0
@ P23 P12
Pos P13 Po1
PP +PPo13
PP +PP123
(b) _ _
PozP12 —pPp Po1P23 — PP

PP+PPo23  PeaP13—PP=0  pp+ppor2

Figure 1: (a) Projective plane labeled with conorms for A. (b) Conorms for dual lattice A*.
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lattice I, 41 perpendicular to the vector 21" to the sublattice of I, ;4 perpendicular to the

vector 1" (the latter is A,43), obtaining an isodual lattice in dimension 2n + 3.

Dimensions 10 and 14. Several 10-dimensional isodual lattices have u(A) = 2: for example
the lattice Di"o [5, Chap. 4], or a scaled form of the lattice Q1¢ associated with the “duads”
and “synthemes” of the symmetric group Sg. This lattice is most simply obtained by applying

Construction A [5] to the [10, 5, 4] binary code with generator matrix

1 1 11 0 0
1 1 1.0 10

1 1 01 0 1

1 01 0 1 1

1 0 01 1 1

The dual of this code is a permutation of itself [13], [10]. In this form, ()10 has determinant
210 minimal norm 4, kissing number 260 and automorphism group 2'° - Sg. This lattice may
also be obtained by gluing /2Qq(5) to 5;, where Qg(5) was defined in [7].

In dimension 14 our isodual lattice is a scaled form of the lattice ()14 associated with the
simple group Gy(3) [1, p. 60]. The lattice (14 has determinant 37, minimal norm 4, kissing
number 756, and automorphism group G2(3).2 . It may also be obtained by gluing a scaled

copy of the lattice Q13(4) of [7] to 4;.



For the c.c.c. lattice, R = 3v/2/8 = 0.5303.... (i) For a decomposable lattice defined by (2)

we find

R:i{a+ﬁ+1—h—h(a—h)(ﬂ—h)},

which has a minimum of 2¢/3/9 + 1/4 = 0.6349... in the region (3). (ii) Let A be an inde-
composable lattice defined by (4) and with conorms (7). The minimum in (13) is attained (I)
at po1piapsapzo if @ < 2(1 - 8)/(2 - B), or (II) at poapaipizpze if @ > 2(1 - 3)/(2 - 8). In
each case we find that R has no local minimum in the interior of the region, and that on the

boundary there is a unique local minimum at o = § = 2 — /2. a

6. Higher-dimensional isodual lattices

Dimensions 5,6,7. Our constructions of isodual lattices in dimensions 3 (see §3), 5, 6 and
7 (see Table I) can be described in a uniform manner. In each dimension, we find a path in
lattice space leading from the absolutely extreme lattice A to its dual A*, coordinatized by a
parameter o, with o = s (resp. 0 = s*) corresponding to A (resp. A*). Then the isodual
lattice has o = v/ss*.

In dimension 6, using the terminology of Chapter 4 of [5], we construct a one-parameter
family of lattices by gluing the root lattice Dy to a scaled copy As of the root lattice A;. We
denote the glue vectors of Dy by [1], [2], [3], and we let vy, vz, v3 be three minimal vectors of
°Aj, that add to zero. Then M(c), ¢ > 0, is generated by Dy @ A, and the vectors ([1]; 1/2v;),
1 <7 < 3. It is easy to verify that M (2) is equivalent to the root lattice Fg, M(2/3) to Ef,
and that M(y/4/3) is an isodual lattice with determinant 1, minimal norm 1 4 1/v/3, kissing
number 48, center density § = 0.06132... (only slightly worse than the densities 0.07216... of
Eg and 0.06415 ... of EZ), and automorphism group of order 2(234!)3! = 2304.

There are similar constructions in dimensions 5 and 7. Let (5¢); denote the one-dimensional
lattice of determinant 5¢ generated by a vector v of norm 5¢. We define L(¢) to be the lattice
generated by A4 & (5¢); and ([1];2/5v), where [1] = 4/5, —1/5, —1/5,—1/5,—1/5 is the first glue
vector for Ay. Then L(4) is equivalent to Ds, L(1/4) to D%, and L(1) is an isodual lattice
with determinant 1, minimal norm 7/5, kissing number 20, and center density § = 0.07247....

Similarly, in dimension 7 we glue Fg to 3;.

Dimensions 5,7,9,11. The isodual lattices in dimensions 5, 7 (again) and 9, 11 in Table I

also have a uniform description: for n = 1,2,3,4 we glue the sublattice of the simple cubic



Proof. [8] also introduced quantities called the Voronoi norms or vonorms associated with
a lattice A. These are the minimal nonzero norms of the classes of A/2A. The conorms
mentioned in §2 are, apart from a scale factor, the discrete Fourier transform of the vonorms.
The minimal nonzero vonorm is equal to the minimal nonzero norm p(A) of the lattice.

(i) If A is decomposable and defined by (2), there are just four nonzero conorms, which we
can take to be po1 = @ — h, po2 = B — h, pos = 1, p12 = h. Therefore p(A) < 1.

(ii) Suppose A is indecomposable, defined by (4), and has the conorms given in (7). The

corresponding vonorms pg|123, P1jo23, P2jo13 and psjg12 are respectively equal to

20 o’f42a+25-4aB 28 af®+20426—4ap (11)
8D’ aD " aD’ 6D ’
For the c.c.c. lattice, when a = 3 = 2 — /2, all four quantities are equal to /2 + \/1/5, the

other three vonorms are /2, and g = 1.2071 ... .

It is now an elementary calculation to verify that the sum of the four quantities (11) is
maximized over the region 0 < o < 3 < 1 at the point a = 3 = 2 — v/2. At all other points it
is strictly smaller. Therefore for any other lattice some vonorm is strictly less than /2 + /1/,

and the density is less than that of the c.c.c. lattice. a

5. The most efficient three-dimensional isodual covering lat-
tice

Theorem 3. The c.c.c. lattice is the unique most efficient three-dimensional isodual lattice

covering.

Proof. Let A be a three-dimensional lattice with conorms 0, po1, . . ., p2s (where we allow some
of the p;; to be zero). It is a consequence of Eqns. (11), (12) of [2] that the squared covering

radius R of A is given by

1
R = m(sl det A — 52 - 453) ) (12)
where
S1 = po1+ po2 + po3+ pi2 + P13+ pas
Sy = > pwpxpypz

the sum being taken over all products of four conorms in Fig. 1a whose support is the comple-

ment of a triangle, and

S3 = min{po1p12p23P30, Po2P21P13P30, Po1P13P32P20} - (13)



These vectors have Gram matrix (4).

3. The central centered-cuboidal lattice

This is the case @ = 8 = 2 — /2, A = \/v/2— 1 of (4), (8), but can be obtained more
simply as follows. Consider the lattice generated by the vectors (fu,+v,0) and (0,+v,+v)
for real numbers w and v. If 0 := u/v = 1 this is equivalent to the face-centered cubic lattice,
if ¢ = \/1/5 to the body-centered cubic lattice, and if o = W to what we call the central
centered-cuboidal (or c.c.c.) lattice.

When scaled so that it has determinant 1, the c.c.c. lattice has integral basis
/ 4/ / 4/ 4/ 4/
< 1/27 1/27 0) ) ( 1/27 07 1/2) ’ (07 1/27 1/2) ) (9)

1+4v2 -1 -1
2 |

Gram matrix

-1 14+v2 1-42
-1 1-v2 142

minimal norm 1/ 4+ 1/1/9, center density § = 0.1657 ... (between that of the face-centered and

(10)

body-centered cubic lattices), covering radius 3-°271-25 kissing number 8, theta series
148 24V 2 4 1Y 1 2¢7 4+ 4¢PV? 4 8¢V 164 2V 4

automorphism group of order 16, and is isodual.
Incidentally, if we take o = y/1/3 we obtain another interesting lattice, the “axial centered-

cuboidal” lattice. After rescaling this has Gram matrix

4 2 2
2 4 1|,
2 1 4

determinant 36, minimal norm 4, center density § = 1/ and kissing number 10. It can be
obtained by stacking layers of equal spheres placed in the hexagonal lattice (or Ay) arrange-
ment, with the spheres in each layer placed over some of the cols (points midway between two
neighboring lattice points) of the layer beneath. Patterson [11] and Fields [9] have shown that

this is the least dense lattice with kissing number 10.

4. The densest three-dimensional isodual lattice

Theorem 2. The c.c.c. lattice is the unique densest three-dimensional isodual lattice.



Let A be an indecomposable three-dimensional isodual lattice, with dual A*. From §8 of
[8] the isoduality of A implies that just one of the conorms is zero. We denote the conorms
(as in [8]) by 0, po1, poz, Po3, P12, P13, P23, as indicated in Fig. 1(a). We also set p;; = p;; for
0<i<y<3.

The conorms for A* are shown in Fig. 1(b) (see Fig. 8 of [8]), where

pp = mill{P01P237 Po2P13, P03P12} > (5)

PPijk = PijPjk + PikPki + PkiDij - (6)
The minimum in (5) is attained just once, and without loss of generality we assume pp = pozp13,

so that poapiz < poi1p2s and pozpiz < pospis.

The conorms in Figs. la and 1b must agree, up to an automorphism of the projective plane.

This means that for some permutation 7 of {0,1,2,3} we have a set of six equations

Ppoiz2 + PP = Pmm s PPo13 + PP = Prom >
PPo23 + PP = Proms s PP123 + PP = Prom
Po1p23 = PP = Pmors s Po3Pi2 = PP = Pmm
to solve for po1,...,p23. In sixteen of the 24 cases, e.g. 7 = {0, 1,2, 3}, there is no solution

with all p;; > 0. In four cases, e.g. 7 = {0,3, 1,2}, there is a two-parameter solution which

after relabeling of the variables can be taken to be

_ a(2-0) _op
Por = D > Po2 = D’
20(1 — 28(1 —
Poz = % ) P12 = % ) (7)
P13 = 2(1 — al))(l - ﬁ) ) P23 = w )

where D = 2 — aff and 0 < a,8 < 1. The corresponding Gram matrix is (4). There is an
obvious symmetry interchanging a and 3, so we may assume a < . In the remaining four
cases, e.g. T = {0, 1,3,2}, there is one solution, the c.c.c. lattice (see §3), which is in fact the

case a = # = 2 — /2 of the two-parameter family. O

Remark. The indecomposable isodual lattice in (ii) is generated by the three vectors

(%a,a,%) , (2,0,0) , (A—%,—l,O) , (8)
A:,/;_O‘gﬁ.
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where




The lower bounds for the Hermite constant are obtained from the lattices given in Table 1.2
of [5]. The entries in the 7/ column for n < 9 are taken from [3]. The entries in the 7/, column
for » > 10 are based on the same lattices used for the Hermite constant, except for dimensions
10 (when we use Dj) and 13 (when we use the lattice Q13(2) of [7]). Decimal expansions have
been truncated to four places.

This paper makes use of the terminology for describing three-dimensional lattices intro-

duced in [8].

2. The classification of three-dimensional isodual lattices
Theorem 1. (i) A decomposable three-dimensional lattice is isodual if and only if it is equiv-

1 0 0
[O o —h] (2)
0 -h 8

alent to one with Gram maltriz

where

af—h*=1 and 0<2h<a<p. (3)

(ii) An indecomposable three-dimensional lattice is isodual if and only if it is equivalent to

one with Gram matriz

- 2a -

5 —af3 —a(2-0)
1 23 268(1 - )
2—af —ap o «a (4)
a2 ) —Qﬁ(i—a) a2ﬂ—|—2al—2ﬂ—4aﬂ_

where 0 < a < g < 1.

Proof. (i) is easily established using the fact that every one- and two-dimensional lattice
of determinant 1 is isodual. (ii) We recall the main result of [8], which is that each three-
dimensional lattice is uniquely represented by a projective plane of order 2 labeled with seven
numbers, the conjugate norms or conorms of the lattice, whose minimum is 0 and whose
support is not contained in a proper subspace. Two lattices are isomorphic if and only if the
corresponding labelings differ only by an automorphism of the plane. (The conorms are the
familiar Selling parameters [12] supplemented by 0, but for several reasons — see [8] — it is

preferable to work with a set of seven numbers rather than six.)



We have also found reasonably dense isodual lattices in all dimensions up to 24. The best
of them are shown in Table I. The table also gives lower bounds for 4, and 7,,. We expect that
many of these bounds are in fact the exact values (although the lower bounds for pg, p11, f13,

p15 are probably weak).

Table 1. Highest minimal norm g, of n-dimensional isodual lattice; corresponding lattice A;
Bergé-Martinet constant +/; Hermite constant 7,.

n o A Tn In

1 1 I 1 1

2 V3/3 = 1.1547 /34, VA3 = 1.1547 1.1547
3 1o+ +/1/5=1.2071 c.c.c. V3/9 = 1.2247 1.2599
4 V2 = 1.4142 2p, V2 1.4142
5 >T/5=14 (A4h1)7T > /2 1.5157
6 >14+/T/3=15773 (D4 \/%AQ)-I_ > /8/3=1.6329 1.6653
7 > 5/3 = 1.6666 (Eg31)t > /3 =1.7320 1.8114
8 2 Exg 2 2

9 > 12/, = 1.7142 (AeT3)t > /16/5 =1.7888 > 2
10 > 2 D3 Q1o > 2 > 2.0583
11 > 74 =1.75 (A7A38,)F > 2 > 2.1401
12 > /1673 = 2.3094 Kqy > /16/3 = 2.3094 > 2.3094
13 > 2 (A A)t > /245 =2.1908 > 2.3563
14 > /1673 = 2.3094 Q14 > \/16/3 = 2.3094 > 2.4886
15 > 2 AL >6=2.4494 > 2.6390
16 > /8 = 2.8284 At > /8 =28284 > 2.8284
23 >3 O33 > /12 = 3.4641 > 3.7660
24 >4 Aoy >4 >4

The lattices are described using the notation of [5], [6], [7]. In particular, if L is a lattice
with Gram matrix A, °L has Gram matrix c¢A. Also, (LM)* denotes a lattice obtained by
gluing together component lattices L and M (cf. [5], Chap. 4).

The isodual lattices in dimensions 5-7, 9-11, 14 mentioned in the table are given in §6.
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1. Introduction

In a recent paper, Bergé and Martinet [3] say that a lattice A is dual-extreme if it achieves a
local maximum of {u(A)u(A*)}'/2, where A* is the lattice dual to A and y denotes the minimal
nonzero norm (or squared length), and is dual-critical if it achieves the global maximum 7/
of {u(A)u(A*)}H/? over all n-dimensional lattices. They prove that the absolutely extreme
lattices in dimensions n < 8 are dual-extreme, and indeed are dual-critical for n < 4.

We call a lattice isodual if it is isometric, or geometrically congruent, to its dual, i.e. if it
differs from its dual only by (possibly) a rotation and reflection. A lattice that is geometrically
similar to its dual can always be rescaled to become isodual, when it will have determinant
1. While investigating lattices arising from Riemann surfaces, Buser and Sarnak [4] raised the
question of finding the densest n-dimensional isodual lattices, or equivalently of determining

o, the maximal value of p(A) over all n-dimensional isodual lattices A. Clearly
Hn < T < s (1)

where v, is the Hermite constant.

The densest lattices known in dimensions 1,2,4,8,12,16,24 and 48 are isodual [5], and so in
particular we know the values py = 71, o = 72, ft4 = 74 and ug = 7s.

In the present paper we classify all three-dimensional isodual lattices (Theorem 1) and
show that the densest is a certain lattice we call the c.c.c. lattice (Theorem 2), thus proving
that us = /2 4+ /1/5. This lattice, which also makes a brief appearance in [3], is described in

§3. In Theorem 3 we show that it is also the most economical isodual covering.
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ABSTRACT

A lattice is called isodual if it is geometrically congruent to its dual. We show that the
densest three-dimensional isodual lattice is the “central centered-cuboidal” lattice, a lattice
which is in a sense the mean of the face-centered and body-centered cubic lattices. This lattice
is also the most economical three-dimensional isodual covering. We give a number of other

dense isodual lattices in R", n < 24.

*This paper will appear in Journal of Number Theory. It is also DIMACS Technical Report 93-88, December
1993.



