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We introduce a novel method for the construction of discrete conformal mappings from surface

meshes of arbitrary topology to the plane. Our approach is based on circle patterns, i.e., arrange-

ments of circles—one for each face—with prescribed intersection angles. Given these angles the
circle radii follow as the unique minimizer of a convex energy. The method supports very flexible

boundary conditions ranging from free boundaries to control of the boundary shape via prescribed
curvatures. Closed meshes of genus zero can be parameterized over the sphere. To parameterize

higher genus meshes we introduce cone singularities at designated vertices. The parameter do-

main is then a piecewise Euclidean surface. Cone singularities can also help to reduce the often
very large area distortion of global conformal maps to moderate levels. Our method involves two

optimization problems: a quadratic program and the unconstrained minimization of the circle

pattern energy. The latter is a convex function of logarithmic radius variables with simple explicit
expressions for gradient and Hessian. We demonstrate the versatility and performance of our

algorithm with a variety of examples.
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1. INTRODUCTION

Surfaces are often represented as collections of samples with connectivity, typically in the form of a simplicial mesh.
It is natural and convenient to use the implied piecewise linear mesh as the basis for formulating a variety of com-
putational algorithms, such as parameterization problems or the solution of partial differential equations for purposes
of simulation. In this paper we argue that when it comes to computing conformal structures, e.g., conformal para-
meterizations of surfaces, circles can be a far better basis upon which to formulate the underlying relationships and
consequent algorithms (see Figure 1). In particular we advocate the formulation of the discrete conformal mapping1

problem in terms of circles and the angles with which they intersect, so called circle patterns.

The idea of using circles to capture a discrete notion of conformality goes back to a conjecture of Thurston’s [1985]
who posited that one may approximate the Riemann mapping2 from a given region in the plane to the unit disk through
a sequence of increasingly fine, regular (hexagonal) circle packings. This conjecture was later proven correct by Rodin

1In this article we use the term “discrete conformal map” for piecewise linear maps between meshes that are close to angle preserving.
2The Riemann Mapping Theorem asserts that there exists a unique (up to Möbius transformations of the unit disk to itself) conformal map from any
region in the plane (open, connected and simply connected, not the whole plane) onto the unit disk.
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Fig. 1: Typically a triangle mesh is understood as the piecewise linear interpolation of given vertex coordinates induced by the connectivity of the
mesh (left). Alternatively we may also think of the vertices as the unique loci where incident triangle circumcircles intersect (middle;right). The
latter point of view is more appropriate for formulating relationships of conformal geometry.

and Sullivan [1987]. Circle packings assign a circle to each vertex, with pairwise tangency for each edge in the mesh.
The task then is to find radii for these circles such that the combinatorially prescribed tangencies are maintained and
the resulting arrangement of circles fills the unit disk. A numerical algorithm for the construction of such mappings,
based on iterative adjustment of circle radii, was proposed by Thurston [1980] and improved and realized by Collins
and Stephenson [2003]. Unfortunately, circle packings yield mappings which depend only on the combinatorics of
the original mesh, while we are seeking methods which depend on the geometry of the mesh. One possible avenue to
remedy this shortcoming is to use patterns of non-intersecting circles [Bowers and Hurdal 2003].

In contrast, circle patterns, which associate a circle with each face in the original mesh provide an opportunity to incor-
porate the intrinsic geometry of the original mesh: each edge is assigned an angle θ ∈ (0,π) which corresponds to the
intersection angle of the two incident face circles. A recent theorem of Bobenko and Springborn [2004] characterizes
such circle patterns as the unique minimizer of a convex energy expressed in terms of logarithmic radius variables
(and the given edge angles). Simple, explicit expressions for the energy, its gradient, and Hessian are available and
greatly facilitate an efficient implementation.

1.1 Contributions

In this paper we use the theory of Bobenko and Springborn to realize effective and robust algorithms for the con-
struction of discrete conformal mappings from triangle meshes of arbitrary topology to the plane. The basic algorithm
consists of three stages (Section 3). In a first step each edge of the input mesh is assigned an angle 0 < θe < π . These
angles serve to incorporate the original geometry into the circle pattern algorithm. Choosing “good” angles is achieved
by solving a quadratic program (Section 3.1). Once the angles have been assigned the circle radii are found as the
unique minimum of a convex energy (Section 3.3). Finally the edge angles together with the found radii are used to
lay out the mesh in the parameter domain. The mappings are always locally injective. They may fail to be globally
injective due to self-overlap of the boundary of the parameter domain. However, this can be avoided since we can
prescribe the boundary curvature κ: if for any sequence of consecutive boundary vertices the sum of κs is larger or
equal −π , then there can be no overlap and the method is guaranteed to produce a global embedding.

We develop our method in stages. First the theory is introduced (Section 2) followed by its application to meshes with
disk topology (see Figure 11). Such meshes may be given in that form or result after cutting a mesh with non-trivial
topology. In the latter case there is a priori no continuity of the mapping across the cut borders. For the topological
disk case we introduce boundary conditions which allow explicit control over the boundary curvature (see Figure 2).
This can be used to achieve polygonal outlines all the while maintaining discrete conformality. This is of interest, e.g.,
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 2: A simple mesh (left) mapped to the plane using circle patterns. Boundary shape is controlled through appropriate curvature conditions.
Examples: disk boundary; free boundary; and rectangular boundary (left to right).

in the context of more efficient texture packing (see Figure 11; Max Planck example).

The basic method is then used to compute discrete conformal parameterizations of closed surfaces of genus zero over
the sphere (see Figure 7) in Section 4.1 and mappings to the disk in Section 4.2.

Since the circle pattern algorithm always produces planar meshes which are Delaunay, the basic method produces
larger than necessary error for input meshes that are far from Delaunay. We adress this issue in Section 5. In a
preprocessing step which does not change the intrinsic geometry of the mesh, we construct an intrinsic Delaunay
triangulation to be fed into the basic algorithm (see Figure 9 for a comparison of distortion measures).

For surfaces of higher genus (g > 1) we introduce cone singularities (Section 6): One may designate a number of
vertices as cone vertices with prescribed cone angles. (A cone vertex is characterized as a vertex where the tip angles
of incident triangles do not sum to 2π , i.e., vertices with non-vanishing discrete Gauss curvature.) The resulting
parameterizations are Euclidean everywhere except at the cone vertices. Parameterizations constructed in this manner
are globally continuous. To pack them into a texture plane, they must be cut. However, the placement of the cuts
has no impact on either continuity or distortion (this is in contrast to algorithms which cut before parameterizing).
Furthermore, diligently placed cone singularities can reduce the area distortion of discrete conformal maps greatly
(see Figures 14–18).

Finally we evaluate our approach in terms of performance and distortion measures and compare it with the most
closely related alternative method [Sheffer and de Sturler 2000] (which is also based on angle optimization albeit with
different mathematical underpinnings).

1.2 Related Work

Most approaches to the construction of conformal mappings for meshes have relied on discretizations of continu-
ous formulations. First order finite element approximations of the Cauchy-Riemann equations were used by Levy et
al. [2002]. The same equations, the so-called “cotan formula” [Pinkall and Polthier 1993], also result when consid-
ering a discrete variational Ansatz based on mesh invariants [Desbrun et al. 2002] or when deriving discrete holo-
morphy [Mercat 2001] from first principles using Discrete Exterior Calculus (DEC) methods [Hirani 2003]. Such ap-
proaches, for example, have been used to compute discrete approximations of Riemann structures for general meshes
by Gu and co-workers (see [Gu and Yau 2003] and the references therein).

A great advantage of these methods is that they require only the solution of simple linear systems. However, due
to negative cotan weights solutions may lack local injectivity. More troublesome is the lack of flexible boundary
conditions: Dirichlet conditions introduce non-conformal distortion (see Figure 3), while “natural” boundaries provide
essentially no control over the boundary shape.
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A B

Fig. 3: Example of a map from the disk (shown with superimposed checker board pattern) to a region shown as a very nicely sampled mesh. Using
the cotan formula one must specify Dirichlet boundary conditions. For example, mapping vertices on the boundary of the region to points on the
boundary of the disk with matching (relative) secant lengths. The resulting (inverse) mapping is visualized in (A). Note how squares are sheared,
indicating severe angle distortion. (B) shows the resulting mapping using our approach which sets appropriate angle conditions at the boundary.

A completely different Ansatz to the construction of conformal maps is based on circle packing. Continuous confor-
mal mappings can be characterized as mapping infinitesimal circles to infinitesimal circles. Circle packings replace
infinitesimal circles with finite circles. In the limit of refinement the continuous conformal maps are recovered [Rodin
and Sullivan 1987]. Collins and Stephenson [2003] have implemented these ideas in their software CirclePack. The
disadvantage of using circle packings (with tangent circles) is that they depend only on the combinatorics of the orig-
inal mesh. In particular, if one starts with a planar mesh and parameterizes it, the result is not the original mesh. This
is in contrast to our approach. Given a triangulation of a region in the plane satisfying the empty circumcircle prop-
erty, one simply assigns the observed intersection angles of circumcircles (at the boundary one adds infinite circles,
i.e., straight lines) to each edge and our variational approach will return the identity map as a conformal map of the
region to itself. This is because the Delaunay triangulation is uniquely determined by the abstract triangulation and
the intersection angles, hence the original mesh is the only solution.

An extension of Stephenson’s original circle packing scheme that takes the geometry of the original mesh into account
is based on patterns of non-intersecting circles, so called inversive distance circle packings [Bowers and Hurdal 2003].
(Non-intersecting circles have imaginary “intersection angles.”) The idea is to construct patterns of non-intersecting
circles, each circle corresponding to a vertex of a triangulation, with prescribed inversive distances between circles
corresponding to neighboring vertices. But whereas practical conditions for the existence and uniqueness of circle
patterns with intersecting circles are known (see, e.g., Section 2), virtually nothing is known regarding the existence
and uniqueness of inversive distance packings.

The first variational principle for circle packings was presented in a seminal paper by Colin de Verdière [1991].
The variables are the circle radii. However, a closed formula is presented only for the derivative of the energy,
not for the energy itself. Since then, different variational principles for circle packings [Brägger 1992] as well as
circle patterns [Rivin 1994; Leibon 2002] were discovered. In these, the variables are the angles of a triangulation,
subject to numerous linear constraints (one per edge and one per face for Rivin’s energy). Leibon’s energy deals with
patterns in the hyperbolic plane. In this paper, we use the most general functional which was given by Bobenko and
Springborn [2004]. In their setup, the variables are logarithmic circle radii. Most importantly, they are not subject to
any constraints.

Most closely related to our approach is the angle based flattening (ABF) algorithm of Sheffer and de Sturler [2000].
They flatten a given mesh by formulating a constrained quadratic minimization problem which seeks to find angles at
the corners of triangles which are close to desired angles in a weighted l2 norm. The constraints capture the angle sum
conditions at all faces (sum of angles = π) and vertices (sum of angles = 2π) as well as a non-linear condition on the
product of sines of angles. The resulting minimization problem has local minima and does not have a unique solution.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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The resulting mappings are of excellent quality but only free boundary conditions are provided (for a formulation of
ABF using additional boundary curvature constraints see [Zayer et al. 2003]). It may also be possible to incorporate
cone singularities into the ABF method, but this has not yet been demonstrated. No less, ABF is similar in spirit to
our algorithm as we also optimize angles. We discuss the similarities and differences of both schemes in Section 3.2.

We defer the discussion of related work as regards the use of cone singularities to Section 6.

2. CIRCLE PATTERNS

For computational problems in Euclidean geometry the use of triangles as a basic primitive is convenient and natural,
since triangles are the basic invariant “building blocks” of Euclidean geometry. When one is interested in conformal
geometry the picture changes. The basic invariants of conformal geometry are circles and the angles they make with
one another. In the case of triangle meshes these differing points of view are naturally compatible. For example,
the vertices in a triangle mesh are the unique loci where the circumcircles of the incident triangles intersect (see
Figure 1). Similarly the empty circumcircle property, which corresponds to non-negative intersection angles between
circumcircles incident on an edge, is a defining feature of Delaunay triangulations. While we may use triangles
for tasks such as interpolation and rendering, conformal relationships between vertices are better captured through
expressions involving the circumcircles they define and the angles these circles make with one another. A benefit
of this different point of view is that much mathematical machinery from conformal geometry carries over to the
discrete computational setting. For example, existence and uniqueness properties of conformal maps are reflected in
the existence and uniqueness properties of circle patterns.

We begin this section by defining circle patterns in the plane and describing their characterization as minimizers of
a variational energy. The latter forms the basis for our approach. While we only deal with triangle meshes here, the
theory extends to polyhedral meshes [Bobenko and Springborn 2004].

Consider a Delaunay triangulation T = (V,E,T ) of finitely many points P = {pi} in the plane. Here V = {vi},
E = {ei j}, and T = {ti jk} denote the sets of vertices, edges, and triangles respectively with pi the point position of
vertex vi. From this Delaunay triangulation, we may read off the following edge weights

∀ei j ∈ E : θe =
{

π−αk
i j −α l

i j for interior edges
π−αk

i j for boundary edges
, (1)

where αk
i j (and α l

i j) are the angle(s) opposite ei j in the adjacent triangle(s) ti jk (and t jil). The θ -weight of an interior
edge is the (exterior) intersection angle of the circumcircles of the incident triangles (see Figure 4). The θ -weight of

ei j

v j

vi

vk

vl

αk
i j

α l
i j

θe

ci jk

c jil

θe

Fig. 4. Notation: The angles αk
i j and α l

i j opposite a given edge
ei j and incident on a particular vertex vk respectively vl . The
edge angle θe denotes the exterior intersection angle of the in-
cident circumcircles or equivalently the angle between the two
radii at vi (or v j).

a boundary edge is the intersection angle of the circumcircle of the incident triangle with the straight line containing
the boundary edge. (View this line as a circle with infinite radius.)

Assume that the Delaunay triangulation is unique (points are in general position). Then

∀ei j ∈ E : 0 < θe < π. (2)
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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(Otherwise, some θe may be 0.) For an interior vertex vi, the sum of edge weights on the incident edges is 2π:

∀vi ∈Vint : ∑
e3vi

θe = 2π, (3)

while for a boundary vertex vi, the defect

∀vi ∈Vbdy : κi = 2π− ∑
e3vi

θe (4)

is the curvature angle of the polygonal boundary at that vertex (see Figure 5). Since the Delaunay triangulation

θ
θ

θ θ

κ
∞∞

Fig. 5: The θ angle sum at the boundary contains the discrete curvature term κ .

triangulates the convex hull of the sites, 0 ≤ κi < π . However, we want to consider a slightly more general setup:
Instead of a Delaunay triangulation, we may start with a flat PL-surface that is topologically a disk and that is
triangulated in such a way that the edge weights θ satisfy the local Delaunay condition (Equation 2). That is, we
allow “Delaunay triangulations” of non-convex regions with polygonal boundary. Hence, κi may be negative, and we
speak of circle patterns instead of Delaunay triangulations.

Now the idea is to reconstruct a circle pattern from its abstract triangulation and the intersection angles.

Circle Pattern Problem. Given an abstract triangulation T of a topological disk and a function θ ∈ RE on the edge
set E that satisfies Equation 2 and the angle sum condition for interior vertices (Equation 3), find a circle pattern that
is combinatorially equivalent to T and has the given edge weights θ .

The circle pattern problem has a solution (unique up to scale) if and only if a coherent angle system exists [Rivin 1994;
Bobenko and Springborn 2004]. A coherent angle system is an assignment of angles α̂k

i j for all triangles such that

(i) they are all positive

α̂
k
i j > 0,

(ii) they sum to π in each triangle

∀ti jk ∈ T : α̂
k
i j + α̂

i
jk + α̂

j
ki = π,

(iii) they satisfy Equations 1 (with α̂ instead of α) for the given θ -weights.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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ci jk

ri jk

vi

v j

ϕk
e

θe

r jil

ϕ l
e c jil

Fig. 6. Geometry around an edge (left). The kite formed by the
edge endpoints and the incident face circumcircle centers (ci jk ,
c jil ) allows us to determine ϕk

e as a function of the given θe and
unknown radii ri jk and r jil (see Equation 6).

The solvability question for a circle pattern problem is therefore reduced to a linear feasibility problem with 3|T |
variables, 3|T | inequality constraints and |T |+ |E| equality constraints.

Conditions (i) and (ii) imply that all α̂k
i j < π . Condition (iii) implies that the α̂k

i j sum to 2π around interior vertices
and to π −κi for boundary vertices (with κi defined by Equation 4). This may give the false impression that finding
a coherent angle system is equivalent to solving the circle pattern problem—in the sense that one could construct
triangles with angles α̂k

i j and lay them out. This is not so. The angles determine the triangles only up to scale. In
general it is not possible to determine the size of each triangle in such a way that they all fit together. This observation
is also what lead Sheffer and de Sturler [2000] to add their non-linear constraints on the product of sines of triangle
angles.

Conditions (i), (ii) and (iii) combined imply that a necessary condition for the solvability of a circle pattern problem is
that

∑
vi∈Vbdy

κi = 2π, (5)

with κi defined by Equation 4.

Local Geometry of an Edge. To elucidate the role of terms which make up the variational energy characterizing the
solution to the circle pattern problem we consider the local geometry around a given edge (see Figure 6). The basic
building blocks of the parameterization are the kites formed by the endpoints of an edge (vi, v j) and the incident
face circumcircle centers ci jk and c jil for triangles ti jk and t jil respectively (at the boundary t jil is missing). Since all
relations are scale invariant it is convenient to introduce the logarithmic radius variables ρt = logrt for t ∈ T . With
these definitions the angle ϕk

e induced at ci jk by ei j follows as

ϕ
k
e =

{
fe(x) = atan2(sinθe,ex− cosθe) e ∈ Eint
π−θe e ∈ Ebdy

(6)

where x = ρi jk−ρ jil (see Figure 6). The condition that every face in the parameterization should be flat constrains the
ρt as functions of the θe through the system of non-linear equations

∀t ∈ T : 0 = 2π−∑
e∈t

2ϕ
t
e, (7)

i.e., summing around all edges incident on a face the resulting total angle must be 2π .

The basic idea of the variational energy formulation of Bobenko and Springborn now is to give an energy S(ρ) for
which the face flatness Equations 7 are equivalent to the vanishing of the energy gradient, ∇ρ S = 0.

Variational Characterization of Circle Patterns. To arrive at the desired energy Bobenko and Springborn used the fact
that

Fe(x) =
∫ x

−∞

fe(ξ )dξ = ImLi2(ex+iθe),
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where

Li2(x) =−
∫ x

0

log(1−ξ )
ξ

dξ

|x|≤1

=
∞

∑
k=1

xk

k2

denotes the dilogarithm function. The imaginary part of the dilogarithm function of a complex argument can be
expressed in terms of a 2π-periodic real function (Clausen’s integral) that can be computed efficiently with high
accuracy. Using ρk and ρl as shorthand for ρi jk (respectively ρ jil) the energy is

S(ρ) = ∑
e∈Eint

(
ImLi2(eρk−ρl+iθe)+ ImLi2(eρl−ρk+iθe)− (π−θe)(ρk +ρl)

)
− ∑

e∈Ebdy

2(π−θe)ρk +2π ∑
t∈T

ρt . (8)

The partial of this energy with respect to ρk is

∂S
∂ρk

= 2π− ∑
{e∈ti jk}∩Eint

2 fe(ρk−ρl)− ∑
{e∈ti jk}∩Ebdy

2(π−θe), (9)

giving us the desired equivalence of ∇ρ S = 0 and Equation 7. The Hessian of the energy is

dρ
T (HessS)dρ = ∑

e∈Eint

sinθe

cosh(dρk−dρl)− cosθe
(dρk−dρl)2. (10)

In particular from this expression we can see that the energy is convex except along the scaling “direction,” i.e., the
Hessian has a null space spanned by the constant vector dρ = (1,1,1, . . .) and is otherwise positive. (This immediately
implies the uniqueness of solutions of the circle pattern problem up to scale.)

3. BASIC ALGORITHM

To exploit the theory laid out in the previous section for a practical algorithm we need three basic stages: (1) setting
the θ angles; (2) minimizing the energy; and (3) generating the layout. We discuss these in turn.

3.1 Edge Angles

As a first step of the algorithm, θe angles need to be assigned to all edges of the mesh. These must satisfy the bounds
constraints (Equation 2), sum conditions (Equation 3) at interior vertices, and, in the case of prescribed boundary
curvatures, the boundary curvature conditions (Equations 4 and 5). Last but not least, a coherent angle system must
exist for them. Of course, the θ angles should also reflect the conformal structure of the original mesh as well as
possible. Let αk

i j denote the angles in the original mesh. Ideally, one would like to assign θe = π −αk
i j −α l

i j, where
αk

i j and α l
i j are the angles opposite an interior edge e (and θe = π −αk

i j for a boundary edge.) Then the intersection
angles in the circle pattern would be the same as the intersection angles of the circumcircles in the mesh. This is too
much to ask, though, because the conditions on θe will be violated (after all the original mesh is not flat).

Our aim is to find angles α̂k
i j close to αk

i j that can serve as a coherent angle system for the θ -angles that we read off in
the usual way. To this end, we minimize the objective function

Q(α̂) = ∑ |α̂k
i j −α

k
i j|2

subject to the following constraints:

—positivity: ∀α̂k
i j : α̂k

i j > 0,

—local Delaunay condition: ∀ei j ∈ Eint : α̂k
i j + α̂ l

i j < π ,

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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—triangle sum condition: ∀ti jk ∈ T : α̂k
i j + α̂ i

jk + α̂
j

ki = π ,

—vertex sum condition: ∀vk ∈Vint : ∑ti jk3vk
α̂k

i j = 2π .

If we want free boundary conditions (see for example the face in Figure 11 and the lion and Max Planck examples in
Figures 12, 13), we add the constraint

—free boundary condition: ∀vk ∈Vbdy : ∑ti jk3vk
α̂k

i j < 2π.

If we want to prescribe the boundary curvature κ at boundary vertices (see the straightline layout for Max Planck in
Figure 11), we add the constraint

—prescribed boundary curvature: ∀vk ∈Vbdy : ∑ti jk3vk
α̂k

i j = π−κk.

We solve this quadratic minimization problem with linear inequality constraints (on the α̂k
i j) with the software [Mosek

2005]. Since both the bounds constraints and the objective are convex and the additional constraints linear we have
experienced no difficulty finding solutions efficiently (see Section 7).

Then we set θe = π− α̂k
i j− α̂ l

i j on interior edges and θe = π− α̂k
i j on boundary edges and proceed to the next stage of

energy minimization.

3.2 Discussion

It is theoretically possible that the constraints in the above quadratic program are not feasible. In the case of free
boundary conditions (as well as mapping to the disk; see Section 4.1) this is due to the (counterintuitive) fact that
there exist triangulations of the topological sphere that cannot be realized as convex polyhedra with vertices on the
unit sphere (see, e.g., Grünbaum [2003]). These triangulations are rather special; fairly weak sufficient conditions
for Delaunay-realizability are given by Dillencourt and Smith [1996]. We do not expect to encounter non-Delaunay-
realizable triangulations in practice. In any case, one can show that a 4 to 1 refinement applied once to all triangles
always results in a legal triangulation. (Indeed, it is known that any triangulation of genus 0 can be realized as a convex
polyhedron with edges tangent to the sphere; see [Ziegler 2004] and the references therein. From this realization, one
can easily construct a Delaunay realization of the 4 to 1 refinement.) In the case of prescribed boundary curvatures,
it may happen that the constraints become infeasible. We have not encountered any problems in all the examples we
have computed.

Angle optimization is also at the heart of the work of Sheffer and de Sturler [2000], who formulate their flattening
problem as one which minimizes the (weighted) least squares deviation of the measured αk

i j (scaled to satisfy the angle
sum condition around a vertex) from the realizable α̂k

i j with flatness sum conditions for each triangle and each vertex.
Unfortunately, when using the α̂k

i j to determine the final shape of the triangles in the flat mesh, one must additionally
include non-linear conditions on the quotients of sines of α̂k

i j around each vertex (due to the law of sines). This ad-
ditional non-linear condition makes the minimization problem numerically much harder since it becomes non-convex
(for recent significant progress in the numerical treatment see [Sheffer et al. 2004]). Due to the lack of convexity, it
cannot be expected that there is only one local minimum.

In contrast to the approach of Sheffer and de Sturler, our method splits the optimization into two stages. First we
change the angles of the triangles, but only so much that we can read off valid θ -angles. The deviation from the ideal
angles is measured with a quadratic objective just as in the work of Sheffer and de Sturler. The critical observation
is that the sum of two α-angles across an edge is a Möbius invariant (because it measures the angle of intersection
between the circumcircles), while the α-angles themselves are not. In other words, the best one can hope for in a
discrete conformal mapping is conservation of θ -angles, not α-angles. In the second stage (see below) the given
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θ -angles are then used to find appropriate radii. This stage is an unconstrained convex minimization problem. Due to
the convexity of the energy the solution is unique: the final circle pattern in the plane is completely determined by the
θ -angles.

In summary, Sheffer and de Sturler optimize the α-angle deviation subject to non-linear constraints (the quotients
of sines), which encode the compatibility of edge lengths. We first optimize θ -angles with only linear constraints
(a quadratic program) followed by solving for compatible edge lengths through finding appropriate radii (a simple
convex minimization without any constraints).

3.3 Energy Minimization

With a given valid assignment of θe for all edges the unconstrained energy minimization, with the unknown (loga-
rithmic) circle radii as variables, is straight forward (using Equations 8, 9, and 10). Since gradient and Hessian of
the energy are available, and furthermore the Hessian is non-negative, standard Newton methods will easily find the
minimum. Instead of writing our own solver we have relied on a black box energy minimizer [Mosek 2005] with
excellent results (see Section 7).

3.4 Layout Generation

Once all radii have been determined through the energy minimization the length of each edge follows easily from a
local computation

|ei j|= 2rk sinϕ
k
e = 2rl sinϕ

l
e

(see Figure 6). We begin the layout with some interior edge, starting it at the origin and orienting it along the positive
x-axis and push it onto an empty stack. When popping an edge off the stack we lay out any vertices not yet laid out
in the incident triangles (at most two). This results in at most four edges being finished (second end point fixed);
such edges are pushed onto the stack. The process repeats until the stack is empty. There may be concern that such
a procedure might lead to cumulating error as one proceeds. We have found consistently that we achieve accuracies
on the order of 10−8 with double precision data (for example for the Feline, Hand, Letter “a”, Max Planck, and Lion
datasets). Should accuracy of the layout become an issue we recommend the procedure given in [Sheffer et al. 2004],
which solves for all vertex positions simultaneously with a simple (least squares induced) linear system.

4. MAPPING TO THE SPHERE AND TO THE DISK

In this Section we describe how we map a closed genus zero mesh to the sphere and a mesh with disk topology to a
circular disk. By means of the stereographic projection, these problems are both reduced to mapping the original mesh
(sans a single vertex and its incident triangles) to a region in the plane with a boundary as desribed in Section 3.

4.1 Mapping to the Sphere

Consider a Delaunay triangulation of the whole sphere and the circle pattern formed by the circumcircles of all tri-
angles. Choose one vertex as designated north pole and project the sphere stereographically to the equatorial plane.
Since stereographic projection is conformal and maps circles to circles (and lines), we get a circle pattern in the plane
with the same circle intersection angles. The north pole is mapped to infinity. All the circles through the north pole are
mapped to straight lines. The result is thus a planar Delaunay triangulation, the faces of which correspond to the faces
of the spherical triangulation so long as they are not incident to the north pole. Note that even though all triangles and
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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edges incident to the designated north pole vertex have been removed this data can be recovered from the fact that the
north pole vertex gets mapped to infinity.

To construct a spherical circle pattern, we go the other way: Construct a planar pattern and project to the sphere.

Möbius Ambiguity and Normalization. Mesh combinatorics and intersection angles determine a planar circle pattern
up to similarity. But they determine a spherical circle pattern only up to Möbius transformations (which preserve
circles and angles). (Recall that the only conformal mappings of the plane R2 to itself are the fractional linear trans-
formations. These are generated by the inversions in circles.) Suppose we applied a Möbius transformation to the
spherical circle pattern before we project to the plane (choosing the same vertex as north pole). The result would be
a planar pattern that differs only by a similarity transformation, i.e., a pattern that is translated, rotated, and uniformly
scaled. Conversely, if we applied a similarity transformation to the planar pattern before projecting to the sphere, we
would obtain a pattern on the sphere that differs by a Möbius transformation.

This Möbius ambiguity can (and should) be used to normalize the spherical parameterizations. For example, by
applying a (unique) suitable Möbius transformation one can ensure that the barycenter of all vertices of the parameter
mesh is at the center of the sphere [Springborn 2005]. This in effect achieves a notion of “uniform” distribution of
vertices and it is the normalization used for the examples in this paper. An alternative normalization was proposed by
Bern and Eppstein [2001]. They determined the unique Möbius transformation which maximizes the smallest circle
radius. This may be useful for downstream numerical computing tasks.

Algorithm. The input is a triangle mesh of genus 0.

(1) Delete one (arbitrary) vertex from the mesh together with all incident faces. The remaining mesh is a topological
disk.

(2) Generate a free boundary parameterization as described in Section 3

(3) Project stereographically to the sphere.

(4) Fill the hole in the mesh by adding a vertex at the north pole and completing the mesh.

(5) Normalize by applying a suitable Möbius transformation.

Example results of this method can be seen in Figure 7.

4.2 Mapping to the Disk

Our method to map a mesh to the disk should be seen as an extension of mapping to the sphere. The basic idea is to
add an ideal (non-triangular) face to the mesh to turn it into a topological sphere. Then map to the sphere. The whole
mesh is contained in the circle corresponding to the virtual face. Project stereographically to the plane to get a mesh
with circular boundary. In practice, we can short cut this process and avoid the projection from the plane to the sphere
and then back again.

Algorithm. The input is a triangle mesh that is topological disk.

(1) Pick a vertex at the boundary of the mesh and remove it together with all incident faces (see Figure 8, left).

(2) Map the resulting mesh to a convex polygon in the plane with prescribed boundary curvature, as described in
Section 3. At boundary vertices that were not incident to any of the removed faces, fix the curvature to be 0. At
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Fig. 7: The Hygeia (50K triangles) and rabbit (26K triangles) models parameterized over the sphere with the parameterization visualized through
textures. In the case of Hygeia a grid of lattitude/longitude lines. The rabbit is textured with points in an icosahedral pattern. Note the typical area
distortion when mapping the head and ear regions to the sphere. No less, the roundness of the texture dots is well preserved through the mapping.

∞

Fig. 8: Mapping a mesh to the disk. (1) Remove a boundary vertex together with all adjacent faces, shown in dark pink (left). (2) Map the mesh to a
convex polygon where all the original boundary edges lie on a straight line (middle). The removed vertex (which should be imagined at infinity) and
its incident triangles are shown schematically (dark pink and ∞ symbol). (3) Invert in a circle and reinsert the missing vertex to complete the mesh
(right). In this inversion we get to pick a vertex which will map to the center of the disk. In our example this vertex is the marked vertex between the
ears of the cat.

the others, bound the curvature to be positive. These conditions ensure that the original mesh boundary will be
mapped to a straight line (Figure 8, middle).

(3) Reflect in a circle whose center lies on the other side of the straight line. This maps the boundary line to a
boundary circle.

(4) Reinsert the removed vertex at the center of the reflection circle (it lies on the boundary circle) and complete the
mesh (Figure 8, right).
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Note that the circle reflection maps the other edges of the polygon to the circumcircles of the reinserted triangles. If
we want to have a particular interior vertex at the center of the circular map, this can be achieved by an appropriate
choice of reflection circle (or equivalently by a Möbius transformation of the disk to itself).

An alternative approach for the construction of mappings to the disk in the context of discrete harmonic mappings
(cotan formula) was proposed by Jin and co-workers [2004] (other approaches, not necessarily focusing on discrete
conformality, are possible as well; see [Friedel et al. 2005] and the references therein). They “welded” a mesh with
its double at the boundary to create a sphere topology and then proceeded to map to the sphere. Enforcing symmetry
in this mapping turns the original boundary into an equator. They had to effectively double the degrees of freedom
while in our approach the number of degrees of freedom is (essentially) constant. As Jin observed, being able to map
to a canonical region such as a disk one can effectively map from any region to any other through composition of one
map to the disk with the inverse of another map to the disk (though the meshes in general do not match up and some
interpolation in the disk is required).

5. INTRINSIC DELAUNAY TRIANGULATIONS

The parameterizations produced by our method always result in triangulations in the parameter plane which satisfy the
local Delaunay criterion. This follows from the fact that 0 < θe = π− α̂ l

i j− α̂k
i j < π , which is equivalent to saying that

the edge ei j satisfies the empty circumcircle property. If the input mesh is such that αk
i j + α l

i j > π for some edge, the
angle optimization forces α̂k

i j and α̂ l
i j to be sufficiently different from αk

i j (resp. α l
i j) to get θe into the range (0,π). As a

consequence one can observe increased angle distortion in the vicinity of such edges (see the comparison in Figure 9).

-   1.5

-   1

-   1.25

Fig. 9: Two examples (Hygeia, genus zero; cut camel with free boundaries) comparing quasi-conformal distortion (see Section 7) for intrinsically
Delaunay (left) and original triangulation (right). In both cases the quasi-conformal distortion is markedly improved. Note that the original input
surface is not changed in this process.

To address this issue one may use intrinsic Delaunay triangulations [Rivin 1994; Indermitte et al. 2001; Bobenko and
Springborn 2005] of the input surface as the data given to the circle pattern method. To see this distinction we must
first rigorously separate the surface with its intrinsic properties from the triangles we usually visualize when we think
of an embedded triangle mesh. The embedded triangle mesh is defined by assigning point coordinates to each abstract
vertex and then using linear interpolation of these coordinates over each abstract triangle. The basic idea now is that
our problem—mapping a 3D mesh to the plane—depends only on the intrinsic geometry of the surface, not on the way
it is embedded in space. In other words, what would a flatlander, living “inside” the surface, notice? Apparently the
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surface is locally flat everywhere except at the vertices. In particular when the flatlander crosses a “crease” (as seen
by us) in the surface—originally induced by an edge of the triangulation together with the coordinates associated to
the vertices—the flatlander would not notice anything. There is one thing though they would notice: upon walking
in a closed loop (of index 1) around a vertex they would notice that angles do not add up to 2π . In summary: the
intrinsic geometry, i.e., what the flatlander notices, is completely summarized by giving some triangulation of the
abstract vertices together with the lengths of straight paths between the vertices. One such example is the original
abstract triangulation together with the original edge lengths.

The mathematical abstraction describing the intrinsic geometry of the mesh is a surface equipped with a flat metric
with cone singularities at the vertices, a piecewise flat (PF) surface. An abstract triangulation with edge lengths
(satisfying all triangle inequalities) describes a particular triangulation of a PF surface. It may coincide with the
original triangulation which defined the embedding or it may be another triangulation so long as the corresponding
flatlander distances between vertices are recorded correctly. In this sense, intrinsic edge flips change the intrinsic
triangulation but not the underlying PF surface.

To intrinsically flip an (interior) edge, read off its length and the lengths of the four remaining edges of the two
adjacent triangles. These lenghts determine the shape of a Euclidean quadrilateral with diagonal. Now perform a
combinatorial edge flip in the abstract triangulation and label the flipped edge with the length of the other diagonal in
this quadrilateral. A flatlander sees this new triangulation as simply another triangulation of the same surface since they
cannot detect any change in their world. For us as outside observers we see different graphs drawn on the same fixed
surface in space. Only the original graph followed apparent creases on the surface. After a flip the graph generally
does not follow the creases anymore, but the surface itself is completely unchanged.

An ordinary planar triangulation is Delaunay if and only if each interior edge satisfies the local Delaunay criterion,
and this can be checked using only the length of the given edge and the lengths of the remaining edges in the incident
triangles. This leads to a natural definition of Delaunay triangulations of PF surfaces. It turns out that just as in the
planar case, the Delaunay triangulation of a PF surface is generically unique [Bobenko and Springborn 2005], and can
be constructed using the intrinsic edge flipping algorithm: search for an edge that violates the local Delaunay criterion,
flip it, and continue until all edges are Delaunay. (It is actually not hard to show that this algorithm terminates not just
in the standard but also in the PF setting and that local satisfaction of the Delaunay criterion is equivalent to global
satisfaction [Rivin 1994; Indermitte et al. 2001; Bobenko and Springborn 2005].)

We emphasize that throughout this procedure the intrinsic geometry of the original embedded surface remains un-
changed: a flatlander sees no change to what they perceive as the surface they live in; they merely see different
triangulations and, upon termination of the flipping procedure, one that they will agree is Delaunay.

In this new triangulation all edges satisfy 0 < π −αk
i j −α l

i j < π . This triangulation is now used as input to the circle
pattern algorithm, resulting (after layout) in an assignment of parametric coordinates to each original vertex. The
original triangulation of the input mesh can now be recovered by running all edge flips in reverse order (without
modifying any of the parametric assignments to vertices). In theory this process can get stuck if one attempts to un-flip
an edge which, taken together with its two incident triangles, is interior to a non-convex quad in the parameter plane.
In all our examples this has occured for only a single edge (in the camel model). In that case the edge must be split and
a new vertex is introduced whose position (in 3D) and parametric assignment are barycentrically interpolated from the
surrounding quadrilateral.

It is conceivable (certainly with an adversary) that this case occurs many times over in a given mesh. The intuition
behind the observation that this event occurs exceedingly rarely in practice is as follows. Consider an edge in the
original 3D mesh and its two incident triangles. This edge will only be a candidate for intrinsic flipping if it is interior
to an intrinsically convex quadrilateral formed by the two incident triangles (edges interior to a concave quadrilateral
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always satisfy the Delaunay criterion). Given that the circle pattern method (nearly) preserves angles the mapped
quadrilateral is also (with high probability) convex, allowing the later un-flip to proceed as desired.

The impact of using intrinsic Delaunay triangulations for the parameterization of meshes with many initial edges which
are not intrinsically Delaunay is demonstrated in Figure 9. As the following table indicates both quasi-conformal dis-
tortion (see Section 7) and stretch distortion are significantly reduced when using the intrinsic Delaunay triangulation
to compute the circle pattern.

Model quasi-conformal quasi-conformal stretch stretch number
no flipping with flipping no flipping with flipping of flips

Camel 1.1762 1.0266 1.8584 1.7597 17074
Hygeia 1.2157 1.0209 1.1333 1.0962 10246

6. CONE SINGULARITIES

Global parameterizations of triangle meshes often suffer from severe area distortion (see Figure 14). If one insists on
flattening the entire model (in this case a topological disk) into the plane, triangles are severely compressed. Similar
observations apply to examples such as mapping the hand (Figure 15) and the letter “a” (a topological torus, Fig-
ure 17). In particular long “appendages” are often troublesome. In case of higher genus surfaces this problem is
further compounded as there is no obvious Euclidean domain over which to parameterize the surface. One could map
to the hyperbolic plane in this case, however this would not address the area distortion issue.

To address both of these issues (area distortion and arbitrary topology) we advocate the use of cone singularities.
Consider the simple example shown in Figure 10. If one parameterizes the cathead over a Euclidean domain with
two cone singularities (the “coffee filter” domain) the distortion is greatly reduced over the case of mapping to a flat
disk. (Figure 14 shows a similar example involving a more complicated mesh.) As the example of a coffee filter
demonstrates it can be laid entirely flat if one introduces cuts (and one has great freedom to so). A benefit of the circle
pattern method is that one can introduce cone singularities without the need to introduce cuts a priori. While cuts may
be needed after the fact to lay out the parameterization in a single texture domain, the parameterizations themselves
are independent of the later placement of cuts. In particular they are globally continuous. All of this can be achieved
with only a small change to the algorithm described in Section 3.

A B C D

Fig. 10: The simple cat head mesh (A) is parameterized without (B) and with two cone singularities (C). In the latter case, the parameter domain has
zero Gaussian curvature everywhere except at the two marked cone points(blue arrows). The photo (D) shows it as an embedded surface in space.
To flatten the parameter domain, it has to be cut. Notice however how the parts of the boundary marked with same colors (in C), corresponding to
different sides of the same cut, fit together as expected.
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To summarize, the advantages of introducing cone singularities are

—area distortion can be greatly reduced (see Figure 15) while simultaneously ensuring that the parameterization is
discrete conformal, except at the cone points themselves (see Figure 19);

—surfaces of arbitrary genus can be parameterized over Euclidean domains with cone singularities (see Figure 17);

—even though the parameterizations have to be cut to be flattened in the plane a posteriori, they are still global
parameterizations in the sense that they are continuous everywhere (see Figures 16, 14, and 17).

6.1 Related Work

Design of parameterizations for complex shapes while controlling distortion through the judicious introduction of
cuts prior or during parameterization was addressed by Gu and co-workers [Gu et al. 2002]. The geometry images
produced in this way have complex identifications along cuts and require constrainted parameterizations to ensure
continuity across cuts (and the boundary of the geometry image). In applications these identifications can be cum-
bersome and are, in any case, a source of additional distortion. A less severe setting—not attempting to find a single
global parameterization—leads to chart based approaches (for examples see [Sander et al. 2003] and [Zhang et al.
2005] and the references therein). Since the general cutting problem is quite difficult [Erickson and Har-Peled 2004],
good heuristics are crucial (for examples see [Katz and Tal 2003] and [Garland et al. 2001] and references therein).
Alternatively one may focus on ways to “hide” the seams [Sheffer and Hart 2002] or pursue joint discovery of a pa-
rameterization and suitable patches [Sorkine et al. 2002]. Approaches based on identifying a topologically equivalent
(to the original surface) base domain with good properties leads to methods such as in [Khodakovsky et al. 2003]
(and references therein). Fundamental to all of these methods are the issues associated with ensuring continuity across
patch boundaries while minimizing the number of patches, finding effective layouts for them in the texture domain,
and keeping distortion to a tolerable level.

Focusing on discrete conformal mappings in particular, Gu and Yau [2003] proposed the use of discrete holomorphic
forms for the construction of global parameterizations of surfaces with genus g ≥ 1. This leads to discrete conformal
parameterizations with cone singularities as well. However, as a consequence of the underlying mathematical theory,
the number of cone points is determined by the genus of the surface: there are 2g− 2 of them. The cone angles
are always 4π . Control over the placement of these singularities is only provided indirectly through a weighted
optimization of the local conformal factor [Jin et al. 2004]. In their approach it is not possible to assign arbitrary
points on the surface as cone points: neither their number nor their individual cone angles are free parameters. Gu and
co-workers have to artificially increase the genus of the mesh if they want to exploit cone singularities to bring the
area factor down (see their examples that involve placing topological punctures at the tip of long appendages).

A different approach to globally smooth parameterizations without requiring cuts was recently suggested by Ray and
co-workers [Ray et al. 2005]. They use singularities of a vector field as, effectively, cone points and employ vector
field optimization techniques to achieve favorable cone point placement.

Finally we mention Poly-Cube maps [Tarini et al. 2004]. They generalize the notion of a cube map to allow multiple
cubes which more closely follow the original geometry and thus, when used as a texture domain, admit parameteri-
zations with lower distortion. In fact, the parameterization produced by Poly-Cube maps is also Euclidean with cone
singularities, it is however not discrete conformal and the cone angles are restricted to certain multiples of π/2.

On the theoretical side, Troyanov [1991] answered the following question. Given a compact Riemann surface, i.e.,
a compact two-dimensional manifold with a conformal structure, under what conditions on their placement and cone
angles does there exist, in the conformal class of the Riemann surface, a flat metric with prescribed cone singularities.
It turns out that only the Gauss-Bonnet formula has to be satisfied; then a cone metric exists and is unique up to scale.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Discrete Conformal Mappings via Circle Patterns · 17

(More generally, Troyanov investigates the conditions under which one may prescribe isolated cone singularities and
Riemannian curvature, as a smooth function, on a Riemann surface. The proofs are not constructive.) His work can be
seen as a mathematical justification for considering conformal maps with arbitrarily placed cone singularities.

6.2 Changes to the Algorithm

The algorithm takes as additional input

—a cone angle Θi > 0 for each vertex vi (Θi 6= 2π for a few designated cone vertices, otherwise Θi = 2π).

The vertex sum condition of Section 3 is changed to

∀vk ∈Vint : ∑
ti jk3vk

α̂
k
i j = Θi.

Introducing cone singularities does not compromise the underlying theory: If there is a coherent angle system, then a
solution to the circle pattern problem exists (see Section 2). One easily sees the Gauss-Bonnet Equation

∑
cone vertices vi

Ki + ∑
boundary vertices vi

κi = 2π χ, (11)

where Ki = 2π −Θi is the Gaussian curvature, is a necessary condition for the existence of a solution. An obvious
further necessary condition is

Θi < π degree(vi),

since the angles in a triangle are less than π .

If these conditions are satisfied, it could nevertheless happen that a particular choice of cone singularities renders the
quadratic programming problem of Section 3.1 infeasible. (See also Section 3.2.) However, we have not encountered
this in practice.

6.3 Choosing the Cone Vertices and their Cone Angles

To choose the location of the cone vertices and their cone angles, it is sometimes helpful to draw a rough polygonal
outline of a reasonable parameter domain. For example, to set the cone points for the hand model (Figures 15 and 16)
we started with a polygonal sketch that looked qualitatively much like the outline of the final parameter domain
(Figure 15; right). Now place cone singularities at vertices of the mesh which roughly correspond to the corners of the
sketched polygonal outline. To determine approximate values for the cone angles, note that a cone vertex in the mesh
corresponds to one or more corners of the polygonal outline. The sum of the interior angles at these corners is the cone
angle. For example, on the hand model we placed two cone singularities with cone angle π at each finger tip. Each
of these cone vertices corresponds to two corners with angle π

2 in the idealized polygonal outline of the parameter
domain.

After cone singularities and angles have been set and a parameterization is generated, one can adjust the cone angles,
for example, to lower the area distortion further: Decreasing the cone angle will enlarge a neighborhood of the cone
vertex in the parameter domain, increasing the cone angle will reduce it. (This effect is analogous to the behavior of
the complex map z 7→ zα . For 0 < α < 1, it decreases radial angles at the origin, but increases length there. For α > 1
the opposite is the case.) This is how we arrived at the particular values for the cone angles in the hand model example
(see Section 7).

If one chooses to change the location of the cuts, for example to avoid self overlap, one need only redo the layout,
(Stage 3 of the algorithm).
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The Gauss-Bonnet formula (Equation 11) is a relation between the cone angles, the curvature of the boundary, and
the Euler characteristic of the mesh. If the mesh has a boundary, free boundary angles will ensure that it is satisfied.
However, when setting the cone singularities for a closed surface of genus g, the sum of the Gaussian curvatures has
to be 2π(2−2g). For example, if the mesh is topologically a torus like the letter “a” in Figure 17, the total Gaussian
curvature has to be zero.

7. RESULTS

We have applied our method to a variety of example meshes ranging from simple disk topologies, with a variety of
boundary conditions, to higher genus surfaces using cone singularities.

Figure 11 shows meshes of disk topology with varying boundary treatments: disk (lion), polygonal (Max Planck), free
(face). The mapping of the Max Planck head to a simple polygonal domain was achieved by first cutting the mesh and

Fig. 11: Examples of discrete conformal maps for surfaces with disk topology and varying boundary conditions. Lion: disk boundary; Max Planck:
polygonal boundary; and Face mask: free boundaries. Next to each textured model is a visualization of the planar region over which the surface is
parameterized (using shading from the 3D mesh).

then prescribing the boundary curvature of the parameter domain: it was set to zero at all boundary vertices, except for
eight designated corner vertices, where it was set to ±π/2. Because the mesh was cut before parameterization there is
no continuity across the cut boundaries. This is in contrast to global parameterizations with cone singularities which
do not require a priori cuts (see Figure 14).

Figures 12 and 13 visualize the quasi-conformal distortion induced by our mappings, and in particular compare free
and constrained boundaries. The quasi-conformal distortion is computed and visualized per triangle as Γ

γ
, where Γ

and γ are larger and smaller eigen values of the Jacobian as in Sander et al. [2001]. This quotient is at least 1 and
1 only if the mapping is conformal. In other words, the quasi-conformal distortion measures the deviation from the
ideal of perfect conformality when this quotient would be 1 everywhere in the domain. The average quasi-conformal
distortion of the mesh is computed as

Eqc = ∑
T

Γ

γ
AT

3D/∑
T

AT
3D.

Where AT
3D is the area of a triangle in the original mesh. The maximum quasi-conformal distortion is the largest Γ

γ
in

the mesh.
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For the Max Planck head with free boundaries we get an average of 1.0157 (maximum quotient: 1.4). With polygonal
boundary conditions the maximum distortion goes up to 4.05 while the average grows only slightly (1.0265). In
particular we note that the high distortion is concentrated at the boundary and spreads very little inwards. The far more
convoluted lion head shows low quasi-conformal distortion in most places with a few hot spots of high distortion.
The free boundary gives an average of 1.045 (maximum 3.46), while the constrained (disk) boundary increases this to
1.050 (average) and 11.16 (maximum) respectively. In the following table we give runtimes for angle optimization and

-   1.5

-   1

-   1.25

Fig. 12: Comparison of two different mappings of the cut Max Planck model: free and polygonal boundary. Error plots indicate the quasiconformal
distortion.

-   1.5

-   1

-   1.25

Fig. 13: Comparison of two different mappings of the lion model: free and disk boundary. Error plots indicate the quasiconformal distortion.

energy minimization. Layout and intrinsic edge-flipping (where applicable) timings are negligible at approximately
0.5s each. These timings were measured on a 3GHz Pentium IV running Windows XP. Aside from the average quasi-
conformal distortion measure we also include the popular stretch distortion measure of Sander et al. [2001].
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Fig. 14: Left: The Max Planck model parameterized without cone singularities. The error plots show area distortion (top) and quasiconformal
distortion (bottom). Right: The Max Planck model parameterized with two cone singularities: one on the forehead the other at the back of the
scalp, both having cone angle π . See Figure 19 for error plots.

Model Triangles Angle opt. Energy min. Total time quasi-conf. stretch
Face 12.6K 7s 2s 9s 1.013 1.063
Max Planck (free) 37.9K 35s 9s 45s 1.016 1.197
Max Planck (poly) 37.9K 35s 9s 45s 1.027 1.367
Lion Head (free) 39.6K 32s 6s 39s 1.045 2.043
Lion Head (disk) 39.6K 35s 6s 42s 1.050 2.018
Hygeia 50K 56s 10s 67s 1.021 1.096
Rabbit 26K 27s 6s 34s 1.043 5.123

Next we consider parameterizations with cone singularities. Figure 14 compares a parameterization of the Max Planck
head (this time without any cuts) without and with cone singularities (left/right side). While the quasi-conformal
distortion is low even when no cone singularities are used, the area factor, i.e., the ratio of corresponding triangle
areas in the original mesh and the parametric domain, is quite large (2900). The area factor drops to 47 with two cone
singularities. These are placed on the front and back of the scalp with a cone angle of π each. Two cuts, introduced
after parameterization, make it possible to flatten the parameter domain: one runs from the front singularity down the
middle of the face to the boundary. A similar cut is placed on the backside. To visualize how the parameter domain is
mapped to the head, imagine drawing a line between the cone points marked in red. Fold along this line and glue the
two parts of the top boundary and the two parts of the bottom boundary together to form a bag. Then put this bag over
the head. Note that the texture is continuous across the cuts as expected.

A more complex example using cone singularities is shown in Figures 15 (right) and 16. In this case there are two cone
singularities with Gaussian curvature π on the tip of each digit. Additionally two cone singularities are placed between
digits. Their curvatures are, from little finger to thumb: −π , −π; −0.9π , −0.9π; −π , −0.9π; −0.3π , −1.15π . (The
initial value of −π for all of them was adjusted twice in the manner discussed in Section 6.3.) To flatten the parameter
mesh it was cut along a sequence of edges traversing cone points and running from the tip of the little finger over
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all digits to the boundary below the thumb (see Figure 16, left). In Figure 16 the parameterization is used to texture
the hand to help visualize both conformal quality (circles remain circles; angles are preserved) and area distortion
(equisized disks in the parameter domain map to disks of small size variation on the mesh). To produce such a texture
image in the parametric layout, one has to ensure that the texture elements fit together across the cuts, which is easily
enforced through appropriate identifications. The result is a seamless texture (see the inset view of the outer side of
the ring finger).

Fig. 15: Model of a hand (left). A global discrete conformal parameterization leads to a parameter mesh with ridiculously large area distortion
(middle). Placing cone singularities at the tip of each digit as well as between the digits reduces area distortion to a moderate level (right). (See
also Figures 16 and 19.)

Fig. 16: The same parameterization as shown in Figure 15 is used to put a texture on the hand model. The circles in the texture image are all the
same size. They remain circular on the 3D mesh and do not greatly differ in size. This demonstrates the near conformality of the parameterization
and the moderate area distortion. The cuts that were used to flatten the texture image (left) are not visible in the texturing (outer side of ring finger;
right).

Figure 17 shows a parameterization of a mesh that is topologically a torus. There are four cone singularities with cone
angle π; two are at the end of the long appendage and two on the bottom of the “foot.” Four cone points with angle 3π

are located at the two places where the belly of the letter “a” is connected to the stem.

Our most complex example with cone singularities is the feline model with genus 2 (Figure 18). To choose the
location of cone singularities we proceeded by first drawing a rough outline of the desired parameterization (see
Figure 18, bottom left). This is best visualized by imagining suitable cuts, even though we do not perform cuts before
parameterization. We assume that the cut starts on the horns, goes down the belly and legs and finishes at the tail.
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Fig. 17. Topologically, this letter “a” is a torus. Note in particular the
appendage which would normally suffer from great area distortion if the
parameter domain was a flat torus without cone singularities.

There are a few extra cuts on the tail to open up the topological handles. These are shown in blue (Figure 18, bottom
left). From the outline we can compute initial values for the cone angles and approximate locations for the cone
singularities. This outline suggests one cone singularity between the horns (A), two singularities on the horns (B1, B2),
two on the belly (C, D), two on each leg (Ki, Li)i=1...4 and four on the tail (E, F , G, H) are suitable. We increased
the number of singularities by considering the geometry of the model, e.g., we added four extra cone vertices on
each wing, added cone vertices to the legs and belly to distribute curvature among them, and added three extra cone
singularities on the face to decrease the area distortion there (red arrows on Figure 18, bottom right). One can choose
to put more cone singularities (for example on the ears), or less depending on how much area preservation is important.
After setting initial cone singularities and their angles, we performed several iterations of parameterizing the surface,
plotting area distortion, and adjusting the values of cone angles as described in Section 6.3. In regions with a high
concentration of area distortion but no cone singularities, one can add a new singularity and adjust the values to satisfy
the sum condition for the overall Gaussian curvatures. This way we added two new cone singularities at the base of
the tail (red arrows on Figure 18, bottom right).

Runtimes and distortion for these examples are shown in the following table.

Model Triangles Angle opt. Energy min. Total time quasi-conf. stretch
Letter “a” 35.3K 40s 10s 51s 1.0201 1.1558
Max Planck 38.3K 50s 11s 62s 1.0180 1.2967
Hand 65.7K 76s 16s 93s 1.0159 1.0664
Feline 77.5K 104s 35s 140s 1.0345 1.1973

Figure 19 shows plots of the area factor and quasi-conformal distortion for the four examples with cone singularities
(compare also with Figure 14 for Max Planck). We can see that these are fairly low and uniform except for hotspots
in the immediate vicinity of the cone singularities (and some increased area distortion around the nose, chin, and ears
of the Max Planck model as would be expected).

Finally, Figure 20 shows the results of an experiment to see how sensitive our method is to abruptly differing sampling
rates. The geometry of the head is symmetric while the sampling rate doubles at the right/left symmetry line. Examin-
ing the flattened mesh (using free boundary conditions) we observe that the left/right symmetry is very well preserved
(see also the resulting texture mapping on the original surface).

7.1 Comparison with ABF

The most closely related method to our approach is the work of Sheffer and de Sturler (ABF). While the underlying
mathematics are entirely different their method also uses α̂-angle optimization. We compare here the quasi-conformal
distortion and Sander et al. stretch metric for the cut camel, rocker, and horse models (as provided by Sheffer).
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Fig. 18: Feline model of genus 2 parameterized with cone singularities. Rough outline of the parameter domain (bottom left) helps to compute cone
singularities. Fleur-de-Lis texture from the 2D parameter domain (top left) is used to texure map the feline model (right). Purple lines on the 3D
model correspond to cuts in the parameter domain.

Model quasi-conformal quasi-conformal stretch stretch
ABF circle pattern ABF circle pattern

Camel 1.0249 1.0266 1.4864 1.7597
Rocker 1.0129 1.0133 1.0905 1.0777
Horse 1.0235 1.0256 1.3981 1.2713

The quasi-conformal distortion is essentially the same for both methods, while for the stretch metric the differences
are more pronounced, though with no clear trend.
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Fig. 19: Error plots of area factor (left) and quasiconformal distortion (right).

Fig. 20: Our method is robust to varying sampling rates. Here a symmetric (left/right) geometry sampled at different rates. The parameterization
(with free boundary) maintains the symmetry of the geometry.

8. CONCLUSION

We have presented a new method to parameterize arbitrary topology surface meshes. It is based on the mathematical
theory of circle patterns. In the case of bounded domains the shape of the boundary may be determined by free bound-
ary conditions or by prescribing the curvature of the boundary. This provides a high degree of flexibility in controlling
the boundary shape ranging from disks and simple polygonal outlines to more complex boundary arrangements. In-
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troducing cone singularities we are able to mitigate the usually high area factor in conformal parameterizations. Cone
singularities are also the key in our approach to dealing with globally continuous parameterizations of arbitrary topol-
ogy meshes over Euclidean domains with cone singularities. The examples show that our method is efficient, provides
good parameterizations even for large and complex meshes, and that the result is insensitive to the sampling rate of
the surface. For input meshes with many edges which do not verify the Delaunay criterion we advocate the use of
intrinsic Delaunay triangulations to further lower the quasi-conformal distortion in the mappings.

Our basic algorithm works in three stages: first, we solve a quadratic programming problem to obtain circumcircle
intersection angles. These are the input for the second stage that consists in the unconstrained minimization of a
convex energy. The output of this stage (the radii of the circumcircles) and the intersection angles determine the shape
of all triangles which are then laid out. In every stage, the solution is unique and depends continuously on the input.

At the moment, we use general purpose solvers in the first two stages, and a very simple layout algorithm in the
third. Efficiency could be improved by customizing and tuning the minimizers, and by switching to hierarchical
methods [Sheffer et al. 2004]. Their sophisticated layout scheme—it minimizes the global layout error—can also be
used without change as the third stage in our algorithm.

To avoid excess angle distortion, if the input mesh is far from Delaunay, we used a preprocessing step to pass to the
intrinsic Delaunay triangulaton as input to the basic algorithm. This does not change the intrinsic mesh geometry but
can greatly decrease the quasi-conformal error.

Diligent placement of cone singularities in the parameter domain can be used to greatly reduce the area distortion of
our parameterization. The use of cone singularities also allows the parameterization of surface meshes with arbibtrary
topology over Euclidean domains with cone singularities. Even though the parameter domain has to be cut to be
flattened in the plane, the parameterization is continuous across the cuts. Again, this is achieved with only a minor
modification (specification of cone angles) to the basic algorithm.

When we parameterize a mesh with prescribed boundary curvature, we have to set the curvature at each boundary
vertex. At present, we do this manually. A user friendlier graphical interface is desirable. Since it is most likely that
the performance of our method can be improved further, it is not unreasonable to envision an interactive interface that
lets the user manipulate the parameter domain while the parameterization is incrementally recomputed.

The largest outstanding issue is a more complete study of the relationship between the placement of cone singularities
and reduction in area distortion. A clear mathematical relationship between these could be the foundation of an
automatic method for the placement of cone singularities and choice of cone angles. Especially for higher genus
surfaces such an automatic procedure might be preferable over “hand” placement of cone singularities. (One possible
approach for automatic placement was recently suggested by Ray et al. [2005].)
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