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The maximal finite irreducible groups of » x » integers for n =4, 5, ...,
9,11, 13, 17, 19, 23 were determined by Dade, Ryskov, Biilow, Plesken
& Pohst and Plesken, as the automorphism groups of certain quadratic
forms. This paper presents a geometric description of the corresponding
n-dimensional lattices, and gives coordinates which display - their
symmetries and minimal vectors. Some very interesting lattices
appear.

1. INTRODUCTION

For a given value of » there are only finitely many non-isomorphic finite groups
of » x n integer matrices. This theorem has a long history and is associated with
the names Jordan, Minkowski, Bieberbach and Zassenhaus (see Milnor 1976;
Brown et al. 1978). For » =2 and 3 these groups were classified in the past
century, because they are needed in crystallography. The maximal finite
subgroups of GL(4, Z) were given by Dade (1965), and the complete list of finite
subgroups of GL(4, Z) by Biilow et al. (1971), Neubiiser et al. (1971), Wondratschek
etal. (1971) and Brown et al. (1972 @, b, 1973, 1978). The maximal irreducible finite
subgroups of GL(5, Z) were found independently by Ryskov (19724, b) and Biilow
(1973). That work was greatly extended by Plesken & Pohst (19774, b, 1980a-c),
who determined the maximal irreducible subgroups of GL(n, Z) for n = 6,17, 8, 9,
and by Plesken (1985), who dealt with » = 11, 13, 17, 19, 23.

In these papers the subgroups are usually specified as the automorphism groups
of certain quadratic forms. In this paper we shall give a geometric description of
the maximal irreducible subgroups of GL(n, Z) forn=1, ..., 9, 11, 13, 17, 19, 23,
by exhibiting lattices corresponding to the quadratic forms; the automorphism
groups of the lattices are the desired groups. By giving natural coordinates for
these lattices and determining their minimal vectors, we are able to make their
symmetry groups clearly visible. There are 176 lattices, many of which have not
been studied before (although they are implicit in the above references and in
Conway et al. (1985)) and are very beautiful.

Our goal in this series of papers, as we stated in part I (Conway & Sloane 19880),
is to simplify and systematize the work of others, rather than to present new
material. We do not rederive the enumerations of Dade, Ryskov, Biilow, Plesken
& Pohst and Plesken, but take their lists as our starting point. We feel, however,
that this geometric approach does throw additional light on these groups.
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The relations between different lattices are also clarified. For example,
Plesken & Pohst’s nine-dimensional lattice F; belongs to a set of four lattices
Fio=4;@4,, F,=(4,®4,)", Fy= (4,0 4,)"", F, = (4,® 4,)**"*® whose
interrelations are displayed in figure 1.

The geometric approach also makes it possible to fill in a gap in Plesken’s
enumeration, by determining the minimal vectors of the seventeen 23-dimensional
lattices associated with the Leech lattice (see §11).

The lattices and groups are summarized in table 1, and figure 1 displays their
interrelations. The individual lattices are described in §§3—11. To conserve space
we have not repeated Plesken and Pohst’s Gram matrices. Nor have we attempted
to give theta series, although these are easy to write down when the lattice is
obtained by applying constructions A or B to a code or by gluing up root lattices

(Conway & Sloane 1988a, chaps 4, 7). Section 2 contains some background
material.
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Study of the lattices in dimensions 13 and 17 has made it clear that there are
interesting ‘parent’ lattices in dimensions 14 and 18, analogous to the Leech
lattice A4,, in dimension 24, although no single lattice dominates everything in the
way that A4,, does. In dimension 18, for example, there appear to be four principal
lattices, two associated with the extended quadratic residue code of length 18 and
two with the symplectic group S,(4). We plan to discuss these lattices elsewhere.

We shall refer to Conway & Sloane (1988b) as part I, Conway & Sloane (1988c¢)
as part I1I, Conway & Sloane (1988a) as SLG, and Conway et al. (1985) as the
ATLAS. Notation from Part I will be used without comment. Isomorphism
between lattices is denoted by =, and + stands for +1, and — for —1. Unless
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FicurE 1. The lattices and their relations. A solid line marked ¢ between two lattices indicates
that they are adjacent n-dimensional lattices with the same group, and that the upper
contains the lower to index 7. Here ‘upper’ usually means higher on the page, otherwise
arrowheads are inserted. Dotted lines similarly indicate adjacent lattices with different
groups. Dashed lines indicate duality but are omitted when they would fall on other
lines.

specified otherwise we use the ‘standard’ inner product (z,, ..., z,))" ¥y, .-, ¥,) =
2% Y;

We remind the reader that Plesken & Pohst (1980c¢) contains errata for Plesken
& Pohst (19770b). Also, in Plesken & Pohst (1980c¢, p. 298) the order of Aut,(F};)
is twice as large as is stated. In Plesken (1985, p. 305, line 9) a = 52 should be
o = 104, and in line 13, det # = 5%-10® should be det F = 5%-10.

Some closely related papers are Ryskov & Lomakina (1980), Plesken (1981),
Plesken & Hanrath (1984) and Gudivok et al. (1982, 1986). We should also
mention the parallel classification of maximal finite subgroups of GL(n, C) which
has been done for » < 10 by Blichfeldt, Brauer, Lindsay, Wales, Huffman & Wales
and Feit (see Feit 1976).
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TABLE 1. LATTICES DEFINING MAXIMAL IRREDUCIBLE SUBGROUPS OF (L ,(Z)

(The entry for a typical n-dimensional lattice describes the lattice, gives Plesken and Pohst’s or
Plesken’s symbol (in the column headed P), the elementary divisors (d,), determinant (d),
minimal norm (u), number of pairs of minimal vectors (s) and group order (g). To make the
lattice integral, multiply it by 4/¢, where ¢ is the least common multiple of the denominators
of the d,. The lattices are divided by horizontal lines into blocks; dualizing reverses the order
within a block. An asterisk (*) indicates that there is more than one orbit of minimal vectors.
Several lattices may have the same automorphism group: this occurs just when the lattices are
in the same block and have the same value of g (and is indicated by a brace if the lattices are
adjacent in the table).)

description P. d, d ) 8 g

dimension 1

I, F, 1 1 1 1 2

dimension 2

I, F, 12 1 1 2 8

4, F, 113 3 2 3 12

dimension 3

A, 2D, F, 1241 4 2 6
3 F, 13 1 1 3 } 48
Ay =Dy pe g 3 4
dimension 4
I, F, 1 1 1 4 384
D, F, 1292 4 2 12 1152
A, F 1351 5 2 10
Vi S T 0
A,®1, F, 1232 9 2 6 288
4,4, F, 113291 81 4 9 144
dimension 5
Dy F, 1441 4 2 20
I, F, 15 1 1 5 } 3840
I 5
A, F, 1461 6 2 15
VLI A 10
43 F, Dpsgt 3 s 15 1440
A3° F, &1 & : 6
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TABLE 1 (cont.)
description P. d, d 3 s g

dimension 6

D, F, 12: . 4 2 30
I, F, 1¢ 1 1 6 } 926.6!
D¢t Fy #1! i 1 6
D¢ K Frer i 3 16 23040
Eq F, 1°3! 3 2 36
E? F, 1qs L 4 27 2|W(E)l
A, F, %71 7 2 21 -
A F, 1145 3 s - !
4,1, F, 1442 16 2 12
(A;® L)% F; 1294 L 3 8 4608
I,®4, F, 1333 27 2 9 10368
A,®4, F, 1331122 432 4 18 v55
(4; @ 4,)"¢ By, L2135 27/16 % 12
%) By 27 343 4 21 41Ly(7)|
Qe(4 Fie 135102 500 4 15
Q™ By 1358 125 3 10} 41A,|
Q)™ By s e 3 12
dimension 7
D, F, 1541 4 2 42
I, F, 1’ 1 1 7 } 27.71
Dt F, nye 1 7
E F 1691 2 2 63
2 AU o W ()
4, F, 18! 8 2 28} 5.1
Azt F, 16 1 1 3
dimension 8
D, F, 122 4 2 56
Ty F 1 1 1 8 } 28
Dt F, 1216 1 1 8
B, K 1 2 120 W (E,)
4, F, 1792 9 2 36} 9.01
Az Fy 317 3 g 9
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TABLE 1 (cont.)
description P. d, d " 8 g
dimension 8
D,®I, F, 1424 16 2 24 2654208
LL®d, F, 1434 81 2 12 497664
I, ®4,)* F, 1ags 9 2 12
L@4)™ F Pz | g 54 62208
D,®4, F, 1464 1206 4 36 6912
(D, ®4,)** F, 143262 324 3 16 1152
(D, @ 4,)** F, 12123%2 81 3 48 3456
(D, ® A4,)** F,, 231 &1 2 12 1152
4,1, F, 1952 25 2 20 115200
4,®1,)" F, Lgegt o 8 25 57 600
(4, @1,)"® F, lzge i 4 10 115200
4,4, F, 143215 3952 4 30 1440
(4,® A,)**® F, 121234 3452 8 15
4,®4,81, F, 123490 6561 4 18 41472
4,®4,® 4, F,, 113393271 312 8 27 2592
Q1) F, 1454 625 4 60 2/[3, 3, 5|
Q3 Fy 1572211 343-3 4 42
Q,(3)** F, nges 343/3 8 21 AL
Q') F, 1879210 7.3 6 28 2(7)
Q(3)?  Fy F1°7° /3 5 24
dimension 9
D, F, 1841 4 2 72
I, F, 1° 1 1 9 } 299
Di*  F, 18 1 1 9
A, F, 18100 10 2 45
o Fy $175! 3 2 45 2-10!
A F, g2t g : 45 '
A31° F; 16'1° 1 - 1 10
A4,®1, F, 1543 64 2 18
(4,® 1) F, 1742 16 2 18 663552
(4, ®I,)* F, Ljegz 4 2 18
4, QL)% B,  Bog 8 165858
(4; ® 1) F, ey i 1 9 }
4, @) F, B & 2 12 663552
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TABLE 1 (cont.)

description P. d, d )3 s g
4,84, F, 194916 4096 4 36 2304
(4,® 4, F, 145 1024 4 81* 26564
(4, ® A,)*20 F, 1594 1/1024 3 24
(4, ® 4,)H0% F g 174006 3 16 2304
44®4, F, 15g2 g 3 24 1152
Q(5) 19214920 2560 4 45 -~
Q5 Fy upsgye  512/5 L 15 s
dimension 11
D, E@ 104 4 2 110
I, ) 1 1 1 1 } 910. 10!
oh o Em pe 3 1 i
A, FG) 1012 12 2 66
A Fgi) 1930 3 2 66
A2 K@) pe 2 66 5191
A% FGi)  byegr 8 2 66 !
ARG e i 66
AT FGi) U0 L u 12
dimension 13
D, R 124 4 2 156
I, F() 1 1 1 13 } 213. 13!
b R ope ) t 13
4,  FG) 12140 14 2 91
A FGi)  mum g 2 91 o141
a3 Ry b 1 3 o !
A Ea) gt & B 14
Qu@)  Fv) 1°°10' 1250 4 390*
Qu@)® F(iv) P1%¢  625/2 B 26
Q.2 F(v) 19°10' 52 6 65 41Ly(25)|
Qs (2 Fliv) % 52 6 65
Qud)  Fii) 173%12! 2016 4 234
Q4  F(ii) 173 729 3 52
Q) Fii) 1193 729/4 3 52 L3
Q,(4)  F(ii) 1°3%12' 8748 4 117 L (3)]
Qo) Fiii) 1937 2187 3 26
Q. (4"  F(i) 21537 2187/4 3 26
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TABLE 1 (cont.)
description P. d, d /3 s g

dimension 17

D,, Fy(i) 11641 4 2 272
I,, F,(i) 1 1 1 17 } 21717
Dy Fy(i) o S 1 17
A, Fi) 1118t 18 2 153
A2 F(ii) w9 ¢ 2 153
A7 F(i) 1%t 2 2 153 al
A% R pe 1 2 153 218!
A7 RGi)  B1ve 3 3 153
A RG) 1 % B 18
Q.(6)  Fyvi)  1%2%' 1536 4 1020
Q,(6)*  F(vi) 11%2%6! 384 z 408
Q,,(6)® F(vi) L172°  512/3 L 510
Q.(6)*  F(vi) 1%  128/3 L 120 8IL.(16)]
Q./(6)  F(vi)  1%2%12' 3072 4 663* 2(16)
Q,,/(6)* F(iv) 1°27%6' 768 3 68
Q. (6)*  F(vi) 1172341 1024/3 8 51
Q. (6)*  F(vi) 11%2%  256/3 8 51 )
Q.,(8)  F(iv)  1%4%16' 2% 6 1088 2°-17-8
Q8"  Ejii)  1%° 218 4 17 017,178
H(8)  F(ii)  1°48 g1 4 17
n(8)®  Fjiv) 11848 ou 4 17 2°-17-8
Q.9  Fy(v) 1524736l 2179 6 1020*
Qu(9)  E(v) 19214 2V 4 102 } 2|L,(17)|
QnO* F(v) B2 ov/9  w 18
dimension 19
Dy, — 1841 4 2 342
i — 11 1 1 19 } 210- 19!
D}t — pps 1 1 19
A, — 118200 20 2 190
AP — 185t 5 2 190
A — gt 8 2 190 5901
AP — Lyug 4 2 190 !
A — hyis 1 2 190
Af — i S » 20
dimension 23
D,, Fi) 124t 4 2 506
I, F(ii) 1% 1 1 23 } 22323
D F(i) w2 1 1 23
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TABLE 1 (cont.)

description P. d, d P s g
Agy F () 122241 24 2 276 \
Az Fy(i) 126! 6 2 276
Az B o g1mst g 2 276
Az Fy(i) pimgt 3 2 276 0.941
4F RGP 2 276 !
A3 Fi(i) Lyagl 8 2 276
A3 Fy(i) 3z 1 u 276
A2 Fi(i) L1pee L z 24 J
Q2s(4) Fy(vi) 12242 4 4 46575
Qus(4)*  Fy(vi) 1% 1 3 2300 } 2|Co,|
Qu@™  Fy(vi) F1® 3 2300
Qs(6)  Fy(vi))  1%%6! 6 4 37950
Q23(6)+2 Fa(Vll) %112131 % % 276
Qu(6)  Fy(vi) M2t 2 9 11178 2ICo;
Qu(6)*  Fy(vii)  §1* g} § 276
Qus(8)  F(iv) 128" 8 4 32890* 212, |
Qys(8)**  Fy(iii) 12221 2 2 23 223\ M,.|
Qu(8)"  Fy(iii) 122 L 2 23 2
Q2s(8)** Fy(iv) § H 2 23 213\ M.,,|
Qu(12)  Fy(v) 12120 12 4 26841*
Qu(12)*  F(v) 1223t 3 3 186760*
@a3(12)"°  Fy(v) a4 g 759
Q23(12)+4 Fa(V) i112131 % 3 186 760* 2|M24|
Q5(12)°  Fy(v) g™ 5 H 759
@u(12)2 F(v)  F1%® 4 B 24

2. PROPERTIES OF LATTICES

Automorphism groups. The automorphism group Aut (L) of a lattice L is the
group of all euclidean congruences of that lattice which fix the origin. This group
can be represented as a group of matrices in various ways. With respect to an
integral basis for L, Aut (L) is represented by a group of integral matrices, and the
lattices we are considering are precisely those for which this group is a maximal
finite irreducible subgroup of GL(n, Z). Two such groups are conjugate in GL(n, Z)
if and only if they represent automorphism groups of the same lattice with respect
to possibly different integral bases.

Alternatively we could describe Aut (L) with respect to an orthonormal basis for
the real euclidean space RL containing L. This represents Aut (L) as a finite group
of real orthogonal matrices.

It is possible for two subgroups of GL(n, Z) to be conjugate in GL(n, Q) but not
in GL(n,Z). This happens when the corresponding lattices L and M are
commensurable (i.e. their intersection has finite index in each of them), as in many
of our d-families. In this case we can choose an orthonormal basis so that their
groups are represented by the same group of real orthogonal matrices.
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From the geometric viewpoint espoused in this paper, it is natural to describe
this by saying that L and M have the same group. From an arithmetic viewpoint
one would instead speak of rationally equivalent groups of integral matrices.

Duality. The dual lattice L* of a lattice L was defined in part 1. The Gram
matrix for L* is the inverse of that for L, and Aut (L*) = Aut (L).

We shall often loosely describe two lattices as duals when one is congruent or
even merely similar to the dual of the other. When it is necessary to be more
precise, we say that L and M are A-duals if M = A:L*. This relation is symmetric,
and implies that any inner product u-v(ue L, ve M) is a multiple of A%

Direct sums. If L, M are lattices of dimensions I, m with Gram matrices
A, B respectively, their direct sum A @ B is the (I+m)-dimensional lattice
with Gram matrix 4 ® B. So detL ® M = detL detM, and the dual lattice
(LeM)*=L*® M* If M,, M, are generator matrices for L, M, then M, ® M, is
a generator matrix for L ® M.

The automorphism group of a direct sum of indecomposable lattices, of which
a are isomorphic to L, b are isomorphic to M, ..., is

(Aut (L) wrS,) X (Aut (M) wrS,) x ...

where wr denotes a wreath product and S, is the symmetric group of order n!

Tensor products. Again, if L, M are lattices of dimensions /, m with Gram
matrices 4, B respectively, their tensor product L ® M is the Im-dimensional
lattice with Gram matrix 4 ® B. So det (L ® M) = (det L)™ (det M)’, and the
dual lattice (L@ M)* =~ L*® M*. If M,, M, are generator matrices for L, M,
then M, ® M, is a generator matrix for L @ M.

One cannot say in general what the automorphism group of L ® M is, because
accidental symmetries may always appear. Let G, = Aut (L), G, = Aut (M). Inall
cases Aut (L ® M) contains the central product (G}, x@,,)/(—1, —1), of order
4G, 1G4, and usually this is all of Aut (L @ M). In particular cases the group may
be larger. For instance Aut (L ® L) contains (@, wrS,)/(—1, —1), of order |G|
Again the automorphism group of L®I,=L®...® L (m times) contains a
group isomorphic to G, wrS,,, of order |Gy |™m!.

Elementary divisors. The elementary divisors d,, ..., d, of an n-dimensional
lattice L are the elementary divisors of a Gram matrix for L, and satisfy d;|d;, ,,
det L = I1 d; (cf. Newman 1972). These numbers have a geometric interpretation :
there exists a basis u,, ..., u, for L such that ,/d,, ..., u,/d, is a basis for the dual
lattice L*. So L is integral (i.e. L = L*) if and only if the d; are integers. In this
case the dual quotient L*/L is a direct product C; X ... x U, of cyclic groups. The
elementary divisors of the A-dual of L are At/d,, ..., At/d,.

3. THE INDIVIDUAL LATTICES
We now describe the individual lattices listed in table 1, sometimes in rather
telegraphic language.
"The root lattices. The root lattices 4, D,, K¢, E, and E; were defined in part I,
together with their glue vectors [¢] and automorphism groups.
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The dual of D, is the lattice D}*, obtained by adjoining the glue vectors
[11=G3z 52,
2] =(0,0,...,0,1),
[8]= (G2 2 —2)

each with n coordinates. If we simply adjoin [2] we get a lattice which might have
been called D72, but for which we prefer the name I,, because it is just the n-
dimensional simple cubic lattice consisting of all points with integer coordinates.
Instead we reserve the name D}? (when n is even) for the lattice obtained by
adjoining [1] to D,,.

The lattice 4" = {A4,,, sv), where rs = n+1 and

v=[1]= 1 1 1 —n
I VI I R I RN

with n+1 coordinates. The glue vector

[8]— S S —-7r —r
n+1’ " n+1'n+1" T n+1

(with r coordinates s/(n+ 1) and s coordinates —r/(n+ 1)) is a minimal vector in
the coset 4, +sv, and has norm rs/(n+1).

Apart from certain notorious exceptions in low dimensions (see table 1), D,
I, and D}* have the same automorphism group, of shape 2”.n!, consisting of all
permutations and sign changes of the n coordinates. The group 2"7'.n! of D}? is
only half as large, only the sign changes of an even number of coordinates being
permitted. The automorphism group of A4} is 2xS§,,, (again with some
exceptions), and is generated by negation and all permutations of the n+1
coordinates.

d-Families of lattices. Let us say that a lattice L is adjacent to any lattice of the
form (L, v) in the same dimension, and that two lattices are in the same family
if they are connected by a chain of adjacencies.

Then in the range covered by our table most of the families have a fairly uniform
structure. The smallest (or coarsest) lattice of a family, L say, is contained in all
the others, which can therefore be written as L*" for various values of r. The
largest (or finest) member of the family, L*% say, contains all the others, so that
r.divides d. In this case we call the family .a d-family. There is often a one-to-one
correspondence between the divisors r of d and the lattices L*" in the family.

Furthermore, there is usually a large group of automorphisms common to all
lattices in a given d-family, although in some cases individual family members
may have additional automorphisms.

The dual of a d-family {L*"} is another (often the same) d-family {M*°}, the
lattices L*" and M** being duals just when rs = d.

The exceptional lattices @,(d)*". In the dimensions n covered by table 1 we find
that most of the lattices are easily expressible in terms of the root lattices 4,,,
D,, and E,,. The exceptional lattices that remain fall into d-families in such a way
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that for any given d there is either a unique d-family {@,(d)*"} or two mutually
dual d-families {@),(d)*"} and {@,’(d)*"}. The dual of a particular lattice @,(d)*" is
therefore (up to a scale factor) the lattice Q,’(d)*%", except that the prime is
omitted for a self-dual family.

When n = 17, for example, the exceptional lattices form two dual 6-families

@17(6), Q17(6)"%, ©1,(6)*%, @1,(6)™°,
@17'(6), @17'(6)"%, @1,"(6)"%, @y,(6)"",

a self-dual 8-family
Q17(8), @17(8)™, @11(8)™, Q12(8)"",

and a self-dual 9-family

@17(9), @17(9)"%, @1,(9)"°
(cf. figure 1).

Figure 1 displays all the lattices and most of the adjacencies. The notation LS
M means that L and M have the same automorphism group and M = {L, v)
contains L to index ¢. A dotted arrow indicates adjacent lattices with different
groups. We omit the heads from upward arrows. Duality is indicated by dashed
lines, except when these would fall onto other lines.

The same lattices are also described in table 1. The entry for a typical lattice
describes the lattice, gives Plesken & Pohst’s or Plesken’s symbol for it, when
available (in the column headed P), and then gives the elementary divisors {d;},
the determinant d = I1d,, the minimal norm x, the number s of pairs of minimal
vectors, and the order g of the automorphism group. The elementary divisors are
derived from Plesken & Pohst and Plesken.

Duality up to scale, rotation, and possibly reflection is indicated by horizontal
lines dividing table 1 into blocks; duality simply reverses the order of lattices in
a block. The lattices in a block either belong to two dual d-families or to a single
self-dual d-family.

4. DiIMENSIONS 1 TO 5

Dimension 2. The lattices I, and A, are the familiar square and hexagonal
planar lattices (see, for example, SLG, figure 1.3)). The lattices D, >~ D¥ and A¥
are scaled copies of I, and 4, respectively.

Dimension 3. The lattice 4, = D, is isomorphic to the face-centred cubic lattice,
and its dual A¥ =~ D¥ is the body-centred cubic lattice. Although we normally use
the names 4, and A¥, the reader should remember that these lattices are often
best understood as D, and D¥.

" Dimension 4. The lattice D, has an exceptional automorphism group which
transitively permutes the three cosets [1], [2], [3] (see part I, appendix). So
D}? ~1,. Also D}* is a scaled copy of D,.

The lattice A4,®1I, is the direct sum A4,® A4, of two A, lattices. Its
automorphism group is the direct product of their automorphism groups extended
by the symmetry that interchanges them, or in other words is Aut (4,) wrS,.

The typical vector of 4,® A, is a 3x 3 array of integers with each row and
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column adding to 0. The group is generated by all permutations of rows, all
permutations of column, transposition, and negation, and has order 144.

Dimension 5. The lattices Dy, I, D¥* share the same group 2°. S;, while 4, 472,
A}, Af® share the group 2 xS,.

5. DiIMENSION 6

Besides Dy, 1,, Di* we now have the lattice D}?, whose group is only half as large
(see §3).
'he latti
The lattices B, and B2 = E,[1] = E*
share the same group 2 x W (&), of order 2°-3%-5 = 103680, generated by negation
and the Weyl group W(&,) of type E,. Similarly

Agand A5 = A 1] = A}
share the group 2 x§,.

The lattice 4, ® I, is the direct sum 4, ® 4, = D, @ D,, with group Aut (4,) wr
S,, of order 482-2 = 4608. The dual lattice is (4, ® 1,)"'¢ = A ® A¥ ~ D¥ ® D}.

Similarly I, @ 4, =A4,® 4, ® 4, has group Aut(4,) wrS,, of order 123-6 =
10368.

The typical vector of 4,® A, = D, ® A4, is a 4 x 3 array of integers with each
row and column adding to zero. The group has order 288 and structure S, x S, x 2,
generated by permutations of rows, permutations of columns, and negation. This
lattice may alternatively be described as the set of 3 x 3 arrays of integers with
row-sums zero and column-sums even. The dual lattice

(Aa ®A2)+16 = (As ® Az)* = A;‘ ®A2 = D:? ®A2

is most simply described as the set of 3 X 3 arrays of integers with row-sums zero
and all entries in any column having the same parity.

The six-dimensional lattice related to PG L, (7). The exceptional lattice Q4(1) can
be described by three complex coordinates, using [z, y, 2] as an abbreviation for
(z, y, 2, T, g, Z), where the bar denotes complex conjugation, and a suitable inner
product is

(21, Y1, 21] " [®5; Ys 22] = Re (2, Ty + Y1 T2 +2, )
=31 Tty Tt 2, B+ T T+ T Yo+ 21 20). (1)
Then @4(1) is generated by the 42 norm 4 vectors consisting of all cyclic
permutations of

[+2,0,0], [£A, £1, £1] and [0, xp, 4],

where A = (—1++/—"7)/2, 4 = A = (—1—+/—1T)/2 are the roots of X2+X+2 =
0. These 42 vectors are all the minimal vectors. The group has structure
2 x PGL,(7) and order 672, and is generated by the unitary reflections in these
vectors together with complex conjugation.

This lattice @4(1) has appeared in several different guises in the literature. It was
called F; or ¢4 by Barnes (1957a, b) and others, and is Plesken and Pohst’s F,,. It
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is the real form of the complex laminated lattice A4,(A) (Conway & Sloane 1983 ;
ATLAS, p. 3). It is also the lattice A in the notation of part ITI, §5. In this form
the minimal vectors consist of all cyclic permutations of

+ (0, 0, 1, -1, -1, 1, 0),

+0, -1, +1, 0, 0, +1, -—1),

0, -1, 0, +1, +1, 0, —1),

and the group is described in these coordinates in §6 of part III.

Lattices related to the icosahedron. The exceptional lattices Q¢(4), Q4(4)*2, Q4(4)**
all have the same group G, which arises from the three-dimensional group of
symmetries of an icosahedron by adjoining elements that change the sign of 1/5.
We also describe these lattices in a three-dimensional notation, using the triple
[z, ¥, z] as an abbreviation for (z, y, 2, 2, ¥, 2’), where (a+b+4/5) =a—b+/5, for
a, beQ, and define the inner product by

(23, Y1> 211" (%25 Yo 2] = 3(T1 Xy + 41 Yo 2125+ 2,2 +y, Yy +2,25). (2)

Then the group G consists of the 120 symmetries of the icosahedron, extended by
the conjugating map
[z, y, 2]~ [, 2, ], (3)
and has order 240.
We label the 12 vertices of the icosahedron in two ways: with the triples +v_,
+v,, ..., £v,, which are the cyclic permutations of [0, + o, +1] (see figure 2),

and also with the triples +w,, +w,, ..., +w,, which are the cyclic permutations
of [0, 1, £7], where 7 = }(14+4/5), 0 = —7" = {(—1+4/5). Then v, and w;, = 19,
represent the same vertex, for ¢€{c0, 0, ..., 4}: although as three-dimensional

vectors their lengths are different, they rationalize to six-dimensional vectors of
the same length. For example v = [0, 1, 0] and w_,, = [1, 7, 0] rationalize to

(0,1,0, —7,1,0) and (1,7,0,1, —0,0),

respectively, both of norm 3.

Then the lattice Q4 (4)** is generated by the 24 such triples +v,, +w,
representing the vertices; these norm $ vectors are also the minimal vectors of this
lattice.

We label the midpoints of the edges of the icosahedron by the 30 triples
consisting of the cyclic permutations of [+2,0,0] and [+1, + 0, £7], of norm 4
(using the sums v +v,, ... of the v-coordinates of the end-points of an edge, rather
than the w-coordinates, which produce vectors of greater norm). The lattice
Q(4) is generated by these 30 triples, which are also the minimal vectors. These
30 triples are root vectors in the sense that the reflections in them generate the
symmetries of the icosahedron. Furthermore, @¢(4) = (+v; +v;, zw; +w,>, and
has index 4 in Q4(4)**; as non-zero glue vectors we may take v, w, and v, +w,,.

Similarly we label the face-centres of the icosahedron by the 20 triples consisting
of the cyclic permutations of [+1, +1, +1]and [0, +7, + 0], of norm 3 (these are
the differences w,—v,, ..., between the w-coordinates of one end of an edge and
the v-coordinates of the other end ; the difference labels the face that is pointed to).
The lattice Qq4(4)** is generated by these 20 triples, which are also the minimal
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v;z[00-1] (OR w=[01-7])

vo=[-o10]

V2=[IO-0']
(wo=[-170])

(we=[r0-1])
[arl] [rlcr]

[-T10] [111] [t-1-0]

fvarloal]  [ior]  vsr[10o])
\-(was[010]) (ws=[z01])=7

-V =[-100]
(-w=[-T01])

-vo=[o -10]
(-wo=[1-70])

-v,=[0-01] (OR -w=[01-7}])

Figure 2. Icosahedron, labelled with coordinates for vertices (in two alternative forms),
mid-points of edges, and centres of faces; 7 = }{1+4/5), 0 = {—1++/5).

vectors. Furthermore @¢(4)"? = {Q4(4), v, +wy); W, — v, is & minimal vector in
the coset v, +w, +Qq(4).

The linear relations among the vectors +v;, +w; are as follows. In either
coordinates, the icosahedral rule says that the sum of the neighbours of a vertex
is 4/5 times the vertex ; for example

Vo+v,+ v, +v;+v, = /50,

Hence the w-coordinates for a vertex are half the sum of the v-coordinates for that
vertex and its neighbours; for example

Wo, = (v + 0+, +0,+0;+0,),
1
2

Wy = 5(Vg+ 0, + 0, +v,— v, — ;).
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Finally, the sum of the v-coordinates for two adjacent vertices equals the sum of
the w-coordinates for the two adjoining vertices; for example

Vo TV = Wy +W,, Vy—Vy = Wy — W,.

The triple at any point (vertex, or midpoint of edge or face) consists of the last
three coordinates of some unit icosian  (see §7), and the map ¢—u 'qu is then a
rotation about that point (where ¢ = xi+yj+2k). The rotation group of the
icosahedron is the set of all such rotations, together with the identity. This group
acts on the six diameters *wv., tv,, ..., v, in the way that L,(5) acts on
0, 0, ..., 4. For example, the unit icosians forv are [+7, o, 1, 0]and [t o, 1, 7, 0],
and represent the four rotations (01234)" (n=1,...,4) about that vertex.
Some other rotations of the icosahedron are also simply expressible in
these coordinates; for example, the maps taking (z,y,2) to (—=,y,2),
(x, —y,2), (v,y,—2) and (y,2, %) become respectively (oo 0) (2 3),
(o0 0) (1 4), (14)(23), (0 34).

6. DIMENSION 7

We do not provide individual discussions of the lattices D}!",1,, A} in
dimensions n = 7.
The automorphism group of the lattices

E,=A* and E!*=E¥f=A4}"
is the Weyl group of type E,, of order 2'°-3%-5-7 = 2903 040.

7. DIMENSION 8

The automorphism group of
B, = D{* = A{* = B}

is the Weyl group of type Ej, of order 2'4-3°-52-7 = 696729 600.

The lattice D, ® I, = D, ® D, is self-explanatory. Because Df = D, this is also
isomorphic to its dual, as is the next lattice.

The lattice I, ® 4, is the direct sum A4; =4, A4, 4, P 4,, with group
Aut (4,) wrS,, of order 12*-4! = 497664.

The lattice L = (I, ® 4,)"® may be described (in the notation of part I) as
A3[1111], or in other words it is obtained by ‘gluing up’ the lattice 43 using
the glue code generated by [1 11 1]. Because A% /A, is a cyclic group of order 3,
this code contains three codewords [0 000], [111 1] and [2 2 2 2], and

L= A3V (4,[1])* U (4,[2])*

As usual, gluing theory makes it easy to determine the order g of the
automorphism group of L. In the notation of part I, we find gy(L) = g,(4,)* = 6*,
g,(L) = 2 (corresponding to negation), and g,(L) = 4!. Thus g = 6*-2-4! = 62208.

The dual lattice (I, ® 4,)** is A3[(0 0 1 2)], obtained from A3 by using the glue
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code generated by all cyclic shifts of [0 0 1 2]. (This is the ‘zero-sum’ ternary code
of length 4, dimension 3 and minimal distance 2, i.e. a [4, 3, 2] code.)

The typical vector of D, ® 4, is a 3 x 4 array of integers with row-sums even and
column-sums zero. There are 3 x 24 = 72 minimal vectors, of norm 4, namely the
arrays whose rows are {v, —v, 0} in some order, where v is a minimal vector of
D,. The group (see §2) has order 3:1152-12 = 6912.

The lattice (D, ® A,)*? is the union of D, ® 4, and its translate by the array
whose rows are ¥,, ¥,, ¥;, where these are the non-trivial glue vectors for D, and
Y, +y,+y; = 0. By a slight abuse of our usual notation we describe this as the
lattice D, ® 4, [1 2 3]. There are 32 minimal vectors, of norm 3 (like the above
one), all lying in the translate. The group is abstractly isomorphic to the
automorphism group of D,, and has order 1152. (An automorphism of D, first acts
in each row, and then bodily permutes the rows in the way it permutes the three
cosets D,+y,, D,+y,, D,+y,.)

Similarly the dual lattice (D, ® 4,)*® may be described as D, ® A4, glued up by
the code generated by [1 1 0], [2 0 2] and [0 3 3]. There are eight glue words. The
minimal norm is 2, and there are 24 minimal vectors, e.g. the arrays with rows
0’ ylﬁ _yl‘ '

The final lattice in this group is (D, ® 4,)™*, which is D, ® 4,[(1 2 3)]. The four
glue words are [000], [123], [231], [312]. This contains (D, ® 4,)**> as a
sublattice of index 2, has three times as many minimal vectors as that lattice, and
its group is correspondingly three times as large, there being a new automorphism
that cyclically permutes the three rows.

The lattice 4, ® I, = A2 has group Aut (4,) wrS,, of order (2-5!)%-2 = 115200.
The dual lattice 47 ® I, = (4, ® I,)** = 42[10, 01] has minimal norm %, a typical
minimal vector being (, 1,1, —%,%;0,0,0,0, 0).

The lattice (4, ® I,)**> = 4%[11] has minimal norm §, and g, = (5!)%, ¢, = 2, ¢, =
2, so the group has order g = (5!)*:2-2 = 57600.

The next four lattices, 4, ® 4,, (4, @ 4,)"* = (4, @ 4,)* 2 AF® A4, 4,04,
®lL,=A4,04,)®4,®4,), and 4,® 4,® A,, need no further explanation.

“The lattice related to the polytope {3, 3, 5}. The exceptional lattice ¢4(1) can be
déscribed in terms of the symmetries of the four-dimensional polytope {3, 3, 5},
just as we described the lattices Q4(4)*" in §5 in terms of the symmetries of the
three-dimensional icosahedron {3, 5}. We use a four-dimensional notation, where
[w, x, y, z] means (w, x, y, 2, w, 2, y, '), the prime has the same meaning as in §5,
and the inner product is given by

[y, T, Y15 211" [Wes Tos Yo 24]

= Hw, wy+ 2, Xy + Yy Yo 2, 2 Fwy Wy + 3,2 +y, 'y + 2,29)  (4)

Then the automorphism group of Q4(1) consists of the 14400 symmetries of
{3, 3, 5}, extended by the conjugating map

s:[w, x, y, z]>[w, 2,2, y], (5)

and has order 28800.
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The 120 minimal vectors of @4(1), of norm 4, are obtained from
[£2,0,0,0], [£1, 1, 1, £1], [0, £1, o, 7]

by even permutations of the coordinates. These vectors generate the lattice, and
the reflections in them generate the symmetries of {3, 3, 5}.

If we associate the quaternion Yw-+xzi+yj+zk) with [w, z, ¥, 2], then the
quaternions associated with all the lattice vectors form the icosian ring, and those
corresponding to the 120 minimal vectors are the unit icosians (see SLG, chap. 8,
§2; Du Val 1964; ATLAS, p. 2; Wilson 1986). The unit icosians form a
multiplicative group which is isomorphic to the perfect double cover 2.A,, the
binary icosahedral group.

The automorphism group of @4(1) can be described in quaternionic language as
follows. The maps ¢ —uq and ¢ — qv (u, v unit icosians) form two subgroups L and
R isomorphic to 2.A;. The rotation group [3, 3, 5] of {3, 3,5} is LoR=LxR/
{£1}, of structure 2. A2. The map ¢t:q— 7 is a wreathing involution (taking q—ugq
to q—qu), and extends this to the full group [3, 3, 5] of {3, 3, 5}. This group has
structure 2(A; wr S,). Finally the map s (5) extends each A, to S,, and the full
group of @4(1) has structure

2.3(S55%xS;).2
corresponding to

(+ 1}.even perms

U orsxs, b

and has order 28800 (Plesken & Pohst omit a factor of two).

This lattice is closely related to E,. Let g, correspond to [w,, «,, ¥,, 2,], for r =
1,2, and let Re{q,q,) = a+ 5, for a, feQ. Then the inner product (4) is
proportional to a. If instead we use a+ £, the icosian ring becomes a copy of the
E lattice.

The eight-dimensional lattices related to PGL,(7). The exceptional lattices
Qs(3), Q(3)™2, @'(3), @'(3)*® share the same group G of order 672. Although G
is of course real, we prefer to use eight-dimensional complex coordinates involving
®=e to describe these lattices, because then we can represent G by
(complex) monomial matrices. In fact G is generated by negation and the four
elements

eoo) (60, 81, 62’ 83: 34, 85, 86),

€ws €9) (€1, €5) (€2, WE3) (€4, We5),

a=(
L= (ey, e, Bey) (ey, we,, Wey) (e,, We,, Me,) (e, weg, Wes),
Y=
0 = (e5) (€9) (€1, €5) (€3, €5) (€5 €4),

where e, €, €,, ..., ¢; are an orthonormal coordinate frame. The elements «, 3, v
generate the simple group PSL,(7) of order 168, and & extends this to PGL,(7) of
order 336.

(To avoid any possibility of confusion, we mention that these four lattices are
not Z[w]-modules; w is used here just as an abbreviation.)



Low-dimensional lattices. 11. Subgroups of GL(n, Z) 51
For the lattice Q4(3)*® we define 21 vectors

€o € € € €3 € €5 €4

0,=0'x (1 & o 1 1 1 1 o)
L,=0'x (I o @ 1 1 1 1)
0,=60"1x w 0o & @& 1 1 @ o)
1,=60"1x w @ o @ @ 1 1 @)
0,=60"1x @ 1 & 0 0 0 o)
1,=60"1x @ 0o 1 0o & 0o o o)

where n, is obtained by permuting the last seven coordinates of 0, cyclically by »
places to the right, for0 <7 < 6,t=1,20r4,and 6 = w—& = v/ —3. We use the

inner product Sa, e 2be,=a,b,, ©)

which is real-valued for these vectors.
In fact those inner products are given by

-1 if dt=+3
nt'nt’={ 8 if d=0 (7)
2 otherwise,

—1 if +d=t'or0
non, = { if +2d=1tt (8)
—3 if t4d=w,
where the congruences are modulo 7, d = n—n’, and in (8) we have ¢ # '. Then
@Q5(3)*3 is generated by these 21 vectors; also these vectors and their negatives are
the minimal vectors of @g(3)*.
These vectors satisfy many linear relations, of which the simplest are

> COlDD QO

14_64 =4,—3,,
2,—5,=1,—6,,
4,—3,=2,—5,,

and their images under a.

The lattice Q4(3) is generated by the differences of these 21 vectors. There are
just 84 distinct non-zero differences of the minimal norm (which is 4); they are
obtained from the following six vectors by cyclic permutations of the last seven
coordinates and/or negation:

€ € & €q €3 €4 €5 €q
4,—-3, = 0 0 0 ) 1 -1 —o 0)
6,—1, = o o0 ) 0 1 -1 0 —w)
1,-6,= (0 0 w - 0 0 O —w)
1,—-2,= (@ 1 0 0 -0 -0 0 0)
5,—3, = 0w 0 —o 0 0 0 0 —o)
4,—1,= 1 @ 0 -1 0 0 —1 0).

These are the 84 minimal vectors of Q4(3).
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For the dual lattice Q,'(3)*® = @4(3)* we similarly define 24 vectors of norm i¢:

€w €o € € € € € ¢

0, =0"1x (2—w 1 1 1t 1 1 1 1)
0, =01x (20—1 o v O 0 0 0 )
0g=0"1%x Quw—a @ & O @ @ @ )
0,=0"1x (1 2—w 1 @ 0 o @& 1)
0, =0"'x (@ 20—@ @ o 1 1 o @)
0,=01'x (w 20—1 o 1 @ @ 1 o)

where n, is obtained by permuting the last seven coordinates of 0, cyclically by n
places to the right, for 0 <7 < 6, ¢t = 3, 5 or 6. The inner products (again defined

by (9)) are given by W i ey
nl.nt/={ 1 t=t (9)

3
—I otherwise,

-1 if +d=w
Ny = {—% if t4d=# (10)
8 if tbhd=tt,

where d = n—n/, except that d = 1 if » or #’ is 00, and in (10) we have n # n'.
Then @,'(3)*® is generated by these 24 vectors, and they and their negatives are
the minimal vectors of this lattice. These vectors also satisfy many linear

relations, such as
ng+n;+ng=0 (n=00,01,...,6),

1,—6, = 2,—5, = 4,—3,,
03+0 = 2,+5,,
0e+0; = 1,464,

00, +0; = 4,+3;,
1,+3;, =4,+6,,
26+ 6, = 1,4+ 5,
4,45 =24+ 3,.

The lattice @4'(3) is generated by the differences of these 24 vectors. There are
just 56 distinct non-zero differences of the minimal norm (which is 6): they are
obtained from the following four vectors by cyclic permutations of the last seven
coordinates and/or negation:

€w € € €2 €3 € €5 73
1,—6, (U 0 1 ) — @ ] —w —1)
0s—0,= (1 -0 -1 w 0 0 v —1)
0,—0;= (v —1 1 0 -0 —@ 0 1)
0;—0, = (@ - 0 -0 @ —w 0).

These are the 56 minimal vectors of ,'(3).
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8. DIMENSION 9

The lattice 4, ® I, = A2 has group Aut(4;) wrS;, of order 483-3! = 213-34 =
663552. Its dual is (4, ® 1,)"% = (43)* = (4¥)%.

For the lattice (4; ® I;)*? = A3[2 2 2] we have g, = 243, g, = 23, g, = 3!, and the
group is the same as that of 4, ® I,. The dual lattice is (4, ® 1,)*3* = A3[(0 1 1),
(2 00)].

For the lattice (4, ® I,)** = A3 [1 1 1] we have g, = 243, g, = 2, g, = 3!, so the
group has order 2'-3* = 165888. The dual is (4, ® I;)*'¢ = 43[(0 1 3)].

The next five lattices are best described in terms of D;® D, (= 4, ® 4,),
arranging the coordinates in a 3 x 3 array or board.

The first lattice, 4, ® 4,, is D; ® D, itself. The 72 minimal vectors have shape
(£1% 0%), where there are evenly many minus signs and the four non-zero
coordinates form a ‘square’; for example

1 -1 0
0 0 0
—1 1 0

In other words this lattice is obtained by applying construction B (Leech & Sloane
1971 ; SLG) to the binary [9, 4, 4] code C spanned by the corresponding ‘square’
codewords of shape (1%, 0°). From §2, the group is isomorphic to 2 x (S, wr S,), of
order 2304. -

By adjoining any one of the 18 vectors (+2, 0°) to D, ® D, we obtain (D, ®
D,)** =~ (4, ® A;)*%, whose minimal vectors are those 18 vectors together with all
the 144 vectors (4 1%, 0°) whose support is a ‘square’ as above. This contains the
previous lattice to index 2. In other words (D, ® D;)*? is obtained by applying
construction A (Leech & Sloane 1971 ; SLG) to the code C. Also Aut (C) is generated
by bodily permutations of the rows or columns of the board, and by transposition,
and the group of the lattice has structure 2° x (S, wrS,) and order 36864.

The lattice (D, ® D,)*2® >~ (4, ® 4,)"**8 is dual to (D; ® D,)*?, and has 48
minimal vectors (+2%, 0%), supported on any row or column of the board. In other
words this lattice is obtained by applying construction A to the [9, 5, 3] dual code
C*, spanned by the corresponding binary vectors of shape (13, 0%). (C* is a 3x 3
‘lightbulb code’ in the notation of Graham & Sloane (1985), Fishburn & Sloane
1988).

By adjoining the vector (3°) to (D; ® D,;)*%%*8 we obtain the lattice

(Da ® D3)+4096 =(D; ® Da)* = D; ® D:’; = (A3®A3)*-

Its 32 minimal vectors have the shape ((+3%)?), where the minus signs correspond
to a codeword of C*; for example

|
|

[ L e

NI
[
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The lattice A7*® 4, = A¥® 4, ~ D¥ ® D, has 48 minimal vectors, which are
the tensor products a ® b of minimal vectors a€ D¥, be D,; for example

0
0
0f.

BOf DOkt DOJ
(SN ST ST

From §2, the group is 2 x§, x §,, of order 1152.

Lattices related to duads and synthemes. The exceptional lattices Q4(5), @y(5)™°
have a natural description in terms of the ‘duads’ and ‘synthemes’ of S; (cf.
Sylvester 1844). The situation is parallel to that for the lattices @4(3)*". Again
there are really two dual families ({Q4(5), @(5)*°} and {Q,'(5), @,'(5)*%}), and two
of the lattices are generated by the differences of the other two (Q,(5) by the
differences of Q4(5)*® and @,’(5) by the differences of @,"(5)**). However, we obtain
just two isomorphism classes of lattices, because the outer automorphism of S,
implies that @y(5) = @,"(5) and @y(5)*® =~ @,'(5)*°.

For these lattices we use ten coordinates adding to zero. The ten coordinates are
labelled with the symbols abc|def, abd|cef, ..., aef|bed, corresponding to the
partitions of six letters {a, b, ¢, d, e, f} into two triples. (To save space we shorten
the labels to abe, ..., aef.) For each duad or pair of distinct letters xy, there is a
duad vector V,,, whose abc coordinate is 2 if the duad lies inside either abc or def, and

is —2 otherwise. There are (g) = 15 duad vectors. For example,

abc abd abe abf acd ace acf ade adf aef
—2

V= 3 3 3 3 2 2 2 2 2
ab

5 5 5 5 5 5 5 5 5 5 *

The inner products of the duad vectors are given by

2 if Hu,vin{z, gy}l =2
Vo Voy =1—% if [u,o}n{z, g}l =1
t if Hu,vin{x, g}l =0.

The lattice @y(5)™° is generated by these fifteen duad vectors; they and their
negatives are the minimal vectors of @y(5)*°. The group of all four of these lattices
is 2 x S, of order 1440.

The lattice @,(5) is generated by the differences of the duad vectors. The
minimal norm is then 4, and there are 90 minimal vectors. In fact for each pair of
letters, for example ef, there are six minimal vectors, for example

abc abd abe abf acd ace acf ade adf aef

Vo—Va= 1 1 0 0 —-1 0 0 0 0 -—1
Voe—Vyg= 1 -1 0 0 1 0 0 0 0 -1
Vy—Ve=—1 1 0 0 1 0 0 0 0 -—1

and their negatives. These are supported on the four coordinates ghi | jkl for which
the pair ef lies inside either triple.
Similarly, for each syntheme or partition of the six letters into three pairs
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uv . wx.yz, there is a syntheme vector 8, ., .., Whose abc coordinate is ¢ if a, b, ¢ lie
in distinct pairs uv, wz, yz, and is —2 otherwise. There are 5-3:1 = 15 syntheme
vectors. For example

abc abd abe abf acd ace acf ade adf aef

-2
5

110
orjno
5110
ovjes
oeo
orjeo

— 3 _2
Sab.cd.ef - 5 5 °

The lattice @,'(5)*° is generated by these fifteen syntheme vectors; the outer
automorphism of S; shows that Q,’(5)*® and Q,(5)*° are isomorphic (cf. SLG,
chapter 10, Section 1.3); and (up to a scale factor) §,"(5)*° is dual to @4(5).

The lattice ,’(5) is generated by the differences of the syntheme vectors. This
is isomorphic to @,(5) and (again up to a scale factor) is dual to Q4(5)*°. In fact the
vector

Agh‘ij = Sgi.hj.kl_sgj.hi.kl

has inner product +2 with V,,, V,;, Vy, V;; and inner product 0 with the other

V,,- Thus @,(5)*" and @,'(5)**'" are 4-duals in the terminology of §2.

9. DiMENSION 13

Lattices related to L,(25). The exceptional lattices @,5(2)*", @,5'(2)*" (r =1, 2) all
have the same group @, isomorphic to 2 x L,(25).2, and of order 31200, where
L,(25).2 = PXL,(25) is the extension of L,(25) by the field automorphism o :z—
x® of F,;. We take the field F,; to consist of the elements {a+b0:a, beF,}, where
6* = —3, and describe these lattices using 26 coordinates {e ., e,,,qs:@, beF;},
arranged in an array as shown in figure 3a.

The group @ is generated by negation and the maps o« = o), &" = ay, y = y_, and
J, where

&gl Coyrs

Bie,~>e .
Yeier—> ey

d:e,—>es,

for telF,;. The sign in y:e,—~ te_,, is plus if r is 00 or a square in [F,;, minus
otherwise (this also determines the signs in v,). The actions of y and § are displayed
in figures 3b, ¢; a small circle indicates that the coordinate should be negated.
Note that o represents a cyclic shift to the right in figure 3a, and ' a shift
upwards.

The lattice Q,,(2)*? is generated by the particular vector %, shown in figure 3d
and its images under the group G. We set u, = (u,,)” (shown in figure 3e), and
u, = (uy)* for teF,,. Then the 52 vectors +u,, +u,, of norm 3, are the minimal
vectors of @,,(2)*2. It may be verified that these vectors lie in a 13-dimensional
space. For example the vectors u, for te{0, +60, +20, 1, 1+6, 14+260, 2, 210,
2+26} form a basis for @,5(2)*%. The + entries in %, occur at co and on three
straight lines (at the non-zero points a + b6 for which b/a is 0 or +1).

The lattice @,3(2) is generated by the differences of the minimal vectors of
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(a)
-2+28 -1+260 28 {+28 2+20

-2+8 -1+8 6 I+8 2+0
-2 -1 0 | 2
|-2-6 -1-6 -8 -8 2-8
-2-28 -|-268 -28 -28 2-26

[¢0]
(b) {c) \‘\ N (d)+++++
+ + + + 4+
|
. oll of| ol| of] off —= |+ + + + +
Y 3 :] 25
+ + + + 4+
S ST + o+ + o+ o+
. 5
@+ — — — ] Mo + + + o W~ - - - -
-+ -+ - + 0 + 0 + + + + + +
| 4 1
— |+ + 5 + +|— |0 O -2 O Oy —= {0 O O O O
25 NG NG
-+ - 4+ - + 0 + 0 + + 4+ 4+ + +
+ - - - 4+ 0 + + + 0 - - - - -
+ 2 0]
(o 0O 0 0 O
O 0 0O OO
+ + + 4+ +
O 0.0 0O O
O 0 0 0 O
+

Fiaure 3. (a) Labels for 26 coordinates for the lattices @,3(2)*", @,5'(2)*". (b) (c) Action of
group elements vy, 8. (d)-(k) The vectors u, %,, w, y, 2.
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Q,5(2)*2, and has two orbits of minimal vectors. There are 2625 = 650 minimal
vectors of shape 573+2% +1'2,0), and norm 4, such as the vector
w = 27%u, —u,) shown in figure 3f. There are also 130 minimal vectors of shape
575(+£120, 0%), namely the vector y shown in figure 3¢ and its images under G.y is
stabilized by the subgroup H = PGL,(5).2 of order 240 generated by a, f,, ¥ and
0, and therefore has 31200/240 = 130 images; the total number of minimal
vectors in §,,(2) is 650+ 130 = 780.

The lattice @,,'(2) is spanned by the images under G of the vector z shown in
figure 3A, which is its typical minimal vector. Because z is also stabilized by H,
G15'(2) has just 130 minimal vectors.

The fourth lattice @,;"(2)** is then obtained by adjoining /5 u,, to the previous
lattice, and has the same minimal vectors as that lattice. The lattices @,4(2)*" and
Q.5 (2)¥" are 5-duals.

Lattices related to the projective plane of order 3. The exceptional lattices @,;(4)*"
and Q,;'(4)™" (r=1, 2, 4) share a group G isomorphic to 2 x L,(3).2, of order
22464. These lattices are related both to the projective plane I7 of order 3 and to
the ternary Hamming code C of length 13.

The points of IT are called F,, ..., P,,, and correspond to our coordinate vectors
(multiplied by 4/3), for which we use the same names:

0 1 23 456789 10 11 12
FP=+3 0 000O0O0O0OO0CO0O O O O
P= 0+3 000O0O0O0OO0O0 O O O (11)
Pb= 0 0+43000O0O0O0O0O O O O
The lines of IT are called L, ..., L,, and correspond to a second orthogonal set of
vectors:
01 2 3 4 5 6 7 8 9 10 11 12
Ly=1/4/30 0 + 0 + + + — — 0 + — +)
L,=1/v/30 + 0 + + + — — 0 + — + 0 (12)
L,=1//3(+ 0 + + + — — 0 + — 4+ 0 0

(L4, 18 a cyclic permutation to the left of L;.) A point P, and line L; are incident
in the plane (see figure 4) just when the corresponding vectors are orthogonal (this
happens if and only if ¢+j =0, 1, 3 or 9 (mod 13)).

The group G is generated by negation together with a, 4, y, 8, where a, 8,y
(generators for the subgroup L,(3)) are monomial matrices with the following
actions:

a= (R, P, P, ..., P,) (Ly, Ly, Ly, ..., L),

p= (PI’P:S’PQ) (Py, By, By) (Py, Py, Pyy) (P, By, Py)-
(Ly, Lg, Lg) (Ly, Lg, Lg) (Ly, Lyy, Lyy) (Lq, Lg, Lyy),

y = (B, P) (P, Pyy) (P, By) (By, By) (Pyy, —Py,)-
( Lo) (Lv L ) (Lz’ L12) (L —L ) (Le’ L10)7
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F16uREe 4. Projective plane IT of order 3. A point P, is incident with a line L, if and only if
i+j=0,1,3 or 9 (mod 13).

and ¢ is the orthogonal matrix

0 0 + 0 + + — = 0 + — +7
0 + 0 + + + — — 0 + — + 0
+ 0 + + + — — 0 + — + 0 0
0 + + + — — 0 + — + 0 0 +
+ + + — — 0 + — + 0 0 + 0
- =0+ -+ 00 + 0 +
s/ - - 0+ -+ 0 0 + 0 + + (13)
- = 0 4+ — + 0 0 + 0 + + +
- 0 + — + 0 0 + 0 + + + -
0 + — + 0 0 + 0 + + + — —
+ — + 0 0 + 0 + + + — — 0
-+ 0 0 + 0 + + + — — 0 +
l+ 0 0 + 0 + + + — — 0 + —_

Note that « sends P, to P,,, and L, to L,_, (with subscripts modulo 13), £ sends
P, to Py; and L, to Ly, v is a signed version of the involutory homology that fixes
L, and P;, and ¢ is the polarity that interchanges each P, with L,.

The 52 norm 3 vectors +P,, + L, are the minimal vectors of @,;'(4)*2, and
generate that lattice.



Low-dimensional lattices. 11. Subgroups of GL(n, Z) 59

To each incidence I; ; between a point F; and a line L; in IT there corresponds a
pair +1; ; of minimal vectors of @,;(4)**. For example

0O 1 2 3 45 6 7 8 9 10 11 12
Io= 0 + + +
11,0= + O + —_ . . -
13,0= + — O + . . - (14)
Ig’o= + + - O * ’ C,

when the dots indicate zero entries. These 2x13 x4 = 104 norm 3 vectors
generate the lattice @,,(4)*2.

The lattices @,5(4)** and @,,'(4)*? are 3-duals. In fact, suppose P, and L, are
incident, let P, meet lines L;, le, Lj2, Lfa’ and let L, contain points P, Pil, Piz, Pia'
Then the vector I, ; has inner product + 1/ 3 with Pil, Pi2, Pis, le, sz, Lia’ and is
orthogonal to the other P, and L,.

Alternatively, we may define the [13, 10, 3] perfect Hamming code C over [, to
be the cyclic code generated by the vector I, , in (14). The lattice @,5(4)** is
equivalently obtained by applying construction A; (SLG, chapter 5) to C. The
vectors +1; ; are the 104 minimal weight codewords in C. The automorphism
group of C' is the monomial portion 2 x L,(3) of /, generated by negation, a, § and
V.
The dual lattice @,;(4)*? is similarly obtained by applying construction A to the
dual code C*, a [13, 3, 9] ternary code whose 26 non-zero codewords are the
vectors +.L, (with the factor 1/4/3 omitted).

The lattice Q,3(4) is generated by the differences of the minimal vectors of
Q,3(4)*?, or equivalently is obtained by applying construction B; (SLG, chapter 5)
to C. Two minimal vectors, of norm 4, are supported on each quadrilateral of I7,
for a total of 2-13-12-9-4/4! = 468 minimal vectors.

The lattice @,;(4)™ is obtained by adjoining the vector (3'®) to @,,(4)*%, and has
the same 52 minimal vectors.

Similarly @,,’(4) is generated by the differences of the minimal vectors of
Q.5'(4)*2, or equivalently is obtained by applying construction B, to C*. The
minimal vectors are of the form +P,+ L;, where P, and L, are not incident. There
are 2 x 13 x9 = 234 such vectors, of norm 4.

Finally @,,'(4)** is obtained by adjoining the vector ((1/3/2)') to @,5'(4)*?. The
minimal vectors are unchanged.

We note that @,,(4)"" and @,,'(4)**/" are 3-duals, and 1/3@,5(4)"" < @,5'(4)™,
V3Q. (4)T = Q,4(4)* for r =1, 2, 4.

10. DiMmENSION 17

Lattices associated with L,(16). The exceptional lattices @,,(6)*", @,,(6)*"
(r =1, 2, 3) share the same group @, isomorphic to 2 x L,(16).4 and of order
32640, where L,(16).4 is the extension of L,(16) by the field automorphism of
order 4. Although @ is real, we use 17-dimensional complex coordinates involving
w = %™ to represent these lattices (compare the treatment of Q4(3)*" in §7).
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We construct the field F,; by adjoining to F, an element ¢ satisfying e*+ €%+
e2+e+1 = 0 (a non-primitive polynomial!). If we define w = ¢+¢* then 0w’ =@ =
e+e, wi+w+1=0, and ew is a primitive element of F,; = {0, ¢’/ :0 <7 < 4,
0 <j < 2}: We shall describe these lattices using 17 coordinates {e,, e,:t€F,},
arranged in an array as shown in figure 5a.

The group G is generated by negation and the maps «,, B, (t€F;), v and 6,
where

X2 €y €ppys

Biiew—>X(t) e, €, > X(t) €y (1 # 00),
Ve~ X(r) ey
d:e,—>epo,
x:Fg U{oo}—~C is given by
x(o0) = x(0) = 1, y(€'e’) = o/,

except that when applying § we must also replace the coefficients of all e, by their
complex conjugates. The actions of «,, f,, f., v and & are displayed in figure
5(b)—(f). The element p = a7y (first o, then ) has order 17 and is displayed in
figure 5¢.

The following paragraphs briefly describe the eight lattices @,,(6)*", @,,'(6)™".
Because the relations between them are more complicated than those for the other
families in this paper, we shall give a generating vector z for each lattice, with the
property that its 17 images {p”(z):0 < ¢ < 16} (for some j) have (up to a scale
factor) the Gram matrix given by Plesken (1985). We also give one or two
representative minimal vectors (shown in figure 6) for each lattice, and we specify,
for such a minimal vector u, the subgroup H(u) of L,(16) that fixes u up to sign.
If H(u) has order A there are 2|L,(16)|/h = 2-15:16-17/h minimal vectors in the
orbit of 4 under 2 x L,(16). The properties of these eight lattices are summarized
in table 1 and figure 1.

@,,(6): two orbits of minimal vectors under L,(16) with representatives u,, u,’,
(see figure 6); these orbits fuse under §. The stabilizer H(u,) = {a,:¢ in top half of
array ) has order A = 8; there are 1020+ 1020 = 2040 minimal vectors. Generator
z2=u,.

@,,(6)*2: one orbit; u,; H(u,) = {f,, v);h = 10; 816 minimal vectors; z = u,.

Q,,(6)*: one orbit; uy; H(uz) = H(u,); h = 8; 510 minimal vectors; z = u,.

Q.,(6)*®: one orbit; wus; H(ug) =<a, p);h=34; 240 minimal vectors;
z = (ug)™.

@,,/(6): two orbits of minimal vectors under both L,(16) and G, with
representatives v,, v,"; H(v,) =<a,:t€F>; h=16; H(v,") =<B.,y>; h=10;
510+ 816 = 1326 minimal vectors; z = v,.

@,,'(6)*2: one orbit; v,; H(v,) = {ety, B, ¥) = As; b = 60; 136 minimal vectors;
2= v,.

Q,, (6)*3: one orbit; v,; H(v,) = {a,:t€Fq, f.); h = 80; 51 minimal vectors; z =
(vg)fe.

@,, (6)*®: same minimal vectors as previous lattice; z = w,.

Nt S
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@WWo 0 w e e Ple o> »
& | eoed| > -
€? etw w Sw e RN
€ ew €w ew > s

(c) (d)

1§ ~ J
Xw
(e) (h
Xw
W Xxw
Xw .
Y X xw 8
I X
xwe xw
XWw
CONJUGATE ALL
COEFFICIENTS
(g)
p:
® Xw Xw

FiaUure 5. (a) Labels for 17 coordinates for the lattices Q,,(6)*", @,,/(6)*". (b)~{(g) Action of
group elements a,, f,, 8., ¥, 0, p. After the permutations in (c), (e), (f), (g) the indicated -
actions are to be performed : thus in (¢) the leading coordinate is to be multiplied by @ and
the other 16 coordinates by w, while in (f) all coordinates must be conjugated.
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1
U 10 w w w w upt

| -w -0 - - |

V2 O 0 0O V2

Y2 -1 -l O I Ys
| O I 00 |
V2 | 0 0o of 62
| 0 0 O
vg' |11 11| vy
| w | w | w
N @ | @ | 2

€I
€
€1
€

Ficure 6. Representative vectors occurring in the lattices Q,,(6)*", @,,"(6)*".

0

w -w 0 O
w -w 0 O
w -w 0 O
w -w 0 O

o I 1 1 1
I
-l -1 - -l
I T

O 0 O w
0O O
w w | |
w w ||

-0 2w 20 2w

-l ~w-w-3 -w
-l -~w 2w -l
2w -0 -1 2
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We remark that v/2ug; = v, (say)€@,,’(6)*¢, and, for r = 2, 3, 6,
Q17(6)*" = {Q14(6), 6ug/r).

Q17/(6)" = (Q,,'(6), 6vg/r).

Also @,,(6)*" and Q,,'(6)**" are 2-duals, and
V' 2Q1,(6)" = @1,'(6)",
,\/2Q17’(6)+1’ S Q17(6)+1”
forr=1,2,3,6.

Lattices related to the quadratic residue codes of length 17. The next two families
of exceptional lattices, Q,,(8)*" (r=1,2,4,8) and Q,(9)* (r=1,3,9) are
connected with 17- and 18-dimensional representations of L,(17). In contrast to 23
dimensions, however, when all the exceptional lattices can be obtained from the
Leech lattice, here there is no single 18-dimensional lattice which yields all the
exceptional lattices, and it seems best to treat the two families separately.

The exceptional lattices @,,(8)*" (r=1, 2,4, 8) are related to the [17, 8, 6]
binary quadratic residue code C and its dual the [17, 9, 5] code C*+ = C U {1'"+C}.
The weight distributions of these codes may be found in (Berlekamp 1968,
p. 432).

The lattices @,,(8)*2, @,,(8)**, @,,(8) are respectively obtained by applying
construction A to the code C, construction A to C*, and construction B to C, while
Q,,(8)*® = (@4;(8)™, (3*")). The minimal vectors in ¢,,(8) have norm 6 and shape
(£ 18, 0'), and are obtained from the 68 minimal weight words in C' by changing
any odd number of 1s to — 1s. There are 2° x 68 = 2176 minimal vectors. In each
of the other three lattices there are just 34 minimal vectors, of shape (42, 0°).

The automorphism group of the [18, 9, 6] extended quadratic residue code is
L,(17), (MacWilliams & Sloane 1977, p. 492), so Aut(C) has order 8-17 = 136.
Then Q,,(8)*% and Q,,(8)™* have group 2'7.Aut (C), while @,,(8), @,,(8)™® have
group 2°. Aut (C). (Compare the lattices @,,(8)*" in the following section, which
have a similar structure.)

The A, ;-type lattices related to L,(17). The second set of exceptional lattices
related to L,(17), the lattices @,,(9)*" (r = 1, 3, 9), have structure similar to 4,,.
(In particular, @,,(9)*" < A7)

The lattices @,,(9)*" share a group G isomorphic to 2 x L,(17) and of order 4896.
We use 18 coordinates adding to 0, labelled {0, 0, 1, ..., 16}. Then @G is generated
by negation, a:x—>x+1, f:x—>2x and y:x—~>—1/x (mod 17).

The norm 4 vector

o 0 1 23 4 56789 10 11 12 13 14 15 16
w= —2 -2 -2 1 1 _2 1 1 1 1 1 1 1 1 _2 1 1 _2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

is fixed or negated by 2, v, 8:2—>—=x (mod 17) and aya~®f, which generate ‘a
subgroup isomorphic to S,. Thus w has 204 images under G, and these vectors are
the minimal vectors of @,,(9)*® and generate that lattice. Let us call a minimal
vector positive if its coordinates are congruent to 1 modulo 1. Then the differences
of the positive minimal vectors of @,,(9)*® generate @,,(9).
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The minimal vectors of @,,(9) have shape (+ 13, — 13, 0'%), supported on one of

the 102 hexads where a minimal vector of @,,(9)*® is +4. There are 102 (g) = 2040

minimal vectors of @,,(9), falling into two orbits under G, of sizes 816 and
1224.

By adjoining any one of the 36 norm 34/9 vectors =+ ((3)**, — (3)?) to @,,(9)*® we
obtain @,,(9)*?, whose minimal vectors are these 36 vectors.

11. DiMENSION 23

Lattices related to the Leech lattice. The exceptional 23-dimensional lattices
Q23(d)*" (d =4, 6, 8, 12, r|d) are all closely related to the Leech lattice 4,,. We use
the standard coordinates for 4,, and suppose some familiarity with that lattice (see
SLG or ATLAS). For d =4, 6, 8 or 12 we take a vector v = v ;€ 4,, of norm d. If
d = 4, 6 or 8 all choices for v, are equivalent, and for-d = 12 we choose v,, = (2%).
Then Q,4(d)*" for r|d consists of the projections onto v; of all Leech lattice
vectors whose inner products with v, are divisible by s = d/r.

For d = 4 we obtain three lattices. Q,,(4) is v7, i.e. consists of the Leech lattice
vectors that are orthogonal to a minimal vector. This is the laminated lattice A,,
of Leech & Sloane (1971), Conway & Sloane (1982), and gives the densest sphere-
packing known in 23 dimensions. @,5(4)*? is the projection onto v; of the vectors
w having even inner product with it. This is an integral unimodular lattice which
we called the shorter Leech lattice O,; in SLG. Its 4600 minimal vectors (of norm
3) are obtained from the minimal vectors w of 4,, at angle 60° with v,. (Later in
this section we enumerate the minimal vectors in all these lattices.) Finally
Q24(4)™* = A%, is the projection of all of 4,, onto v;, and gives the thinnest known
covering of 23-dimensional space by spheres. The group of these three lattices is
isomorphic to the group 2 x Co, of automorphisms of the Leech lattice that fix or
negate v,.

Similarly the four lattices @,;(6)*" (r =1, 2, 3, 6) have group isomorphic to
2 x Co,, fixing or negating v,. The bottom lattice @,,(6) consists of the Leech lattice
vectors orthogonal to v,, and the top one is the projection of A,, onto vg.

The 552 minimal vectors of @,,(6)*® (which span that lattice) are especially
interesting, since they lie on 276 equiangular lines (cf. Delsarte et al. 1975). They
are also the minimal vectors of Q,,(6)*®.

If we take vy = (0%, 8) we see that @,,(8) consists of the Leech lattice vectors
whose last coordinate is 0. The other coordinates are therefore even. This is the
lattice obtained by applying construction B to the [23, 11, 8] binary Golay code.
Its automorphism group, of structure 2'2. M,,, consists of permutations of M,, and
sign changes on %-sets.

The lattice @,4(8)*2 is obtained by adjoining the vector (4,0,0,...), the
projection of (4, 0, O, ...; 4). This is the lattice obtained by applying construction
A to the same code; its automorphism group 22.M,, contains all sign changes.

The lattice @,,(8)** has the same group; it is obtained by adjoining (27, 0, 0, ...),
the projection of (27,0,0,...;2). Equivalently it is obtained by applying
construction A to the [23, 12, 7] perfect Golay code.
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Finally Q,5(8)*® is the projection of 4,, onto vy, and has the same group as
@45(8), to which it is dual.

The symmetries of 4,, that fix or negate v,, = (2,2, ..., 2) form the group
2 x M,,, generated by negation and the permutations of the 24 coordinates that fix
the [24, 12, 8] extended Golay code €. This group is the automorphism group of
the lattices @,3(12)*" (r =1, 2, 3, 4, 6, 12).

The lattice Q,4(12) is v3,, and its dual is the projection of 4,, onto v{,. The 2 x 759
minimal vectors of @,,(12)*3, also of @,;(12)*¢, are the projections of the octad
vectors (28, 0'®). The 2 x 24 minimal vectors of ,,(12)*'? are the projections of the
coordinate vectors (+8, 0%).

Minimal vectors of the exceptional 23-dimensional lattices. Our description of the
lattices @Q,3(d)™" in terms of the Leech lattice enables us to enumerate their
minimal vectors. We note that the table on p. 181 of the ATLAS is useful in finding
the number of vectors w of given norm that have a given inner product with a fixed
vector v.

The minimal vectors of @,;(d)*" are the projections @ onto v! of certain vectors
we A,,. We find them by supposing that w is as small as possible. Let w-w = m,
w v = 1; also v-v = d. Then because (possibly at the cost of negating w) we can
replace w by nv+w, we may suppose that 0 < i < id. If ¢ < }d, w is unique. But
if 2 = Id, the two equally short vectors w and w—v yield the same @w. We find

22 d
N w) = _—— s Py
(w) m d’ rl?”
and i1 <3(d+m—4),

because N(v—w) = 4 in the Leech lattice.

We discuss @,3(12)** to show the method. Our conditions yield 3|¢, ¢ < id = 6,
and we wish to minimize N(@) = m —{5t%. We try m = 4 first. There is no minimal
vector of 4,, having inner product ¢ = 6 with v, but there are minimal vectors with
i = 3. These would give N(w) = 4—32%/12 = 3}. However, by using m = 6 we can
do better. There are two orbits of norm 6 vectors with ¢ = 6, namely

shape number

w=(2'02) 2-2576 = 5152,
w= (4,21, —2, 01) 2-2576-122 = 741888.

H H

The projections @ of these vectors have norm 6 —6%/12 = 3. Because vectors of
norm m > 6 have projections of norm at least m—62/12 > 3, the above @ are
the minimal vectors of @,;(12)*%. However, the number of them is only
1(5152 + 741 888) = 373520, because in this case ¢ = }d. We notice that all these
vectors have ¢ = 6, and so also belong to the sublattlce @,3(12)*2, which therefore
has the same minimal vectors as @,,(12)**.

Similarly we find that the minimal vectors of @,4(d)*" are the projections @ onto
vi of all the Leech lattice vectors w that have norm m and inner product 7 with
v,, where m and ¢ are given in table 2
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TABLE 2. MINIMAL VECTORS OF @Q,3(d)*" ARE THE PROJECTIONS ONTO ¥ OF ALL
we Ay, WITH Ww =m, W' vy =1

d=4 r=1 2 4
m=4 4 4
1=0 2 2
d=26 r=1 2 3 6
m=4 4 4 4
1=0 3 2 3
d=8 r=1 2 4 8
m=4 4 4 4
1=0 4 4 4
d=12 r=1 2 3 4 6 12
m=4 6 4 6 4 4
1i=0 6 4 6 4 5

In most of these cases the vectors @ are in one orbit. The exceptions are:

lattice shape of +w number
Qu®  (£4%0%;0) 22(223) _ 1012
((+2)%01%;0) 27-506 = 64768
Q25(12) (4, —4, 0%) 552
(2%, —24,0) 759-70 = 53130
Qoa(12)*  (2%,0%) 2-2576 = 5152
(r=2,4) (4, 211, —2,01) 2-2576-12% = 741888

These are indicated by asterisks in table 1.
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