of the size of the least positive integer D
such that (D/n) < 1. For odd nonsquare #, let f(n) denote the least positive D for
which (D/n) <1. Let f(n) = 0 when 7 is an odd square. Then f(n) is prime whenever
it is positive.

An upper bound for f(n) follows easily from a general character sum estimate;
see Theorem 1 of Burgess [3]. His theorem yields f(n) < n'/#*€ for all large square-
free n. Suppose n = d’m, where m is squarefree and larger than 1. Clearly f(n) <
f(m). If m is large enough for the theorem of Burgess to apply, then f(n) < m!/4+€
< n!/4*€_ Otherwise, m is bounded, and we may assume n > m?. Then fn) <
f(m) <m < n'/**€ Thus, we have the following result.

THEOREM 8. For all sufficiently large n, f(n) < n'/4+¢€,

The same proof produces the same upper bound for the size of the first suitable
D in the two methods for choosing parameters. Assuming the Extended Riemann
Hypothesis one can show f(n) = O(log? n). See [14] and the references there.

Let q; denote the jth prime and let m(x) be the number of primes <x. Erdos
[8] has computed the average order of f(p), where p is restricted to the set of all odd
primes. He proved that
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1 > .
lim —— 2 fp)= 2 q27.
X—>o0 () PSsX =1
p prime

The value of the limit is approximately 3.674643966.

THEOREM 9.

Zﬂm4+i +1ﬁ@—%-

x—> 00 /2 n<x i=1 qi
n odd

The right-hand side is approximately 3.147755149. The proof of Theorem 9
parallels that of a theorem of Elliott [4], which generalizes the result of ErdGs just
stated. We need two lemmas which are similar to Elliott’s Lemmas 2 and 5. (Lemma
2 of [4] is identical to Lemma 10 of [5].)

LEMMA 3. Letx >3 and H=> 2. Leta,, a,, . .. be a sequence of complex
numbers. Then

2
2
S| X a ( ) <<x 22 la,a,l+H log H<Z Ian|> .
n<x |m<H m,n<H n<H

n odd m,n=t2,2t2

Proof. The proof of Lemma 10 of Elliott [5] applies verbatim with the proviso
that p therein represents an odd number, not necessarily prime.

LEMMA 4. For any x 2 3 and N = 2, the number of odd n < x for which
f(n)y>Nis

<<xN2(log N)'5 + N?log M.

Proof. The proof of Lemma 5 of Elliott [4] applies with minor changes in
notation and the omission of the first and last paragraphs. Use our Lemma 3 in
place of his Lemma 2.

Proof of Theorem 9. let Vx(n: .. . ) denote the frequency of odd n < x such
that . . ..

It follows from the Chinese Remainder Theorem and quadratic reciprocity that
if p, q are distinct primes and x is a multiple of 4pq, then

v (n: (p/n) = (g/n) = +1) = v, (n: (p/n) = +1) - v (n: (g/n) = +1).

More generally, whenever x is a multiple of 4V!, we have

v (n: f(n) > N) = v (n: (p/n) = +1 for each prime p < N)

= I v @/m)=+1).
pP<N
p prime

Thus, for all sufficiently large x, and M < N, we have
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v.(m:fmy>M)y= [ v.(n: (p/n)=+1)+ O@4N!/x)
PsM
p prime

= (3+oum) I
2 PSsM
p odd prime

((?_2;_1 ) + 01 /x)> + O(4N!/x).

Now let N = [(log log x)'/?] and suppose x is so large that g; < N. Note that for
large x, we have

4N! < 4 exp(N log N) < exp((log log x)3/%) < log x.

Then

 fg,-1
v(n: f(n)y>q;) =2 I]I ( >+ O(/x) + O(log x/x).

i=1 '

Let d, = 1/2, and
g, — 1 i (q;—1 q]-+1j—1 1
-1 (5 - (%) - B2 Ti(-4)
i=1 = 27q; =y 4

v (n: fln) = q;) = v (n: f(n) > q;_;) — v, (n: f(n) > q;)

forj = 2. Then

(12)
= d; + O(log x/x).

By Mertens’ theorem, with y denoting Euler’s constant,
-1 1
IT1(1- ) = (L 0(/g)(e log gp).
i=1 i

Hence d’- = 0277 log j), so that, with N as before,

(13) > qd; << 2. 27 <<av)2TT ) << (log log x) /2.
aj>N j>m(N)

Next we use Lemma 4 with 2N in place of N, and get

_/1_2_ > fm) << 73 L QE T IN)(2FNY 2 (log(2NV)' S + (2FN)? log2F V)
x n<x
n odd

2kN<rmy<2kt iy
<K 27KRNTUZ 4 2R N) log(2FN)/x.

Now sum this inequality over the O(log x) possible values of & for which 2N < x°-26.

With € = 0.01 in Theorem 8, we find that

_15 Z f(n) << N2 Z 2"‘/2 + (x0.26)3 log(x°'26)/x
)C/ n<x k=0

n odd
(14) f(n)>N

<LK N7H? << (log log x)~ /4.
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From (12) and (13), we have

}2 )3 fn) = 2 q]'Vx(n: fn) = q]') = 2 q]-(d]- + O(log x/x))
X4 n<x ;<N q;SN

n odd

f(n)<N

=D q;d; + O(N? log x/x) + O((log log x)™1/?)
=1

™

q,d; + O((log log x)™'/?).
1

I

This estimate and the complementary one given in (14) show that

x/_12 S fim=3 q,d; + O((log log x)y~H),

n<x =1
n odd
which proves Theorem 9.
Now consider method A. Let g(n) denote the first element D of the sequence
5,-7,9,-11,13,. .. for which (D/n) < 1. Let g(n) = 0 when n is a square. We
claim that the positive part of the range of |g(*)| is

(15) 5,7,9,11,13,15,17, 19, 23,29, 31,37, .. .,

in which 9 and 15 are the only composite numbers. Suppose |g(n)] = D. Then
(- 1DHP~D2p/my < 1, while ((— 1)E=D/2E/n) = 1 for every odd E in the interval
3 <E<D. Suppose p > 3 is a prime dividing D. Write £ = D/p. Then

(—1)P=D12pfmy = (- )P~V 2p/n)((- 1) E-D/2E/n).

If E > 3, then both Jacobi symbols on the right side are + 1, and hence so is the

one on the left side, which is a contradiction. Thus, either D is a prime > 3 or D =
3p, where p is an odd prime. Clearly, every odd prime >3 appears in (15). Also D
= 9 can occur, for example, with n = 1 (mod 35), n = 0 (mod 3). Moreover, |g(n)| =
15forn=1(mod5-7-11-13), n =2 (mod 3), for instance. However, no further
multiples of 3 appear in (15) because (5/n) = (—=15/n) = 1 implies (—3/n) = 1, so
that if (-1)®~D/2p/n) = 1, then ((—1)3P~1/23p/n) = 1. This proves the claim.

Write the sequence (15) as ry, 7,, . . . . We will compute the limiting frequencies
¢ =ii_rl v.(n: lg(n)| > 1)

Then, with e, = 1 and d]- =e_; ¢, for j > 1, we can prove

(16) lim == Y len)l = X rd,
X—> o X/2 n<x j=1
n odd

by the methods used to prove Theorem 9. Similarly, we can compute

-3 &= r-3
an im L ¥ BT,

X0 x/2 n<x j=1 -
n odd
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which is the average number of D’s which must be tried until a suitable one for method
A is found. We can also evaluate

(18) 2 id;,

which is the average number of D’s which must be tried if we have a table of the ry’s
and try only these numbers for D.

Clearly, ¢; = H{:: 1 Z;» where z; is the conditional limiting frequency of odd »
such that (r;/n) = 1, given that (r,/n) = 1 for all ¥ < i. Whenever r; is prime, we have
z; = (r; = 1)/2r). Forry =9, we find z5 = 2/3, which is the probability that 3 ¢n.
Finally, the probability that (-15/n) = 1, given that (5/n) = O/n) =1, is Zg = 1/2,
which is the probability that (—3/n) = +1, given that 3 fn. Using these values of Z;
we find that the values of the sums in (16), (17), and (18) are approximately
6.580958182, 1.790479091, and 1.784417556, respectively.

Only a few changes need be made in the foregoing argument to obtain the corre-
sponding results for method B. Let h(n) = O if n is a square. Otherwise, let a(n) be
the least element D of the sequence 5, 9, 13, 17, . . ., for which (D/m) <1. We
sketch a proof of the fact that the positive part of the range of 4 consists of all primes
p =1 (mod 4) together with the numbers 3q for each prime ¢ = 3 (mod 4) (including
q =3). If D> 0 is in the range of & and D is divisible by a prime p = 1 (mod 4),
then D = p. Other positive D in the range of 4 must have the form D = pq, where
p =q =3 (mod 4) are primes. If both p and g exceed 3, then 3 47 and (D/n) =
(3p/n)3q/n) =1 - 1 = 1 because 3p < D and 3q < D. Hence, at least one of the p, q
is 3.

Let r\, r,, . .. be the range of h. We compute the limiting frequencies z; as
for method A. We find z; = (r, — 1)/(2r;) whenever r; is prime. Forr, =9, we have
z, = 2/3. Finally, when r; = 3p, where p is a prime >3, we find that z; = (p — 1)/(2p),
which is the probability that (3p/n) = 1, given that 3 /n. These values of z; produce
approximate values of 8.690967494 and 1.895078260 for the sums (16) and (18),
respectively. The average number of D’s which must be tried until a suitable one for
method B is found is

- o r.—1
lim =5 % h(%—lc Lz 4,

x—>oo X n<x j=1

which is approximately 1.922741874. Note that having a table of rj’s accelerates the
search for D very little in either method.
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