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Abstract

The sybil attack is one of the easiest and most com-
mon methods of manipulating reputation systems. In
this paper, we quantify the increase in reputation due
to creating sybils under the PageRank algorithm. We
compute explicit bounds for the possible PageRank
value increase, and we use these bounds to estimate
the rank increase. Finally, we measure the effect
of sybil creation on nodes in a web subgraph. We
find that the resulting rank and value increases agree
closely with the analytic values.

1 Introduction

Ranking systems are an important tool in a wide
range of online settings, such as online shopping (Ama-
zon, eBay), as a means of inferring reputation of sell-
ers or goods; in the peer-to-peer setting, to weed out
untrustworthy or freeloading users; and the area of
online search, as a means of ranking webpages.

However, many ranking systems are vulnerable
to manipulation, and users often have incentives to
cheat. A higher ranking may offer an economic bene-
fit - for example, a study of the eBay reputation sys-
tem found that buyers are willing to pay a premium of
8% for buying from sellers with high reputation [11].
Another example is in online search, where websites,
in order to gain web traffic, use the services of on-
line companies which help sites improve their search
engine rankings.

PageRank is currently one of the most widely used
reputation systems. It is applied in peer-to-peer net-
works in the EigenTrust algorithm [7], and in web
search, as the foundation for the Google search al-
gorithm [9]. Although PageRank has proven to be a
fairly effective ranking system, it is easily manipula-
ble by a variety of strategies, such as collusion or the
sybil attack [12, 5].
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We focus primarily on the sybil attack, described
by Douceur [4]. In this attack, a single user creates
several fake users - called sybils - who are able to
link to (or perform false transactions with) each other
and the original user. For example, in the web, a
user can create new webpages and manipulate the link
structure between them. In many online settings, new
identities are cheap to create, and it may be difficult
to distinguish between sybils and real users. In the
case of PageRank, users have already been observed
performing sybil-like strategies, such as forming link
farms [5].

It is easy to see that PageRank is vulnerable to
sybil attacks. However, as we showed in earlier work,
almost all practical reputation systems are vulner-
able to sybil attacks [3]. It may be unrealistic to
restrict one’s attention only to sybilproof reputation
systems, and reputation systems may vary widely in
their exploitability. For example, the indegree repu-
tation function (where a user’s reputation value is his
indegree) is easily exploitable - a user may increase his
indegree to any desired value by creating sybils. On
the other hand, a reputation function based on maxi-
mum flow is not sybilproof with respect to rank, but is
more difficult to manipulate. Thus, it becomes impor-
tant to gauge the degree of vulnerability of different
reputation systems. In order to systematically com-
pare PageRank to other reputation systems, we de-
velop a method of estimating the potential PageRank
rank and value improvement of a node in a web-like
graph.

In this paper, we begin this research program with
a formal and experimental analysis of the vulnerabil-
ity of PageRank to sybil attacks. We provide analytic
estimates of this vulnerability, which only depend on
the overall PageRank distribution in the graph and
then check the tightness of our analysis on empirical
web graph data. We find a very close agreement and
are led to believe that our estimates can be applied
to estimate the vulnerability of PageRank on web-like
graphs.
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2 Related Work

Our work is related to [12] which considers the ef-
fect of collusion on PageRank. Collusion is a strat-
egy where users mutually agree to alter their outlink
structure in order to improve their reputations. Col-
lusive strategies and sybil strategies differ in at least
two critical ways. First, a sybil creator can gain rep-
utation at the expense of his sybils, while colluders
are unlikely to cooperate unless both can raise their
reputations. Second, sybil strategies are likely to be
less constrained in size - a user can often easily cre-
ate a large sybil group, while it may be more difficult
to find an equal number of users to form a colluding
group.

Other related work includes Gyongyi and Garcia-
Molina who give a fairly exhaustive list of strate-
gies to falsely boost reputation on the web [5]. The
PageRank algorithm itself has generated a lot of inter-
est and study. Bianchini, Gori, and Scarselli consider
the total PageRank within a community of nodes, and
give methods for a community to boost its total rep-
utation [2]. A survey paper by Langville and Meyer
gives a general overview of the PageRank algorithm,
and discusses many issues including PageRank stabil-
ity and efficient computation [8].

3 Preliminaries

Given a set of users V , we represent the setting as a
directed graph G = (V, E) . The edges E represent
direct trust between users. For example, in the web,
an edge (i, j) ∈ E may represent a hyperlink from site
i to site j. Let n = |V |. Let d(i) be the outdegree
of the node i ∈ V . We require that every node has
positive outdegree. Since this isn’t always the case
for real world graphs, we will insert a self-loop for all
nodes with outdegree 0. We will assume that no other
nodes have self-loops.

3.1 PageRank

The PageRank values on a network graph G are given
by the stationary probabilities of the following ran-
dom walk on G: with probability 1− ε, a walker at a
node i walks along an outgoing edge of i, choosing the
edge uniformly with probability 1

d(i) , and with proba-
bility ε, jumps to a node chosen uniformly at random.
Let v be the vector of stationary probabilities - vi is
the stationary probability of the node i. The resulting
PageRank ranking is given by the order of the values
of v, sorted from highest to lowest (note that a higher
value vi corresponds to a lower numbered rank). For

convenience, we will typically not talk about the sta-
tionary vector of probabilities v, but will instead use
π = nv. Clearly, π yields the same ranking as v. For
a node i, we will refer to πi as its PageRank value and
its order on a highest to lowest list sorting the πj ’s as
its rank.

Given G, we can construct the adjacency matrix
of G, A, Aij = 1 if (i, j) ∈ E, and 0 otherwise. Let
M(G) be the matrix given by M(G)ij = Aji

d(j) .
Note that π is the principal eigenvector (with eigen-

value 1) of the matrix (1− ε)M(G) + ε
n

−→
1
−→
1 T , where−→

1 is the vector of all ones. That is, π satisfies the
following matrix equation:

(1− ε)M(G)π + ε
−→
1 = π

We may sometimes find it convenient to express
the above as a scalar equation: for a node i ∈ V ,

πi = (1− ε)
∑

j→i

πj

d(j)
+ ε,

where j → i to denotes (j, i) ∈ E (i.e. j points to
i).

We can also consider the iterative version of the
above equations, where πt

i → πi as t →∞ [8].

π0
j = 1, ∀j; πt

i = (1− ε)
∑

j→i

πt−1
j

d(j)
+ ε

3.2 Sybil Strategies

In a sybil strategy, a node creates k sybils, and manip-
ulates his own outlinks and those of his sybils. More
formally,

Definition 1 Given a graph G = (V,E) and a node
i ∈ V , a sybil strategy for the node i, is a new
graph G′ = (V ′, E′), such that V ′ = V ∪ S, where
S = {s1, . . . , sk} is a set of sybils (disjoint from the
original node set) and E′ is such that for all j ∈ V, j 6=
i, for all x ∈ V , (j, x) ∈ E ⇔ (j, x) ∈ E′.

A sybil collective is the node set S ∪ {i} (i and
its sybils). Let ri be the rank of i in G, πi be the
PageRank value of i in G. Let ρi be the new PageRank
value for i in G′ and r′i be the new rank. Then a
strategy is successful for i with respect to value if
ρi > πi. It is successful with respect to rank if r′i < ri.

We say that a reputation function is value (or
rank) sybilproof if for all graphs G, no node has a suc-
cessful sybil strategy with respect to value (or rank).

It is straightforward to come up with an exam-
ple where a node can increase its PageRank through
creating sybils. In [3], we showed that no nontrivial
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symmetric reputation system (i.e. one that is invari-
ant under a relabelling of the nodes) can be sybil-
proof. The version of PageRank that we described in
the previous section is clearly symmetric, so there is
a network where a node could benefit from creating
sybils. Further, by this result, we know that adjust-
ing some of the parameters of PageRank (such as the
value of ε) in a nontrivial way while maintaining sym-
metry cannot yield a sybilproof mechanism. However,
it is easy to show that even an asymmetric version of
PageRank (such as the version used in EigenTrust)
may be manipulated with sybils.

Note that a sybil creator may choose any config-
uration of edges within the sybil collective. However,
for the purposes of this paper, we focus on one partic-
ular sybil strategy. In this strategy, a node i removes
his outlinks, creates k sybils, and links to each of his
sybils. The sybils link only to the sybil creator i. Fig-
ure 4 (in the appendix) depicts a node applying this
strategy with 3 sybils.

Bianchini et. al. show that this configuration con-
centrates the maximum amount of reputation on the
sybil creator [2]. Intuitively, any random walk inside
the sybil collective must hit i on every other step.
Further, removing any links from the collective to
nodes outside of the collective improves their overall
PageRank - a random walk which enters the collective
must remain there until a random jump.

4 Analysis

Our main results are analytic bounds for the value
increase upon creating sybils which are presented be-
low. We then compare these bounds with empirical
data.

4.1 Value Increase

We give the following upper and lower bounds for
value increase:

Theorem 2 Let π be the old PageRank value vector,
and ρ be the new PageRank vector when node i creates
k sybils by the above strategy, keeping all other nodes
fixed. Then, if i has no self-loop in the original graph,
we have the following bounds:

πi + k
1− ε

2− ε
≤ ρi ≤ πi + ε(1− ε)k

ε(2− ε)

Since we typically talk about the ratio between ρ
and π, we give the corresponding bounds for the value
inflation ratio ρi/πi:

1 +
(

1− ε

2− ε

)
k

πi
≤ ρi

πi
≤ 1

ε(2− ε)
+

(
1− ε

2− ε

)
k

πi

A proof of this theorem is included in the ap-
pendix.

These bounds allow us understand how the value
increase changes as we increase the number of sybils
or vary ε. Further, for given values of ε and π, we
can estimate the number of sybils needed to increase
a node’s reputation by some given amount.

Increasing k increases both the upper and lower
bounds, and appears to yield larger increases in the
value inflation ratio when πi is small. For example, for
ε = 0.15, we have 1 + 0.46( k

πi
) ≤ ρi

πi
≤ 3.6 + 0.46( k

πi
),

meaning that for a node with value πi equal to the
mean value 1, doubling one’s value requires between
1 and 3 sybils. For a node with the median value,
which is ≈ 0.3 in our data sample, it requires only 1
sybil.

The above bounds are tight. The upper bound is
attained for nodes i that are contained in no cycles.
One can show (using similar techniques as in the proof
of the theorem), that in this case, the reputation of
i’s recommenders (those nodes j with j → i) are un-
changed when i removes its outlinks. With a simple
computation (or by following the proof of the above
theorem), the equality follows.

The lower bound is attained for subgraphs in a
“petal” configuration, where the node i points only to
nodes who point only back at i (as in the sybil config-
uration). This configuration attains the lower bound
because i’s recommenders were previously “sybil-like”,
in that they attained most of their reputation from
i and returned as much reputation as possible to i.
Once i removes its outlinks, the value of the links
(j, i) to i become very small.

However, most nodes may not lie in either of the
extremes described above. Indeed, it is reasonable
to expect (due to the observed high clustering in the
web [1]) that some nodes lie on short cycles, leading
to configurations similar to the “petal”. At the same
time, some of the edges out of i are likely not part of
short cycles, suggesting configurations as in the upper
bound.

4.1.1 Data for k = 1

In this section and the ones that follow we use a
dataset from a webcrawl, available at [6]. The to-
tal number of nodes is n = 281, 903. We preprocess
the graph to insert self-loops for each node with out-
degree 0, to guarantee that the matrix M(G) of the
graph (defined above) is indeed stochastic. In the
first experiment, we select 10000 nodes uniformly at
random from the graph, and for each node selected,
we create a single sybil for that node under the above
sybil strategy, keeping all other nodes fixed. We set
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Figure 1: Old PageRank value (x axis) versus new
value/old value ratio for the case of 1 sybil, jump
parameter ε = 0.15. The lines are given by the theo-
retical upper and lower bounds.

the jump parameter ε to 0.15.
In Figure 1, we plot the old PageRank value πi

versus the ratio ρi

πi
. For the sake of visual clarity, we

cut off the graph at πi = 3, which still includes the
vast majority of the nodes (∼ 97%). We observe that
the nodes are able to achieve an average linear factor
increase of 4.7. Further, the upper and lower bounds
of the data appear to match closely with the com-
puted bounds. For larger values of πi, we found that
both the upper and lower bounds appear to be tight,
and the data points are roughly evenly distributed
between the bounds. For smaller values, the upper
bound appears tight, while the lower bound is not.
One possible explanation for this discrepancy is that
the lower bound (as discussed in the previous section)
is attained when the original node is in a sybil-like
structure, where the node is contained nearly exclu-
sively in small cycles (i.e. many paths out of the node
are small cycles). However, being in such a structure
may also suggest a higher reputation value than a typ-
ical node, so nodes that nearly attain the lower bound
may tend also to have higher reputation. In fact, the
central node of a petal will have a PageRank value
πi ≥ 1, and we note that the lower bound appears
tight in this regime in our plot.

Further, we can note that aside from the devia-

tion from the lower bound for lower reputation nodes,
the nodes appear fairly evenly spread between the
bounds, suggesting, as we stated earlier, that most
nodes are widely distributed between the extremes of
being in no cycles and being in many short cycles.

4.1.2 Data for k = 1, 2, 5, 10

For this experiment, we select a node uniformly at
random from the graph. For each node selected, we
set up a sybil strategy for that node with k = 1, 2, 5, 10.
We set the jump parameter to ε = 0.15. We repeat
this 1000 times.

We plot the ratio of new PageRank to old PageRank
in Figure 5, in the appendix. The data points ap-
pear roughly of the same shape as in the k = 1 case,
and the boundaries of the data points agree with our
computed bounds. Further, as in our bounds, we can
observe that lower value nodes tend to gain larger in-
creases with k and higher value nodes tend to have
more modest increases.

4.2 Rank Increase

In many settings (such as web page ranking) one cares
mainly about the ranking implied by the PageRank
values and not the actual values themselves. In this
section we evaluate the rank increases for a large class
of graphs based on an analysis of a large web graph.

Given the value bounds from Theorem 2, if we as-
sume that the PageRank values of most other nodes
remain roughly fixed, we can estimate the rank in-
crease using the PageRank distribution. Panduran-
gan et.al. estimate the probability density of PageRank
in a large web subgraph, and find a density of ≈ c

x2.1 ,
where c is a constant [10]. If we assume that the
PageRank density is F (x) = c

x2.1 , then Pr(πi ≥ x) =
d

x1.1 for some constant d. For a node i, if its PageRank
value is πi, a rough estimate of its rank would be
nPr(πi ≥ x) = nd

x1.1 . We found that our dataset
matches the rough estimates above fairly closely - for
nodes with rank < 40000, the value to rank function
is ≈ c1v

−1.1, and for nodes with rank > 50000, the
value to rank function is ≈ c2v

−0.86.
Let ri be the old rank of i and r′i be the new

rank. Let r(x) = cx−1.1 be the PageRank value to
rank function (for some constant c). Then, the new
rank to old rank ratio r′i

ri
≈ r(ρi)

r(πi)
= (πi

ρi
)1.1, using the

PageRank value ratio bounds, satisfies the bounds

(
1

1
ε(2−ε) + ( 1−ε

2−ε )
k
πi

)1.1

≤
(

πi

ρi

)1.1

≤
(

1
1 + ( 1−ε

2−ε )
k
πi

)1.1

.
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Figure 2: Old rank (x axis) versus new rank for the
case k = 1, ε = 0.15

For ε = 0.15, and k = 1, the above bounds are
( πi

3.6πi+0.46 )1.1 ≤ (πi

ρi
)1.1 ≤ ( πi

πi+0.46 )1.1. For large πi,
we expect a lower bound in the rank increase of 0.28
and an upper bound of ≈ 1. For nodes with small
πi, say πi < 1, which accounts for more than 80%
of the nodes in our graph, we have a lower bound
of approximately 0.13, and an upper bound of 0.66.
From our analysis of the bounds for the value ratio
in the previous section, we expect the lower bound to
be much more accurate than the upper bound in the
small πi regime.

Given these tools, we can estimate the number of
sybils needed for the median node (with rank n

2 ) to
rise to the top k, for any k. Take the rank function
r(v) to be r(v) = c

v1.1 for a constant c. Let r1 = n
2

be the rank of the median node. r2 = k. We can
estimate the corresponding values for a graph of size
n: v1 = r−1(r1) = ( 2c

n )1/1.1, v2 = r−1(r2) = ( c
k )1/1.1.

The value ratio v2
v1

= ( n
2k ).91. Plugging in the value

ratio from the theorem inequalities (for ε = 0.15),
we have k ∼ πi

.46 ( n
2k ).91. Therefore, for a graph with

∼ 300000 nodes, and median πi = 0.3, a median node
requires ∼ 500 sybils to rise to the top 100. In a
graph with median value πi < 1, a median node would
require less than ∼ 76 sybils to rise to the top 1%.

4.2.1 Data for k = 1

The experimental setup is identical to the one de-
scribed in section 3.1.1. We plot the old rank ver-
sus the new rank in Figure 3. We find that all but
the very highest or very lowest ranked nodes are able
to improve (or decrease) in rank by a factor of ap-
proximately 0.14 times - approximately a 6-fold im-
provement. This value agrees well with our computed
lower bound (for small π) of 0.13. Further, we can ob-
serve that for nodes with original rank > 50000 (these
nodes have πi > 1), the improvement in rank is much
more spread out, and less significant - which may be
explained by the fact that the PageRank value ratios
are more spread out, and attain the upper and lower
bounds in the large πi regime.

4.2.2 Data for k = 1, 2, 5, 10

The experimental setup here is identical to the one
described in section 3.1.2. We plot the old rank versus
the new rank in Figure 6 (in the appendix) for k =
1, 2, 5, 10.

We see a much more dramatic improvement in
rank than value resulting from increasing the num-
ber of sybils. We find average ratios of old rank to
new rank, ri

r′i
of 7.1 for k = 1, 16.4 for k = 2, 40

for k = 5, and 90.9 for k = 10. As expected, as
in the value case and suggested by our bounds, sybil
creation tends to be more effective for higher ranked
(i.e., lower πi) nodes.

4.3 Varying ε and sybil strategies

One way to vary the PageRank algorithm is to alter
the parameter ε, which determines the probability of
making a random jump at each step of the random
walk. Our value bounds show that as ε increases, the
potential increase in value declines. Intuitively, if ε
is high, the effect of creating sybils may be reduced,
since a random walk does not remain trapped in sybil
collectives for a long time. By repeating the previous
experiments for various values of ε, we found that the
value increase does decline predictably as ε increases.
However, nodes were still able to achieve significant
rank improvements as we increased ε. In fact, higher
values of ε yielded slightly higher average increases in
rank for sybil-creating nodes. Figure 6 plots the av-
erage old rank to new rank ratio as ε varies. Though
the value increase declines as ε increases, raising ε
increases the likelihood of choosing a node at ran-
dom in the PageRank random walk, making the over-
all PageRank distribution more uniform, compressing
the set of typical pagerank values
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We also considered two different sybil strategies.
In one, users do not remove their outlinks to non-
sybil nodes. In the other, users move their outlinks
to a sybil node. In both of these cases, we observed
an improvement in PageRank value and rank, though
slightly less than in the original strategy.

5 Future Work

Our analysis shows that PageRank is extremely ma-
nipulable, even with simple strategies using a small
number of sybils. We provided tight analytic approx-
imations that can be used to estimate the manipula-
bility of Pagerank in a variety of settings.

One issue that we haven’t considered is the cor-
relations between web pages on similar topics. For
example, typically - and particularly in the web set-
ting - a node is competing with a subset of nodes
relating to the same topic (e.g. an electronics retailer
probably doesn’t care about ranking above a politi-
cal weblog). Therefore, one potential further area of
study is an analysis of how much the improvements
observed above allow a typical node to beat its most
likely competitors. Further the subset of competitors
may look very different from a uniformly random sub-
set of the web. For example, a subset of nodes all re-
lating to the same topic may be more clustered than
a random subset of the web. Is sybil creation more
effective or less in this setting?

In this paper, we focus entirely on the PageRank
algorithm, and find that it is easily manipulable. How-
ever, there are many other potential reputation sys-
tems, and we do not expect all of them to be as eas-
ily manipulable with sybils. Similar studies on the
manipulability of other reputation systems may al-
low direct comparison of the manipulability of various
reputation systems.

In particular, one would expect that there would
be a trade off between the quality of the ranking sys-
tem its manipulability. For example, as shown in
[3], the “shortest path” ranking system is immune
to sybil attacks; however, it is most likely less effec-
tive at ranking than PageRank. The development of
robust and efficient ranking mechanisms is an impor-
tant open problem.
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In this section, we wish to prove the following theo-
rem:
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Figure 3: On the left: a single node with both outlinks and inlinks from the rest of the graph (cloud). On
the right: the node removed its outlink, and created 3 sybils, arranged in the “petal” formation.

Theorem 3 Let π be the old PageRank value vector,
and ρ be the new PageRank vector when node i creates
k sybils by strategy A, keeping all other nodes fixed.
Then, if d(i) > 0, we have the following bounds:

ρi ≤ πi + ε(1− ε)k
ε(2− ε)

ρi ≥ πi + k
1− ε

2− ε

Let G = (V,E), be a directed graph with V =
{1, . . . , n}. For j ∈ V , let d(j) be the outdegree of
the node j. We define M(G) be the n × n matrix
such that

M(G)ij =
{ 1

d(j) if (i, j) ∈ E

0 otherwise

Define M̃, v, w such that

M(G) =
{

M̃ w
vT 0

}

WLOG let i = n. Let G′ = (V, E′) be the graph
where n removes its outlinks and creates a self loop.
Let G′′ be the graph where n has k sybils as in strat-
egy A.

Let π be the original PageRank vector for G, with
‖π‖1 = n, and let π′ be the PageRank vector for
G′, with ‖π′‖1 = n. Let ρ be the n + k vector such
that ρx = π′x for all x < n, ρn = 1−ε

2−εk + 1
2−επ

′
n and

ρx = 1
2−ε + 1−ε

2−ε
π′n
k for all x > n. By considering the

matrices M(G′),M(G′′) in block form as above, an
easy computation shows that (1−ε)M(G′′)ρ+ε

−→
1 = ρ.

Therefore, ρ is the unique PageRank vector of G′′

(normalized to n + k).
It suffices then to show that (2− ε)πn ≤ π′n ≤ πn

ε

Lemma 4 π′j ≤ πj for all j < n.

Proof: Note that the outdegrees of nodes j < n
in G′ are equal to their outdegrees in G, so we can
write the outdegree of x for x < n as d(x). Re-
call the iterative version of PageRank: (π′j)

t = (1 −
ε)

∑
x→j

(π′x)t−1

d(x) + ε, for t ≥ 1, and (π′j)
0 = 1 for all

j. Since (π′j)
t → π′j as t → ∞, it suffices to show

that (π′j)
t ≤ πt

j for all t, and for all j < n. This is
trivially true for t = 0. By induction, assume that
(π′x)t−1 ≤ πt−1

x for all x < n. Consider some node
j < n.

(π′j)
t = (1− ε)

∑

x:(x,j)∈E′

(π′x)t−1

d(x)
+ ε

≤ (1− ε)
∑

x:(x,j)∈E,x<n

(πx)t−1

d(x)
+ ε

≤ πt
j

The first inequality follows from induction and the
fact that n doesn’t point to any j < n in G′.

Plugging in πj for each π′j in the PageRank for-
mula for πn gives the upper bound. For the lower
bound, we have the following lemma:

Lemma 5 π′n ≥ (2− ε)πn.

Proof: Note that we require the assumption that
d(n) > 0 for this lemma. Consider a node i 6= n. In
the graph G′, we have

π′i = (1− ε)
∑

j→i,j 6=n

π′j
d(j)

+ ε,

7
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Figure 4: Old PageRank value (x axis) versus old
value/new value ratio (y axis) for k = 1, 2, 5, 10. The
lines are the theoretical upper bounds for the various
values of k

by the fact that n points to no nodes other than itself
in G′. Applying the previous lemma, we have

π′i ≤ (1− ε)
∑

j→i,j 6=n

πj

d(j)
+ ε.

Note that πi = (1−ε)
∑

j→i,j 6=i
πj

d(j)+(1−ε)δni
πn

d(n)+ε,
where δni = 1 if (n, i) ∈ E, and 0 otherwise. There-
fore, we have

π′i ≤ πi − (1− ε)δni
πn

d(n)
.

We can sum the inequality over all i 6= n:
∑

i6=n

π′i ≤
∑

i6=n

πi − (1− ε)πn,

where we note that there are exactly d(n) nodes among
i 6= n with δni = 1 (n had no self-loops in the original
graph). Adding πi + π′i to both sides, we have

πi +
∑

i∈V

π′i ≤ π′i +
∑

i∈V

πi − (1− ε)πn.

Finally, by normalization,
∑

i∈V πi =
∑

i∈V π′i = n,
so πi ≤ π′i−(1−ε)πn. Rearranging, we get the desired
inequality: (2− ε)πi ≤ π′i
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Figure 5: Old rank versus new rank for k = 1, 2, 5, 10,
ε = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

jump parameter

a
v
e
ra

g
e

 o
ld

 r
a

n
k
/n

e
w

 r
a
n

k

Figure 6: Jump parameter epsilon vs. average old
rank/new rank ratio

8


