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a b s t r a c t

In recent years, Unmanned Aerial Vehicles (UAVs) have gained increasing popularity. These vehicles are
employed in many applications, from military operations to civilian tasks. One of the main fields of UAV
research is the vehicle positioning problem. Fully autonomous vehicles are required to be as self-sustained
as possible in terms of external sensors. To achieve this in situations where the global positioning
system (GPS) does not function, computer vision can be used. This paper presents an implementation
of computer vision to hold a quadrotor aircraft in a stable hovering position using a low-cost, consumer-
grade, video system. The successful implementation of this system required the development of a data-
fusion algorithm that uses both inertial sensors and visual system measurements for the purpose of
positioning. The system design is unique in its ability to successfully handle missing and considerably
delayed video systemdata. Finally, a control algorithmwas implemented and thewhole systemwas tested
experimentally. The results suggest the successful continuation of research in this field.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

A quadrotor is a four-rotor helicopter. The idea of using four
rotors is not new, as a full-scale, four-rotor helicopter was built
by De Bothezat as early as 1921. However, quadrocopters are
dynamically unstable and therefore suitable control methods are
required to make them stable [1]. These control approaches
normally use two control loops—a high-speed, inner loop that
controls the helicopter’s attitude based on the outputs from the
IMU (Inertial Measurement Unit) in a strap-down configuration [2]
and a slower, outer loop that controls the helicopter’s position.
While the attitude can be easily determined by measuring the
acceleration due to the Earth’s gravitational field and the rotational
velocities, there are no universal positioning systems available.
Outdoors, the GPS (Global Positioning System) that relies on
receiving its signal from satellites can be used.

However, indoors, controlled objects must rely either on
beacon-based systems that use RF (Radio Frequency) waves (or
a combination of RF and Ultrasonic waves [3]), a combination of
sensors and SLAM (simultaneous localization and mapping) algo-
rithms [4–6] or a visual system that usually incorporates one or
more video cameras. Two different video-camera arrangements
are possible—a video camera fixed to an object [7–12]; a single
video camera fixed in the object’s environment [13] or a constel-
lation of multiple video cameras, such as Vicon visual tracking
system, which is often used in the research on the quadrocopter
control [14–17].
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However, real autonomous systems are required to be indepen-
dent of those external sensors, but are limited by the weight of the
sensors and the processing circuitry. In [18], the authors fixed a
mobile phone to a quadrocopter and used its processor for localiza-
tionduring the flight, but therewasno closed-loop control. In 2010,
the company Parrot presented the AR.Drone [19], a self-stabilizing
quadrocopter, controlled remotely via a phone or a computer. It
combines a fast, down-facing camera, an IMU unit, an ultrasonic
distance sensor and a fast signal processor to achieve its stable
flight. The self-stabilizing nature makes it an attractive platform
for experiments dealing with visual-based control [20]. A similar
approach uses wireless transmitters to transmit the video data to
an off-board computer, where image-analysis is executed and the
results are passed back to the vehicle [21–24]. Our approach uses
the latter configuration, but a great deal of care is takenwith the in-
herent delays and the outages of the video-camera data with such
a system.

To solve the issues with the delay and lost data, sensor-fusion
methods in combination with a Kalman-filtering technique can be
used [25]. In [26] different methods to solve the problem of de-
layed measurements are described. One such method involves ex-
trapolating delayed measurements to the present time and still
obtaining the optimality of the filter, while the other suggests up-
dating the covariance matrix and the state at a different time.
Similarly, our method uses past information about the system
states, such that the states are directly compared to the measure-
ments, but the Kalman innovation is then used in the present
time to correct the states. The system uses the on-board, 6-axis,
IMU unit and the image-based position and velocity data received
via the wireless link. This unit measures the rotational velocities
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Fig. 1. The X-3D-BL quadrocopter.

around the principal axes, x, y and z, and the accelerations in the
inertial reference frame. The accelerations are translated into the
base reference frame (fixed to the target on the ground) and used
for the prediction stage of the Kalman filter. In order to boost the
performance of the filter implementation on a small microcon-
troller, a linear steady-state variant of Kalman filter was designed
with minimal number of operations over matrices. Additionally,
the Kalman filter correction stage with the delay-cancelling tech-
nique is executed only when the new image-based position data is
received, while the prediction stage of the Kalman filter is calcu-
lated every 10 ms on the on-board computer, making this system
resilient to short (in the range of a few seconds) communication
interruptions.

This paper presents a slightly modified approach to visual
servo-control that provides promising results. The initial analysis
of the quadrocopter’s dynamics is provided; this serves as a
basis for the Kalman-filtering technique described later on. The
innovative system for delay approximation is then presented,
which complements the initial Kalman filter. Finally, the visual
servo-control was evaluated during the stationary flight of the
quadrocopter and the results of the experiment are presented.

2. The description of the quadrotor system

The proposed approach was implemented on a quadrotor
helicopter X-3D-BL (quadrocopter), originally presented in [14].
The X-3D-BL is a commercial product and serves as a testbed for
many experiments ([15,7,18,27,16] and others). The quadrocopter
(shown in Fig. 1) has a classical four rotor design with two counter
rotating pairs of propellers arranged in a square and connected
to the cross of the diagonals. The controller board, including
sensors, is mounted in the middle of the cross together with
the battery, while the brushless controllers are mounted on the
underside of the booms. As the quadrocopter is operated indoors,
a lightweight shield is mounted around the propellers for the
additional safety. For the purpose of the research, the quadrocopter
was equipped with the KX171 color video camera, video wireless
transmitter, camera power supply and the timestamp generator
circuit (overview of the complete system is given in Fig. 2). The
total take-off weight of the quadrocopter is 680 g.

Any treatment of dynamic quantities involves the use of
coordinate systems. Let us define two coordinate systems that
are directly related to the experiment in this paper. The target
coordinate system T (illustrated in Fig. 3) is a standard, right-
handed, Cartesian coordinate system that has its origin at the
target’s center, the principal x and y axes in the plane of the target
and the axes z in the vertical up direction. The target is visually
asymmetrical and therefore the target coordinate system can be
uniquely defined. The quadrocopter’s coordinate system K (also
illustrated in Fig. 3) has its origin at the center of the quadrocopter’s
frame, with the axes aligned with the quadrocopter rotors’ booms.
The axis x is oriented towards the front boom of the quadrocopter,
the axis y towards the left boom and the z axis faces upwards
along the antenna so that K also defines a right-handed Cartesian
coordinate system. This orientation was selected because of the
acceleration sensors’ orientation.
Fig. 2. Illustration of the complete system.
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Fig. 3. Graphical representation of the coordinate systems used.

LetRbe the rotational transformation betweenK andT , so that
R : K → T . As the quadrocopter’s navigation is based only on the
target coordinate system, the global coordinate system will not be
dealt with in this paper.

The X-3D-BL quadrocopter used in the experiment was already
equipped with a low-level stabilization loop hosted in the low-
level microprocessor that controls the quadrocopter’s attitude. It
uses four, in pairs, counter-rotating brushless motors with the
appropriate brushless-motor controllers. By delivering power to
each motor independently, the resulting thrust can be modulated
as in the case of a ‘‘normal’’ helicopter with swashplate-controlled
rotors. The overall thrust is controlled by the combined speed of
all four rotors, and the rotation around the vertical z-axis (the yaw
angle ψ) by increasing one pair of rotors and decreasing the other
(the counter-rotating) to the first. The pitch θ and roll φ angles are
controlled similarly bymodulating the power to the front and back
rotors (for pitch) or the left and right rotors (for roll).

The high-level microprocessor has access to the attitude
information of the low-level processor (measured values of the
angles pitch θ , roll φ and yaw ψ), the calibrated measurements of
the acceleration, the gyroscope and the magnetic sensors and can
take over the control of the attitude and thrust commands.

The equations of motion for the quadrocopter can be derived
separately for translational and rotational motion. The rotational
motion part of these equations is already implemented in the low-
level processor and it keeps track of the quadrocopter’s attitude.
Since our goal is to estimate and control the position of the
quadrocopter, the rotation dynamics will not be treated.

Let p⃗T = (x, y, z) be the position of the center of mass of
the quadrocopter in the target coordinate system. Then, Newton’s
equations of translational motion from the external point of view
can be written as

d2

dt2
p⃗T =

1
m


F⃗th,KR(φ, θ, ψ)− mg⃗ − bv⃗T


(1)

where F⃗th,K is the total thrust vector in the quadrocopter
coordinate system, m is the mass of the quadrocopter treated as
a solid body, g⃗ is the gravitational acceleration vector, v⃗T is the
speed of the quadrocopter in the target coordinate system, b is a
damping factor due to air resistance at slow speeds (linear drag is
assumed) and

R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (2)
where Rx(φ) is a rotational matrix about the x-axis, Ry(θ) is
a rotational matrix about the y-axis and Rz(ψ) is a rotational
matrix about the z-axis of the quadrocopter coordinate system
K . The onboard acceleration sensor measures both the static (due
to gravitation) and dynamic accelerations in the quadrocopter
coordinate system K . Therefore, to estimate the position of the
quadrocopter, based only on the dynamic component of the
acceleration measurement, the following must be evaluated

d2

dt2
p⃗T = a⃗KR − g⃗ (3)

where a⃗K is the acceleration vector in the quadrocopter’s
coordinate system K and g⃗ is the gravitational acceleration vector
in the target coordinate system T . Although the acceleration
sensor is calibrated, its output is drifting during normal operation
due to various effects (including temperature changes and
supply-voltage fluctuations), which cannot be totally eliminated.
Therefore, it is necessary to take the sensor’s output bias into
account. The acceleration biases a⃗b (given inK) must be estimated
and then subtracted from the sensor reading a⃗s (also given in K)
as in

d2

dt2
p⃗T =


a⃗s − a⃗b


R − g⃗. (4)

3. Computer-vision system

Instead of relying on external positioning systems, our study
is aimed at using the video camera as the primary sensor for
positioning purposes. To avoid putting a powerful and heavy
computer on-board the aircraft, video is wirelessly transferred
to a standard personal computer, running our custom video-
recognition software. The software, developed in Visual C# using
the combination of AForge.NET and Emgu CV frameworks for
image processing and glyph Recognition library GRATF [28] for
glyph extraction, estimates the optical flow vectors and extracts
the target’s position, which is used to calculate the position of the
origin and the orientation of K relative to T . The vision system
works in three modes:

1. Mode 0: Not enough image data is available for either the
optical flow analysis or the target following—nomeasurements
are available.

2. Mode 1: Optical flow analysis is operational, but the target
glyph is not in video camera view—only speed measurements
are available.

3. Mode 2: Optical flow analysis and target following are fully
operational—position and speed measurements are available.

3.1. Optical flow analysis

By attaching a camera to a moving object, a set of fixed points
in space, observed by the camera, is projected into a set of 2D
points x⃗OFi (t) = (xOFi (t), y

OF
i (t)) moving along their 2D paths, the

instantaneous derivative of which is the velocity dx⃗OFi (t)/dt . The
field of 2D velocities for all the visible surface points is often
referred to as the 2D motion field [29]. The goal of the optical flow
estimation is to compute an approximation of the motion field
from the time-varying position of the image-features.

In our experiment, a wireless camera is used that outputs an
interlaced PAL video signal. This interlaced video signal is a legacy
of the analogue TV sets, where each frame consists of odd and
even fields, one for odd and one for even lines, shot at different
times, which are displayed on the analogue screen at a double
frame rate. Because the fields are not captured at the same time,
any motion in the image (resulting from the motion of the object
in view or motion of the camera) results in the production of
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Fig. 4. Interlaced image of the target during the camera movement.

jagged edges in the image features (demonstrated in Fig. 4). The
interlacing effects usually cause a lot of problems in video-signal
processing and various techniques are employed to remove the
artifacts in the process of de-interlacing before the frame is fed
to the image-analysis system. However, we can exploit this fact
to estimate the motion field vectors by analyzing the apparent
motion of the same features between two fields. By measuring the
angular velocity of the camera and the distance to the object by
other means, the feature velocity with respect to the camera can
be accurately estimated.

Each grabbed video framewas first separated into odd and even
fields. Then FAST corner detection [30] with variable threshold
was executed on the odd field and the resulting features were
searched in the even field using the iterative Lucas–Kanademethod
in pyramids [31] to calculate the sparse motion field vectors.
The variable threshold method was used in order to produce
approximately the same number of FAST corners, which are
normally affected by the complexity of the texture in the grabbed
video frame. If the number of detected FAST corners was below
a predefined value, the FAST corner detection threshold was
reduced. Similarly, the thresholdwas increased if toomany corners
were detected.

The resulting motion field vectors were then averaged by the
lengths and the orientations. All vectors that had the length or the
orientation distinctly different than the average were processed as
outliers and were discarded. The remaining vectors were used to
recalculate the average (1xOF,1yOF), which was then used as the
estimation of the optical flow due to the camera’s combined lateral
(1xOFm ,1yOFm ) and angular (1xOFr ,1yOFr )motion

(1xOF,1yOF) = λ
(1xOFm ,1yOFm )+ (1xOFr ,1yOFr )

z
(5)

where λ is the constant that links the pixel coordinates with the
real-world coordinates and z is the distance from the camera’s
origin to the horizontal plane, where the features are observed.

The apparent lateral motion of the camera due to the camera’s
rotation (1xOFr ,1yOFr ) can then be safely approximated by the
circular motion of the features at the radius z

1xOFr = zωφ1t (6)

1yOFr = zωθ1t (7)

whereωθ andωφ are the radial velocities about the x and y-axes of
the K coordinate system and 1t is the time interval between the
odd and the even field of the video frame.

By inserting (6), (7) into (5) and some rearranging, the lateral
motion of the camera can be expressed as

1xOFm = zKOF
1


1xOF − KOF

2 ωφ


(8)

1yOFm = zKOF
1


1yOF − KOF

2 ωθ


(9)
where KOF
1 and KOF

2 are constants that are obtained with the
camera’s calibration. Eqs. (8) and (9) show that the angular motion
of the camera can be directly subtracted from the observed total
motionwithout the need to know the distance between the camera
and the observed features. Another advantage of this approach is
that the angular motion of the camera is measured directly by the
gyroscope sensor. However, for an exact absolute lateral motion of
the camera, the distance z must be measured by other means.

3.2. Target recognition and position determination

The target coordinate system is marked with a target graphical
glyph, which is represented by a black border and a square
central grid, divided equally into an equal number of rows and
columns. The central glyph cells are coded in white or black for
the identification of each glyph. The target glyph code is entered
into the glyph database and when a match between a glyph in the
current video-camera frame and an entry in the database is found,
the glyph’s position and size are used in the following position-
determination procedure.

Instead of determining the homography matrix between the
target glyph plane and the camera plane, we followed a more
specialized approach, taking advantage of the sensory data already
present in the system. In the first step we assume that the
camera frame is leveled horizontally, with the camera’s central
axis directed straight down and the camera’s viewpoint being
at the origin of the K coordinate system. Also, we assume that
the projective geometry of the pinhole camera is modeled by a
perspective projection [32]with an additional radial distortion due
to the wide-angle lens mounted on the camera.

Wide-angle camera lenses are commonly used in the field of
computer vision; therefore, the problem of camera calibration
has received much attention in computer-vision applications. The
most frequently usedmethod is the polynomial model for camera-
distortion removal, but [33] suggested a different mathematical
model for radial distortion based on a camera-and-lens projection
geometry. Their idea is presented and followed in the approach
below.

To correct the radial distortion, a correspondingmodel based on
the camera-and-lens projection geometry is used:

R = f (r) =
H
2
1 − e−2r/H

e−r/H
= H sinh

r
H

(10)

where R is the rectified radius, r is the radius from the distorted
image, defined in (11), and H is the parameter of the lens, which is
determined with the camera calibration.

Let Cx and Cy be the coordinates of a pixel in the distorted
image, and let C ′

x and C ′
y be the coordinates of the same pixel in the

rectified image. The origin of the transformation (10) is placed in
the center of the image. The relations between (Cx, Cy) and (C ′

x, C
′
y)

are as follows:

r =


(Cx − Cp

x )2 + (Cy − Cp
y )2,

ϕ = arctan 2
Cy − Cp

y

Cx − Cp
x
,

C ′

x = R cosϕ,

C ′

y = R sinϕ

(11)

where (Cp
x , C

p
y ) are the coordinates of the pixel in the center of

the image and arctan 2 is the four-quadrant version of the inverse
tangent function.

After the camera-distortion rectification is performed, a point
on the target plane (Tx, Ty, Tz) (in Fig. 5 this point’s projection onto
the x–z plane is illustrated), whose coordinates are expressed with
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Fig. 5. Calculating the position of the origin of the K in the T coordinate system.

respect to the K coordinate system, will project onto the image
plane at a point C ′

x, C
′
y, given by

C ′

x

C ′

y


=
λν

Tz


Tx
Ty


(12)

where λ denotes the distance of the viewpoint origin behind the
image plane [10], ν is the pixel density (in pixels per millimeter)
and Tz is the distance between the viewpoint origin and the target
plane, perpendicular to the image plane. The value of the variable
Tz is calculated from the size of the recognized glyph (1Tx,1Ty),
which is compared to the size of the glyph in the image (1Cx,1Cy).

Tz = λν


1T 2

x +1T 2
y

1C2
x +1C2

y
= λν

aT
aC

(13)

where aT is the size of the target in millimeters and aC is the size
of the image of the target in pixels. By combining (12) and (13), the
coordinates Tx and Ty can then be obtained
Tx
Ty


=

aT
aC


C ′

x

C ′

y


. (14)

The image of the glyph also defines the z-orientation of
the quadrocopter’s coordinate system with regard to the target
coordinate system. The angle ψ is calculated from the angle of
the glyph’s diagonal, connecting the top-right (Tx,0, Ty,0) and the
bottom-left (Tx,2, Ty,2) corners of the glyph.

ψ = arctan 2
Ty,0 − Ty,2
Tx,0 − Tx,2

. (15)

To determine the true position ofK with respect to T the effect
of the video-camera tilt and orientation is compensated on-board
the quadrocopter. As the target position data is delayed for d due
to image transmission, processing and communication delays, the
pitch, roll and yaw angles are delayed by the same amount. Then
the point T is rotated about the x-axis by the angle φ(k− d), about
the y-axis by the angle θ(k − d) and about the z-axis by the angle
ψ(k − d).
(T f

x (k), T
f
y (k), T

f
z (k)) = Rz(ψ(k − d))Ry(θ(k − d))

×Rx(ψ(k − d))

Tx(k)
Ty(k)
Tz(k)


(16)

where Rx(ψ),Ry(θ) and Rz(ψ) are the standard rotation matrices
about the axes of rotation, x, y and z, respectively. The coordinates
(−T f

x ,−T f
y ,−T f

z ) finally define the origin of K with respect to T .

3.3. Video-system delay estimation

To deal with the variable delay of the video system, the
quadrocopterwas equippedwith an additional circuit that embeds
Fig. 6. Block diagram of the system with the extended Kalman filter.

the binary-coded value of the on-board 8-bit timer into every
video frame. The timestamp overlay is produced using a small PIC
microprocessor that encodes each bit of the current timer value
as a series of white and black stripes. This encoding scheme was
used for its decoding simplicity and robustness. The timestamp
data is extracted in the computer software and transmitted
together with other image-processing results wirelessly back to
the quadrocopter microprocessor, where the data is compared
with the on-board timer and the exact delay is calculated. This
delay estimate comprises of the vision-system transmission and
the processing delay, together with the communication delay. The
resolution of the encoded timer value is 10ms, so the system is able
to identify the delays in the range from 0 to approximately 2.5 s.

4. Position estimation

Position information, produced by the image recognition, is
subjected to delays and signal outages before it reaches the control
input of the quadrocopter. One major drawback of direct visual
servoing is the need for the target to stay inside the field of
view of the camera. In the case of the quadrocopter under direct
visual servo control, one must be aware of the unstable nature
of this aircraft. This nature requires a functioning visual servoing
loop, which is directly dependent on the visibility of the target
by the camera. Therefore, an indirect visual servo-control was
developed that uses a combination of local position tracking with
an integrated IMU unit and an image-based position estimation
and filtering with a Kalman filter. The additional dynamic delay
estimation and compensation systemwas included in the position
filtering process.

As the quadrocopter, as a system, includes nonlinearities, it is
commonpractice to employ the ExtendedKalman filter (illustrated
in Fig. 6), where a linear approximation is only used for solving
the Riccati equation, a result of which is the Kalman gain. The full,
nonlinear model is used in the propagation of the estimate and in
computing the predicted sensor outputs [34]. Thiswould introduce
a heavy load on the on-board, high-level processor and thus was
not selected for our application. Therefore, a nonlinear part of
the quadrocopter system (mainly the nonlinear coordinate system
transformation from the quadrocopter’s coordinate system K to
the target coordinate system T ) was decoupled from the linear
part of the system and replicated on the path of the acceleration
measurement vector aK entering the Kalman filter (Fig. 7) in order
to enable aT to enter the Kalman filter directly. This enabled us to
employ a basic (linear) form of the Kalman filter that presents a
much lighter load to the processor.

4.1. Position prediction

The position prediction is accomplished by measuring and
integrating the dynamic acceleration of the quadrocopter. Un-
fortunately, the inertial sensors measure the total acceleration,
combining the effect of the dynamic acceleration due to the
velocity change and the effect of gravitational acceleration. To
successfully isolate the dynamic component from the sensor read-
ings, the sensor biases are first subtracted from the measured
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Fig. 7. Block diagram of the system with the linear Kalman filter.

acceleration in the K coordinate system. Then, the resulting ac-
celeration vector is transformed to the target coordinate system
T (in our experiments, the target coordinate system is, due to
target’s fixed position, effectively the world coordinate system),
where the effect of gravity is known and can be subtracted from
the readings. The transformation of the acceleration has one other
major advantage—position prediction produces the position of the
quadrocopter directly in the target coordinate system T and the
use of nonlinearities is avoided in further processing, and the
Kalman filter, used to correct the position of the quadrocopter, can
be simplified.

In our experiment, the position prediction is all done on-board
the quadrocopter in the high-level processor. The calibrated accel-
eration sensor readings as,K(k) and the current Euler angles φ, θ
andψ are transferred periodically from the low-level processor to
the high-level processor, where the DCM rotation matrix is con-
structed. As the position of the x and y axes is swapped, the DCM
rotation matrix has a slightly modified form

RDCM =

cφsψ + cψsφsθ cφcψ − sψsφsθ −cθsφ
cθcψ −cθsψ sθ

sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ


(17)

where these abbreviations were used

cφ = cosφ cθ = cos θ cψ = cosψ
sφ = sinφ sθ = sin θ sψ = sinψ.

(18)

With the above DCM matrix the dynamic acceleration vector ad,T
in the T coordinate system was extracted

ad,T (k) =

ad,T ,x(k)
ad,T ,y(k)
ad,T ,z(k)


=


as,K(k)− bK(k)

T RDCM(k)−

0 0 g

T
(19)

where the calibrated acceleration-sensor-readings vector as,K(k)
and the acceleration-sensor-bias vector bK(k) are defined as

as,K(k) =

as,K,x
as,K,y
as,K,z


bK(k) =

bs,K,x
bs,K,y
bs,K,z


. (20)

The resulting dynamic acceleration is then integrated twice using
the Euler method at a rate of 100 times per second. As the sensor
biases bK(k) are unknown and variable, three additional states for
them were added to the system state vector

x(k) =



pT ,x(k)
vT ,x(k)
bK,x(k)
pT ,y(k)
vT ,y(k)
bK,y(k)
pT ,z(k)
vT ,z(k)
bK,z(k)


(21)
where pT ,x, pT ,y and pT ,z are the positions in the x, y and z axes,
vT ,x, vT ,y and vT ,z are the velocities along the same axes, and
bK,x, bK,y and bK,z are the acceleration sensor biases for all three
axes in the K coordinate system. The system can then be written
in state-space form as

x(k + 1) =

A0 0 0
0 A0 0
0 0 A0


x(k)+

B0 0 0
0 B0 0
0 0 B0


ad,T (k) (22)

y(k) =

C0 0 0
0 C0 0
0 0 C0


x(k) (23)

where

A0 =

1 T 0
0 1 0
0 0 1


B0 =


T 2

2
T
0


C0 =


1 0 0
0 1 0


.

(24)

If (19) is inserted into (22), the following expression is produced

x(k + 1) =

A0 0 0
0 A0 0
0 0 A0


x(k)

−

B0 0 0
0 B0 0
0 0 B0


RT
DCM(k)bK(k)



+

B0 0 0
0 B0 0
0 0 B0


RT
DCM(k)as,K(k)−

0
0
g


. (25)

This system predicts the quadrocopter’s velocity and position.
However, the integration causes errors to accumulate and the
velocity and position predictions tend to drift.

4.2. Kalman filtering

While the visual tracking system, as mentioned before, suffers
because of a low update rate and the long delay caused by the
image-capture and analysis procedure, the position-prediction
stage exhibits a strong tendency to drift over time. The Kalman-
filtering technique was used to fuse the estimates of both systems
together with the aim to take advantages of them both.

As can be seen from Eqs. (21)–(24), each of the axes can be
inspected independently of each other. Here, we only show the
solutions for the x- and the z-axis, because the solution for the y-
axis is identical to the solution for the x-axis.

The state vector for the x-axis is defined as follows

xx(k) =

pT ,x(k)
vT ,x(k)
bK,x(k)


. (26)

The system and measurement processes are affected by the
process noise wx and the measurement noise nx, which are
assumed to be independent of each other, white, and with normal
probability distributions [35]. This produces the following set of
equations in the system space
xx(k + 1) = A0xx(k)+ B0ad,T ,x(k)+ Fxwx(k) (27)

yx(k) = C0xx(k)+ nx(k) (28)
where Fx is a matrix of the appropriate size.

Usually, the Kalman filter is implemented by executing the
following five steps:
1. x∗

x (k + 1) = A0x̂x(k)+ B0ad,T ,x(k).
2. P∗

x (k + 1) = A0P̂x(k)AT
0 + FxVxFTx .
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3. In the new time step k : Kx(k) = P∗
x (k)C

T
0[C0P∗

x (k)C
T
0 + Nx]

−1.
4. x̂x(k) = x∗

x (k)+ Kx(k)[yx(k)− C0x∗
x (k)].

5. P̂x(k) = P∗
x (k)− Kx(k)C0P∗

x (k)

where the following symbols are used:

x∗
x—state-vector prediction,

x̂x—state-vector estimation,
P∗
x—covariance-matrix prediction,

P̂x—covariance-matrix estimation,
Vx—covariance matrix of the process noisewx,
Fx—input matrix of the process noise,
Nx—covariance matrix of the measurement noise nx(k).

For the purpose of implementing linear Kalman filtering,
the system had to be augmented to take into account the
nonlinear properties of the sensor-bias states. The expression
(25) is linearized in the nominal operating point (the target and
quadrocopter frames are parallel) and the RDCM is assumed to be a
unitary matrix. Due to the fact that bK,x(k) is the last element of
the state vector xx(k), the following can be concluded from (25):

∂xx(k + 1)
∂xx(k)


nom. op. point

= A0 − B0

0 0 1



= AL,0 =

1 T −
T 2

2
0 1 −T
0 0 1

 (29)

allowing the bias state to become observable in order to produce
the appropriate Kalman gains.

By assuming that the system defined by (27), (28) is not time-
varying and the covariance matrices Nx and Vx are constant, the
steps 2, 3 and 5 of the above algorithm need not be evaluated on-
line during each calculation step. Rather, the solution of the steady-
state matrix Riccati equation can be found:

1. P∗
x = AL,0P̂xAT

L,0 + FxVxFTx .
2. Kx = P∗

xCT
0[C0P∗

xCT
0 + Nx]

−1.

3. P̂x = P∗
x − KxC0P∗

x.

The estimation algorithm then becomes much simpler:

1. x∗
x (k + 1) = A0x̂x(k)+ B0ad,T ,x(k)

2. x̂x(k) = x∗
x (k)+ Kx[yx(k)− C0x∗

x (k)].

In all the filter variations below, the following covariancematrix
of the process noise is used:

V0 =

σ
2
p 0 0
0 σ 2

v 0
0 0 σ 2

b

 (30)

where σ 2
p = 0.1 cm2, σ 2

v = 0.1 cm2/s2 and σ 2
b = 0.001 cm2/s4.

The variances σ 2
p and σ 2

v reflect the system model uncertainties
due to Euler integrationmethodused,whileσ 2

b is used tomodel the
sensor bias with a random-walk model [36]. Finally, all three noise
constants were finely tuned by means of experiments in order to
achieve the best operation of the filtering system.

For each of the vision-system operating modes (see Section 3),
the structure of the filter is adjusted as follows:

1. Mode 0: No measurement is available for the x- and y-axis.
The z-axis velocity measurement is available by measuring the
air-pressure changes. With the estimation of the measurement
noise at Nż = 100 cm2/s2 and C0 =


0 1 0


, the following

Kalman-filter gain was calculated

Kż =

0.0098 0.0321 0.0031

T
. (31)
2. Mode 1: Velocity measurements are available for all three axes.
Measurements for the x- and y-axis are based on the tilt-
motion compensated, optical flow, velocity results, while the
measurement for the z-axis is based on air-pressure change
sensor readings. For all three axes the matrix C0 has the value
C0 =


0 1 0


. The measurement noise for the z-axis and

the corresponding Kalman-filter parameters are the same as in
operationmode 0,while themeasurement noise for the velocity
in the x- and y-axis was estimated at Nẋ,ẏ = 10 cm2/s2 (the
values were estimated based on the results of an experiment
where the quadrocopter was hovering at z = 70 cm). The
Kalman-filter gain for the x- and y-axis therefore has the value

Kẋ,ẏ =

0.0095 0.0960 0.0095

T
. (32)

3. Mode 2: Additional camera-position measurements are avail-
able. Because themeasurements of the air-pressure changes are
available during every correction step and have no delay, while
the vision-systemmeasurements are delayed and less frequent,
the z-axis measurements of velocity and position are handled
separately using the sequential sensor model [25]. The Kalman
filter for the estimation of ż is identical to the one presented
in mode 0. The other two velocities and all three positions are
measured by the camera. In the case of the x and the y axes, the
positions and the velocities are measured and the correspond-
ing covariancematrix of themeasurement noise and the result-
ing Kalman gain, respectively, are

Nx,y =


2 cm2 0

0 10 cm2/s2


Kx,y =


0.2004 0.0126 0.0013
0.0025 0.0958 0.0095

T
.

(33)

In the case of the z-axis, only the position is measured by
the camera, where the corresponding covariance matrix of the
measurement noise and the resulting Kalman gain are

Nz =

2 cm2 Kz =


0.2085 0.2188 0.0199

T
. (34)

The details on compensating the Kalman filter parameters for
the delay will be explained in Section 4.3.

Due to the assumption of RDCM being a unitary matrix and
incorporating the effect of sensor acceleration biases into the
matrix AL,0 (29), an additional step must be included to correctly
update the bias state in the state vector. This was accomplished by
transforming the bias innovations in all three axes with RDCM from
T back to K before the state vector was updated.

Such an implementation of the Kalman filter had a significantly
lower complexity of implementation on the on-board, high-level
processor as the number of operations over the matrices was
greatly reduced and no matrix had to be inverted. The state
prediction, as the first step in the filter, was already being made by
the position-tracking system described in 4.1 and thus the Kalman
filtering was reduced solely to the correction step.

4.3. Dynamic-delay estimation and compensation

The visual recognition system used in this experiment is able to
analyze the video feed at around 20 frames per second,which takes
about 5 predictions per one measurement update in the Kalman
filter. However, by using the Kalman filter, the implementation
usually requires good understanding of the delays present in the
filter loop. In our case these cannot be determined in advance as
there is a variable delay present in the system in the range from
150 to 300ms,which is about 15–30prediction steps of theKalman
filter. As the delay of the visual recognition system could not be
predicted, we used the novel approach of ‘timestamping’ every
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Fig. 8. A timeline of Kalman predictions and corrections.

frame produced by the camera with the current value of the on-
board timer. The timer value is extracted from each captured frame
and included in the visual recognition data packet that is sent back
from the personal computer to the quadrocopter. There, the delay d
is estimated by comparing the current value of the on-board timer
with the value received in the data packet.

To compensate for the delay d of the received measurement
y(k − d), step 4 of the Kalman-filtering algorithm is slightly
modified

x̂(k) = x∗(k)+ K′
[y(k)− Cx∗(k − d)] (35)

where K′ will be discussed later. Note that a copy of Eq. (35) is
needed for each of the three axes.

This is illustrated in Fig. 8. The video-camera frame, captured
at the time-step 0, arrives into the Kalman correction step at the
time-step 18, when the delay is estimated (in this case the delay is
18 samples). In that time-step, the received measurement y(18)
is compared with the prediction output x∗(18 − 18) (k = 0 is
the time when the video-camera frame was captured). As can also
be seen in Fig. 8, the predictions are executed at a regular rate
of 100 predictions per second, while the corrections are executed
at a much lower rate with irregular intervals. To accommodate
these irregularities, the correction-time instants are defined by the
variable c(k):

c(k) =


1, if new camera data is available at time-step k
0, otherwise. (36)

With this approach, the delay has been effectively transferred
to the Kalman-filter correction loop and as the paper [26] suggests,
the pre-calculated Kalman-filter gain has to be adjusted to ensure
the filter’s optimality. The modified Kalman gain K′ can be
calculated as in

K′
=


d−1
i=0

(I − K(k − i)C(k − i))A(k − i − 1)


K(k) (37)

which in our case only depends on the delay d and therefore A1 =

A2 · · · = Ak, C1 = C2 · · · = Ck. As the correction step of the
Kalman filter is executed only in time-steps in which the delayed
measurement data y(k) is available, the following can be defined

K(k) =


K, c(k) = 1
0, c(k) = 0. (38)

With definition (38) the filter with discontinuous executions of the
correction steps can be handled as a generic Kalman filter. Half-
duplex communication, the usage of a non-real-time operating
system and various other effects impact on the amount of delay
of the visual system (the delay between the moment when
the measurement of the state x(k − d) is produced and the
corresponding y(k) is received). On the other hand, the video
camera captures frames regularly every 5 time-steps. This means
that during the delay of the visual system, 3–6 visual system results
are received by the quadrocopter and thus the same number of
Kalman-filter corrections was executed (illustrated in Fig. 8).

Although, the exact delay was used earlier to properly
temporally align the past predicted states and the measurements,
the experiments showed that using the delay to fine-tune the
Kalman filter gain in each correction step had aminor effect on the
system performance. During the experiments, it was determined
Table 1
Fixed Kalman gains for all modes.

Mode 0 Mode 1 Mode 2

K′
x /

0.0097
0.0644
0.0063

 0.0820 0.0023
0.0022 0.0641
0.0002 0.0063


K′

y /

0.0097
0.0644
0.0063

 0.0820 0.0023
0.0022 0.0641
0.0002 0.0063


K′

z / /

0.0852
0.0834
0.0075



that, on average, ρ = 4 corrections are made per delay, so the
expression (37) was used to define the expressions that produce
the fixedKalmangainsK′ for eachmodeof theKalman filter, except
the gains for the z-axis velocity measurements, as these are not
delayed (they come from the air-pressure sensor)

K′
=

(I − KC0)A0

ρ
K. (39)

The Kalman gains, defined in Table 1, were hard-coded into the
firmware. Note that the Kalman gains in Table 1 are used for
filtering the measurements coming from the visual system. In
mode 2 the positions are measured for all three axes, while the
velocities are measured in mode 1 and 2 for the x- and y-axis.

5. Controller design

Because of its simple structure and robustness, a state-space
controller was selected for the x- and y-axis, and because of the
strong integrating part, required for the z-axis controller, a PI-D
controller was selected for the z-axis. A problem we encountered
during the controller design phase, i.e., that the manufacturer
of the quadrocopter does not provide any information on the
internal, primary, closed-loop controller that is used to follow the
tilt and thrust commands. Parametric identification was used to
approximate the quadrocopter’s internal transfer functions and
use them to design the controllers in the outer loop.

5.1. Parametric identification

For the purpose of parametric identification a human pilot was
instructed to fly the quadrocopter above the target so that the
visual recognition system was in mode 2 during the experiment.
The pilot’s control commands for the thrust, pitch and roll were
recorded together with the responses of the quadrocopter—pitch
and roll angles, vertical acceleration, the velocity and the positions
in all three axes. The quadrocopter system transfer function from
the control input to the quadrocopter’s positionwas separated into
three first-order transfer functions per axis (illustrated in Fig. 9)
and the results are as follows:

1. Transfer functions in x- and y-axis are the same:

G1,xy(z) =
1.1

z − 0.95
G2,xy(z) =

0.00015
z − 0.9991

G3,xy(z) =
0.01
z − 1

.

(40)

2. Transfer functions for the z-axis:

G1,z(z) =
0.0066

z − 0.853
G2,z(z) =

0.0811
z − 0.997

G3,z(z) =
0.01
z − 1

.

(41)
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Fig. 9. Overview of the system.
5.2. Compensator design

In order to improve the dynamics of the closed-loop system,
we decided to include a lead compensator (as illustrated in Fig. 9).
The zeros of the compensators were placed at zxy = 0.95 for the x
and y-axes and at zz = 0.85 for the z-axis, respectively. Similarly,
the poles of the compensators were placed at pxy = 0.85 and at
pz = 0.75. The gain of the compensator was set so that the gain
of the compensator and the transfer function G1(z) combined was
equal to 1.

Cxy(z) = 0.968
z − 0.95
z − 0.85

Cz(z) = 37.5
z − 0.85
z − 0.75

. (42)

5.3. The controller for the x and the y-axis

The included compensator effectively compensated the dy-
namic effects of the G1,xy(z) transfer function. The remaining two
transfer functions defined in Eq. (40) were then used to design a
Linear Quadratic Regulator (LQR) [37] for the control of the quadro-
copter in the x and y-axes. The transfer functionswere transformed
into the state-space form (43), (44) in such a way that the physical
meaning of the states remained—one state for the velocity and the
other for the position.

xLQRx (k + 1) =


0.9991 0
0.0012 1


xLQRx (k)+


0.0156

0


uLQR
x (k) (43)

yLQRx (k) =

0 0.08


xLQR(k). (44)

Knowing that the system in Eq. (43) is stabilizable, the design
criterion for the best control gain KLQR is set up accordingly:

J =

∞
k=1


xLQRx (k)TQxLQRx (k)+ uLQR

x (k)TRuLQR
x (k)


(45)

where Q and R are weighting matrices, which were selected as
follows:

Q =


150 0
0 50


R = [0.1] . (46)

The calculated gain was

KLQR =

28.7 16.6


. (47)

For each time step k, the control inputs ux(k) and uy(k) are
calculated based on the position and velocity errors and the
controller gain KLQR.

ux(k) = KLQR


−vT ,x

ex(k)


uy(k) = KLQR


−vT ,y

ey(k)


(48)

where

ex(k) = rT ,x − pT ,x ey(k) = rT ,y − pT ,y. (49)
The rT ,x and the rT ,x are the references for the position in the
direction of the x- and y-axis of the target coordinate system. The
output of the controller is then fed to the compensator Cxy(z) to
produce the final controller outputs cx(k) and cy(k).

cx(k) = 0.85cx(k − 1)+ 0.968 (ux(k)− 0.95ux(k − 1)) (50)

cy(k) = 0.85cy(k − 1)+ 0.968

uy(k)− 0.95uy(k − 1)


. (51)

5.4. The controller for the z-axis

For the z-axis controller, a discrete PI-D controller1 was selected
with the control algorithm:

uz(k) = KP,zez(k)+ KI,z

k
i=1

ez(i − 1)+ KD,z(−vK,z(k)) (52)

where

ez(k) = rT ,z − pT ,z . (53)

The rT ,z is the reference for the position in the direction of the
z-axis of the target coordinate system. Like with the controllers
for the x- and y-axis, the output of the controller is fed to the
compensator and its output is used to control the thrust.

cz(k) = 0.75cz(k − 1)+ 37.5 (uz(k)− 0.85uz(k − 1)) . (54)

The initial parameters of the controller were selected based on the
identified transfer functions, but they were later fine-tuned during
the experiments to the following values:

KP = 100 KI = 7 KD = 50. (55)

The parameters of the controller (55) are tuned for a particular
operating point. It would be possible to schedule the parameters
according to some signal, e.g. fuzzy gain scheduling could easily be
implemented as reported bymany applications in [38]. The results
of experiments have shown that the systembehaves quite robustly
with fixed parameters (55). Also, since the controller design was
not the primary objective of the paper, the parameters are fixed in
our approach.

6. The experimental results

The complete system (illustrated in Fig. 2) was evaluated
by two-part experiment. The first part of the experiment was
focused on the quadrocopter responses during the reference-point
changes. From the initial position at (0 cm, 0 cm, 70 cm) in the
T coordinate system, the quadrocopter was instructed to move
to the position (0 cm, −30 cm, 80 cm) and then return to the
starting position. The move was made twice and the results are

1 PI-D controller is a modification of the classical PID controller, where the
derivative part of this PID controller is driven by the velocity state directly.
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Fig. 10. Results of the experiment, where the responses to the reference-point changes were studied.
Fig. 11. Results of the experiment, where the responses to the external disturbances were studied.
shown in Fig. 10. The results indicate that the quadrocopter keeps
its instructed position with minimal oscillations. Due to the small
room where the tests were executed, a strong draft starts to form
during the experiment. This draft results in a slight offset in the
vertical position during the second half of the maneuvers.

The second part of the experiment mainly displays the
quadrocopter robustness to a short-term loss of video-camera data.
The quadrocopter is first put into autonomous hovering mode, in
the moments t1 = 51 s, t2 = 55 s and t3 = 78 s it is pushed
out of the reference position by hand. Although the video-camera
loses the target out of the view (illustrated by the red background
in Fig. 11), the quadrocopter returns to the reference position and
continues hovering.

7. Conclusion

In this paper, the research results using Kalman filtering to
fuse the highly-delayed, low-frequency, sensor measurements
with no-delayed high-frequency measurements are presented. To
accomplish this task somenovel approacheswere taken both in the
visual recognition system and in the Kalman filtering. The solution
was proven in multiple experiments where the quadrocopter
autonomous hover mode was tested. The task was especially
challenging as the solution is composed of software running on a
personal computer, analyzing the video camera’s data and logging
the results, and microcontroller firmware running on-board the
quadrocopter, taking care of the quadrocopter’s inertial navigation,
sensor fusion and control. The final system is semi-autonomous,
as the visual recognition system is partly running off-board the
quadrocopter.
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