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Abstract

We study path auction games in which multiple
edges may be owned by the same agent in this pa-
per. The edge costs and the set of edges owned by
the same agent are privately known to the owner of
the edge. We show that in this setting, given the as-
sumption the losing agent always has 0 payoff, there
is no individual rational strategyproof mechanism
in which only edge costs are reported. If the agents
are asked to report costs as well as ownership, we
show that there is no efficient mechanism that is
false-name proof. We then study a first-price path
auction in this model. We show that, in the special
case of parallel-path graphs, there is always a pure-
strategy ε-Nash equilibrium in bids. We show that
this result does not extend to general graphs: we
construct a graph in which there is no such ε-Nash
equilibrium.

1 Introduction and Motiva-
tion

In the path auction game, there is a network G =
(V, E), in which each edge e ∈ E is owned by an
agent. The true cost of e is private information
and known only to the owner. Given two vertices,
source s and destination t, the customer’s task is
to buy a path from s to t. This path auction can
be used to model problems in supply chain man-
agement, transportation management, QoS routing
and other domains. Recently, path auctions have
been extensively studied [11, 9, 2, 8, 4]; much of

∗†Supported in part by NSF grant 0347078.

this literature has focused on the Vickrey-Clarke-
Groves (VCG) mechanism [12, 3, 6]. In the VCG
mechanism, the customer pays each agent on the
winning path an amount equal to the highest bid
with which the agent would still be on the winning
path.This mechanism is attractive because it is ef-
ficient andstrategyproof,i.e., the dominant strategy
for each agent is to report its true cost.

In the traditional path auction model, each agent
only owns one edge in the graph, and there is no co-
operation between agents. Here, we study a variant
of the path auction game in which each agent may
own multiple edges. In this extended model, if the
ownership information is publicly available (i.e. the
customer knows which agent owns which edge), the
VCG mechanism design approach yields a strate-
gyproof mechanism.

In practice, however, the ownership information
is more likely to be private – it could be costly for
the customer to find out the true ownership infor-
mation, or the agent may have an incentive to hide
its true ownership information in order to get bet-
ter payoff. For example, in Figure 1, there are two
agents: a and b. Agent a owns edges (s, i) and (i, t)
with true cost 1 each; agent b owns edges (s, j) and
(j, t) with true cost 2 each. If agents a and b reveal
the true ownership information to the customer,
the most natural VCG mechanism will choose path
(s, i), (i, t) as the winning path and pay agent a
an amount equal to 2. However, if agent a hides
its ownership information, the mechanism will treat
edges (s, i) and (i, t) as owned by different agents.
When the agents bid their true costs, the winning
path stays the same, but the payment to agent a
would be 2× 3 = 6. Moreover, when the ownership
information is not available to the customer, agent
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Figure 1: VCG mechanism is not strategyproof for
this game

a can increase its payoff by bidding lower than its
true cost. For example, it can bid 0.5 for both edges
(s, i) and (i, t). This does not change the winning
path, but the payoff to agent a would increase to
2×3.5 = 7. Hence, the straightforward VCG mech-
anism, which assumes that each edge is owned by
an individual agent, is not strategyproof. In this
paper, we model situations in which each agent can
own multiple edges at the same time, but the own-
ership information is private. Thus the traditional
path auction model is a special case of our extended
model. One real-life example of our model is an on-
line auction system in which each seller/buyer can
have multiple accounts in the system. Now, if a
buyer wants some combination of goods that can be
expressed in path auction form, it is hard for her to
find the true identity of each seller account, and so
she is faced with the unknown-ownership scenario.

In this paper, we analyze path auctions under
two solution concepts: dominant strategies and
Nash equilibrium in bids. We begin by studying
truthful dominant strategy mechanisms, i.e. strat-
egyproof mechanisms. We show that if the agents
only submit bid prices in the auction for each edge,
there is no strategyproof mechanism that satisfies
individual rationality under assumption that the
losing agent always has 0 payoff. The natural ex-
tension is to consider mechanisms in which agents
are invited to reveal their entire private informa-
tion, the ownership of edges as well as the costs.
An important strategic property in this setting is
that the mechanism is false-name proof [13], i.e.,
an agent cannot gain by dividing her owned edges
among two or more pseodonyms. We show that
earlier results on false-name proof mechanisms [13]
imply that there is no Pareto-efficient false-name
proof mechanism in the extended auction format.

We next turn to a first-price auction bidding
game, and study ε-Nash equilibria of this game. For
the class of parallel-path graphs, we constructively
prove that at least one ε-Nash equilibrium exists,
and we prove a lower bound on the total payments
in any such equilibrium. However, we find a non-
parallel-path graph which can be proven not to have

a pure strategy ε-Nash equilibrium.

Please note that all proofs have been deferred to
the appendix.

1.1 Related work

Path auction games have been extensively stud-
ied in recent years. Nisan and Ronen introduced
the shortest-path game in their paper on algorith-
mic mechanism design [11], and showed that the
VCG mechanism for this problem is computation-
ally tractable. Hershberger and Suri [7] described
an improved algorithm for this problem. However,
several authors have noted that the VCG mecha-
nism may pay much higher than the true cost of
the winning path. This has led to the study of the
frugality [2] of VCG mechanism. Archer and Tar-
dos [2], and Elkind et. al [4] studied the frugal path
auction mechanism, and showed that the payments
can be arbitrarily high. Karlin and Kempe [9] ex-
tended the path model to a more general set system
model and introduced a new frugality ratio defi-
nition; they designed a mechanism that performs
better than VCG in path auction. The problem
of agents owning multiple edges was mentioned as
future work in [9]. Immorlica et. al. [8] studied
first-price path auctions in the traditional single-
ownership setting. They showed the existence of a
strong ε-Nash equilibrium in bids, and bounded the
payments in equilibrium. Yokoo et. al. [13] intro-
duced the concept of false-name proof mechanisms,
and showed that in combinatorial auctions, there is
no false-name proof mechanism that satisfies Pareto
efficiency.

2 Definitions and Problem
Statement

First, we introduce the formal definition of path
auction based on the definition of set system in [9].

The simple model of path auction: Given a
graph G = (V, E), each edge e ∈ E is owned by an
agent and has a cost ce, the true cost it incurs if it
is selected. This value is private, i.e. known only to
the agent which owns e. We define the feasible set
F =

⋃
i P i(s, t), where P i(s, t) is the ith path from

s to t. Given two specific vertices s(the source) and
t(the destination), the task of the customer is to
buy a path from s to t by auction. It consists of the
following two steps:
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1. Each agent submits a sealed bid be to
the customer. The bidding vector b is
(be1 , be2 , ..., bem

), where bei
is the bidding price

for edge ei ∈ E. Moreover, let B denote the
bidding space that is the set of all possible bid-
ding vectors.

2. Given the bidding vector b, the customer se-
lects a path P i from the feasible set F as the
winning path, and computes a payment pe ≥ be

for each edge e ∈ P i. We say that if an agent
owns an edge e on the winning path P i, it wins,
and all other agents lose.

In order to implement the auction, we need to de-
sign a mechanism (f, p1, p2, ..., pm), where f : B →
F selects one element in the feasible set as the win-
ning path and pi : B → R computes the payment
to agent i. Moreover, we assume that:

• (G,F ) is common knowledge to the customer
and all agents.

• the game is monopoly free, which means
no edge is in all feasible sets, i.e.⋂

P i(s,t)∈F P i(s, t) = ∅.

• the agent is rational and has quasilinear util-
ity, i.e., the agent want to maximize its utility:
ue = pe(b) − ce if e is on the winning path; or
else ue = 0.

Definition 1. A mechanism is strategyproof if, for
any agent i that owns edge e, any b−i ∈ B−i and b

′
i,

pi(ce, b−i) − ce ≥ pi(b
′
i, b−i) − ce, where b−i is the

bidding vector of all agents except i.

The VCG mechanism is strategyproof in the sim-
ple path auction game, i.e. the dominant strategy
of each agent is to bid its true cost in VCG mecha-
nism.

In the simple path auction model, each agent
only owns one edge in the graph. We extend the
model in the following way:

The extended model of path auction: Now
assume that each agent can own multiple edges. We
can partition the edge set E as: E =

⋃
i Ei, where

Ei is the set of edges owned by agent i. We also
assume that if agent i owns k edges, i.e. |Ei| =
k, it has k identities IDi = {IDi1, IDi2..., IDik},
one for each edge to use in the auction. In the
extended model, a game is monopoly free if for any
agent i, there is at least one path between s and t
in graph (V, E \Ei). A mechanism is strategyproof
if for any agent, the dominant strategy is to bid the

true cost for each edge it owns. Moreover let pi

denote the payment to agent i. Then pi is equal to∑
ej∈Ei

pej
. According to the type of bidding space,

we can define two types of auctions:

Path Auction of Type I: In this type of auc-
tion, the agent is only asked to submit the bidding
price for each edge it owns. The mechanism will
select the winning path and compute the payment
to each edge.

Path Auction of Type II: In this type of auc-
tion, the agent is asked to submit the ownership
information about which set of edges it owns and
the bidding price for each edge it claims to own.
Let o = (oe1 , oe2 , ..., oem

) be the claimed ownership
information vector, where if edge ej is owned by
agent i (i.e. ej ∈ Ei), oej

∈ IDi. We assume that
no more than one agent claims to own the same
edge and each edge is claimed to be owned by some
agent. Since the agent has one identity for each
edge it owns, it can choose arbitrary strategy to re-
port the ownership information for edges owned by
itself.

We will not only study the strategyproof mecha-
nism in the above two types of auctions, but also a
weaker solution concept: ε-Nash equilibrium.

Definition 2. An ε-Nash equilibrium for a game
is a set of strategies, one for each player, such that
no player can unilaterally deviate in a way that im-
proves its payoff by at least ε.

3 The Nonexistence of strate-
gyproof Mechanism

In the extended model of path auction, the question
to answer is: Is it possible to design a mechanism
such that it is in every agent’s best interest to bid
her true cost? We focus on the auction of type
I in subsection 3.1 and the auction of type II in
subsection 3.2.

3.1 No individual rational strate-
gyproof mechanism in auction of
type I

In auction of type I, we can construct a trivial strat-
egyproof mechanism, which always selects a fixed
path as the winning path and pays a fixed amount
of money to the edges on the path. We call such
a mechanism the dictator mechanism. It is not

3



hard to verify that the dictator mechanism is strat-
egyproof, but it might not be individual rational.
The definition of individual rational is:

Definition 3. A mechanism is individual rational
if, for any agent i, the payment to itself is at least
the true incurred cost when it is selected by the
mechanism, i.e. pi ≥ ci.

Based on the definition of individual rationality,
we have the following theorem:

Theorem 1. Given the assumption that the losing
agent always has 0 payoff, there is no strategyproof
mechanism for auction of type I that satisfies indi-
vidual rationality.

We believe that if we remove the assumption that
the losing agent always has 0 payoff, the theorem
still holds. It would be interesting to find a simple
proof for such extension of theorem 1.

3.2 No false-name proof mechanism
in auction of type II that satisfies
Pareto efficiency

As shown in previous subsection, if the agent only
submits the bidding price information, it is almost
impossible to enforce the agent to bid its true cost.
In order to make the agent bid truthfully, the cus-
tomer may ask the agents to reveal more informa-
tion, such as the ownership information, besides the
bidding price information. Therefore we consider
auction of type II. First we give the definition of
false-name proof mechanism [13] in the context of
path auction game.

Definition 4. A mechanism is false-name proof if
for any fixed bidding vector b−i and the claimed
ownership vector o−i by all agents other than i, it
is agent i’s best interest to bid the true cost of each
edge it owns, i.e. bi = (cei1 , cei2 , ..., ceik

) where Ei =
{ei1, ei2, ..., eik}, and to claim the real ownership
information oi = (IDij , IDij , ..., IDij)︸ ︷︷ ︸

k

where 1 ≤

j ≤ k.

For situations in which the true ownership can-
not be determined, a false-name false-name proof
mechanism [13] is desirable. The next natural ques-
tion is: Is it possible to design a false-name proof
mechanism in the extended model of path auction
game? Yokoo et. al. [13] showed the following im-
possibility result for combinatorial auctions:
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Figure 2: There is no false-name proof mechanism
which satisfies Pareto efficiency in this game.

Proposition 1. [13] In combinatorial auctions,
there is no false-name proof auction protocol that
satisfies Pareto efficiency. ¤

The definition of Pareto efficiency is:

Definition 5. A winning path selection mechanism
is Pareto efficient if given the winning path P i(s, t),
∀k,

∑
e∈P i(s,t)

ce ≤
∑

e∈P k(s,t)

ce, which means that the

mechanism always selects the path from s to t with
minimum cost.

The above proposition is proved by construct-
ing a generic counter example. Since path auction
is only an instance of more general class of combi-
natorial auctions, it might be possible to design a
false-name proof mechanism for path auction even
the impossibility result holds for combinatorial auc-
tions. However, the generic counter example con-
structed in [13] can be easily transformed to a path
auction game and show the impossibility result in
auction of type II.

Proposition 2. In the extended model of path auc-
tion game, there is no false-name proof mechanism
for auction of type II that satisfies Pareto efficiency.

4 Existence of ε-Nash Equilib-
rium

Since strategyproof mechanism is not widely achiev-
able in the extended model of path auction game,
we need to extend the solution concept from dom-
inant strategies to non dominant strategies. The
concept of ε-Nash equilibrium is an important can-
didate. In this section, we study the existence of
ε-Nash equilibrium under the VCG mechanism and
the first-price auction mechanism [8], which elicits
the bids from the agents, chooses the cheapest path
respect to the bidding vector as the winning path
and pays each winning agent exactly the bidding
price.
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Since VCG is not strategyproof in the extended
model, a natural question to ask is: If we apply
VCG mechanism, is there an equilibrium in the re-
sulting game? For the game in Figure 1, suppose b
is the bidding vector that reaches an ε-Nash equi-
librium. As the straightforward VCG mechanism
assumes each edge is owned by an individual agent,
whatever the winning path is in Figure 1, the win-
ning agent can increase its payoff by decreasing its
bidding vector until its bidding prices reach 0. This
implies that the winning agents have the incentive
to bid as low as they can if all other agents bid
truthfully. We will exclude such equilibrium from
discussion.

Now, we would like to study first price auction
mechanism in the extended model. In practice, a
rational agent is not willing to bid below the true
cost for each edge in first price auction because such
strategy may incur negative payoff to the agent.
Therefore, we assume that the bidding price of each
edge is at least its true cost, i.e. ∀e, be ≥ ce, when
we discuss ε-Nash equilibrium in the following. In
the next, we would like to show the existence of
ε-Nash equilibrium in the parallel-path graph [5],
which can be defined inductively as:

Definition 6. A parallel-path graph(PPG) is a net-
work (V, E, s, t), such that one of the following con-
ditions is satisfied:

Base Case: A path from s to t is a PPG;

Parallel: Suppose G1 = (V1, E1, s, t) and G2 =
(V2, E2, s, t) are PPG such that V1

⋂
V2 = ∅ and

E1

⋂
E2 = ∅. Set V = V1

⋃
V2 and E = E1

⋃
E2,

then (V, E, s, t) is a PPG.

Given the definition of parallel-path graph, we
can prove the following theorem:

Theorem 2. If the underlying network is a parallel-
path graph, the first-price path auction has an ε-
Nash equilibrium.

Since the underlying network (V, E, s, t) is
a parallel-path graph, we can represent it as⋃
k

P k(s, t), where P k(s, t) is the kth path from s

to t and ∀i 6= j, P j(s, t)
⋂

P j(s, t) = ∅. Moreover,
let C(P k(s, t)) =

∑
e∈P k(s,t)

ce denote the cost of path

P k(s, t) with respect to true cost vector c. We sort
the paths from low to high according to their costs,
i.e. the path with lower cost has smaller index. If
agent Ai owns at least one edge on the cheapest
path P 1(s, t), let LPI(Ai) be the smallest path in-
dex such that path PLPI(Ai)(s, t) does not have an
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Figure 3: There is no pure-strategy ε-Nash equilib-
rium in this first-price path auction game.

edge owned by agent Ai but for any path that has
smaller path index than LPI(Ai), it must have at
least one edge owned by agent Ai. We compute
LPI(Ai) for each agent Ai that owns at least one
edge on P 1(s, t). Suppose agent Ak has the high-
est value: LPI(Ak) (break ties arbitrarily), we can
bound the payment of any ε-Nash equilibrium in the
following corollary, which is derived directly from
the proof of theorem 2.

Corollary 1. The total payment in any ε-Nash
equilibrium is at least: C(PLPI(Ak)(s, t)).

The lower bound given in corollary 1 is tight. In
order to study the frugality of first price auction
mechanism in our model, an interesting question
is to find out the upper bound of the payment in
any ε-Nash equilibrium for parallel-path graph. A
small value upper bound will imply that first-price
auction mechanism is frugal in our model.

Although, there exists an ε-Nash equilibrium for
parallel-path graph, we can find a non-parallel-path
graph that does not have a pure-strategy ε-Nash
equilibrium. We show this counter example in Fig-
ure 3 and the following proposition proves this re-
sult. Please note that in Figure 3, the integer num-
ber in the bracket denotes the identity of the agent
who owns that edge.

Proposition 3. Given the assumption that each
edge’s bidding price is at least its true cost, i.e.
∀e ∈ E, be ≥ ce, the graph showed in Figure 3 can
not have a pure-strategy ε-Nash equilibrium in first-
price path auction.

5 Conclusion And Future
Work

In this paper, we studied the path auction games in
which an agent can own multiple edges. Our model
is more general than the simple path auction model.
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However, our results show that strategyproofness is
not widely achievable in the extended model; more-
over, general graphs may not have a pure-strategy ε-
Nash equilibrium in first-price path auction mecha-
nism. Therefore, our model leaves a few challenges.

In this paper, although we have found an ε-Nash
equilibrium for parallel-path graph, we do not have
a mechanism such that when the agents play the
game under the mechanism, they can reach the ε-
Nash equilibrium. So a natural open problem is to
design such a mechanism. Moreover, we believe that
there exists an ε-Nash equilibrium for series parallel-
graph [5]. It would be interesting to extend the
result of theorem 2 to more general class of graphs.

For the non-parallel-path graphs, we found a
counter example which does not have a pure-
strategy ε-Nash equilibrium in first price path auc-
tion mechanism. An interesting question is to ana-
lyze the mixed strategy Nash equilibrium or Bayes-
Nash equilibrium given some distribution on the
edge costs.
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APPENDIX

Theorem 3. [9, 1, 10] A strategyproof mechanism
has the following two properties.

1. A mechanism is strategyproof only if the selec-
tion rule is monotone: No losing agent can be-
come a winner by rasing his bid, given fixed
bids by all other agents.

2. Given a monotone selection rule, there is a
unique strategyproof mechanism with this se-
lection rule. This mechanism pays each agent
his threshold bid, i.e. the highest value he could
have bid and won.

Lemma 1. In the extended path auction model,
given the assumption that the losing agent always
has 0 payoff, for any individual rational strat-
egyproof mechanism (f, pe1 , ..., pem

) and a given
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strictly positive bidding vector b1 = (b1
e1

, ..., b1
em

),
we can construct another bidding vector b

′
=

(b
′
e1

, ..., b
′
em

) such that when the agents bid accord-
ing to b

′
, all the edges on the winning path have

positive payoffs. Moreover, ∀j, |b1
ej
− b

′
ej
| ≤ ε, where

ε is a small positive number.

Proof: Suppose initially when the agents bid
according to b1, the winning path is P 1, i.e. f(b1) =
P 1. Moreover, we assume that all the losing agents
have payoff zero.

In the first round, for an edge e1 ∈ P 1, we de-
crease the bidding price of it from b1

e1
to b1

e1
− ε and

keep the biding prices of all other edges unchanged.
Let T WP = {e1}. Thus we get a new bidding vec-
tor b2 and f(b2) = P 2. According to theorem 3,
e1 must be on the new winning path P 2. More-
over, the payment to edge e1 should not change,
i.e. pe1(b

1) = pe1(b
2). Or else, if pe1(b

1) > pe1(b
2),

when the true cost of edge e1 is b1
e1
− ε, edge e1 can

improve its payoff by increasing its bidding price to
b1
e1

. If pe1(b
1) < pe1(b

2), when the true cost of edge
e1 is b1

e1
, edge e1 can improve its payoff by decreas-

ing its bidding price to b1
e1
−ε. Both cases contradict

to the strategyproofness. Since pe1(b
1) = pe1(b

2),
when edge e1 decreases its bidding price from b1

e1
to

b1
e1
− ε, its payoff will increase by ε.

In the kth round where k ≥ 2, for an edge
ek ∈ P k but ek /∈ T WP, we decrease the bidding
price of it from bk

ek
to bk

ek
− ε

2k−1 and keep the bid-
ing prices of all other edges unchanged. Thus we
get a new bidding vector bk+1 and f(bk+1) = P k+1.
Let T WP = T WP⋃{ek}. Similar to the above
arguments, edge ek must be on the new winning
path P k+1 and its payoff is increased by ε

2k−1 be-
cause the payment to it does not change. Moreover,
any edge ej ∈ T WP is still on the new winning
path P k+1 and its payoff cannot decrease by more
than ε

2k−1 , i.e. pej
(bk+1) − pej

(bk) ≥ − ε
2k−1 . If

pej
(bk+1)− pej

(bk) < − ε
2k−1 , when an agent i owns

both edges ej and ek, and the true cost of edge ek is
bk
ek
− ε

2k−1 , agent i can increase its payoff by increas-
ing the bidding price of edge ek to bk

ek
. This contra-

dicts to the strategyproofness. Since the payoff of
edge ej cannot decrease by more than ε

2k−1 and for

any k and a finite number N > k, ε
2k >

N∑
i=k+1

ε
2i ,

it implies that edge ej is still on the new winning
path P k+1 and it has positive payoff.

Finally, when the process is terminated, the win-
ning path P = T WP and the final bidding vec-
tor is b

′
. According to the argument above, all the

edges on the winning path must have positive pay-
offs when the agents bid according to b

′
. ¤

Theorem 1. Given the assumption that the los-
ing agent always has 0 payoff, there is no strate-
gyproof mechanism for auction of type I that satis-
fies individual rationality.

Proof: According to lemma 1, for any individual
rational strategyproof mechanism (f, pe1 , ..., pem

),
we can construct a sequence of bidding vectors
b(r) = (r× be1 − ε(e1, r), ..., r× bem

− ε(em, r)) such
that the winning agents always have positive pay-
offs, where r ∈ N and ∀j, ε(ej , r) is a small positive
number. Let PB = {b(r)|r ∈ N} denote the set
of all such bidding vectors. For each b(r) ∈ PB,
f(b(r)) will select a winning path. Since there are
infinite number of b(r)s, but only finite number of
possible winning paths, there must be an infinite
subsequence SPB = {b(r1), b(r2)......} such that
∀b(ri) ∈ SPB, f(b(ri)) = P always selects P as the
winning path. According to the assumption of in-
dividual rationality, and given that the payment to
each edge is finite, we can find two bidding vectors
b(rp), b(rq) ∈ SPB such that for any edge ej on the
winning path P , b(rp)ej ≤ pej (b(rp)) < b(rq)ej ≤
pej

(b(rq)).

Given a bidding vector b such that the losing
agent has payoff 0 while the winning agent has pos-
itive payoff. If for an edge ej not on P , increasing
bej to b

′
ej

can change the winning path from P to
P
′
i.e. there exists an edge e ∈ P but e /∈ P

′
, we

can get some contradiction. According to theorem
3, ej cannot be on P

′
. Thus its payoff is still 0.

Assume an agent i owns both ej and e. Since e
has positive payoff when it is on winning path P ,
if the true cost of ej is b

′
ej

, agent i can increase its
payoff by understating ej ’s true cost as bej

. This
contradicts to the strategyproofness. W.O.L.G. we
assume that the winning path is a simple path, thus
P = P

′
. Moreover, increasing bej does not change

the payment to any edge. For any edge e /∈ P , the
payment to it is always 0. Suppose increasing bej

to b
′
ej

can increase the payment to edge e ∈ P from
pe to p

′
e, i.e. pe < p

′
e. When an agent i owns both

ej and e, and the true cost of edge ej is bej
, agent

i can increase its payoff by overstating ej ’s cost as
b
′
ej

. This contradicts to the strategyproofness. Sim-
ilarly, we can get the contradiction when increasing
bej to b

′
ej

can decrease the payment to edge e ∈ P .

Similarly, we can prove that for an edge ej on
the winning path P , decreasing bej

cannot change
either the winning path or the payment to any edge
in the graph.
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When we have bidding vectors b(rp) and b(rq),
we can construct a new bidding vector b∗ such that
b∗ej

= min{b(rp)ej
, b(rq)ej

} if ej is on the wining
path P while b∗ej

= max{b(rp)ej
, b(rq)ej

} if ej is
not on the wining path. According to the con-
struction and the above arguments, we can get ∀ej ,
pej (b(rp)) = pej (b

∗) = pej (b(rq)). This contradicts
to the fact that any edge ej on the winning path P ,
pej

(b(rp)) < b(rq)ej
≤ pej

(b(rq)).

Therefore, given the assumption that the losing
agent always has 0 payoff, there is no strategyproof
mechanism for auction of type I that satisfies indi-
vidual rationality. ¤

Proposition 2. In the extended model of path
auction game, there is no false-name proof mech-
anism for auction of type II that satisfies Pareto
efficiency.

Proof Sketch: We are going to prove this
proposition by presenting a generic counter ex-
ample as [13] assuming there is an efficient false-
name-proof mechanism. The generic counter exam-
ple is given in Figure 2. In this example, edges
e(s, r), e(r, t)1 are owned by agent 1, edge e(s, t) is
owned by agent 2 while edge e(r, t)3 is owned by
agent 3. Since agent 1 owns two edges, when bid-
ding in auction of type II, the ownership of edge
e(r, t)1 can be claimed as agent 1 or some artificial
non existent agent 4. Given this example, the proof
of this proposition is almost the same as the proof
of Proposition 1 in [13]. ¤

Theorem 2. If the underlying network is a
parallel-path graph, the first-price path auction has
an ε-Nash equilibrium.

Proof Sketch: The ε-Nash equilibrium bid-
ding vector is constructed as follows. Suppose
the parallel-path graph is (V, E, s, t) =

⋃
k

P k(s, t),

where P k(s, t) is the kth path from s to t and ∀i 6= j,
P j(s, t)

⋂
P j(s, t) = ∅. Initially, each agent bids its

true cost i.e. b = c. Let Wb(P k(s, t)) =
∑

e∈P k(s,t)

be

denote the cost of path P k(s, t) with respect to the
bidding vector b. Moreover, we assume that agent
Ak has the highest value of LPI(Ak) which is de-
fined before. In order to find the ε-Nash equilib-
rium bidding vector, first we would pick one edge
in EAk

⋂
P 1(s, t) and increase its bidding price un-

til Wb′ (P
1(s, t)) = Wb(PLPI(Ak)(s, t)) − ε, where

b
′

is the new bidding vector. For any path j ∈
[2...LPI(Ak)−1], we pick one edge in EAk

⋂
P j(s, t)

and increase its bidding price until Wb′ (P
j(s, t)) =

Wb(PLPI(Ak)(s, t)). We call the final bidding vector
bf .

It is not hard to verify that bf is an ε-Nash equi-
librium bidding vector. ¤

Proposition 3. Given the assumption that each
edge’s bidding price is at least its true cost, i.e.
∀e ∈ E, be ≥ ce, the graph showed in Figure 3 can
not have a pure-strategy ε-Nash equilibrium in first-
price auction.

Proof: In Figure 3, the numbers in the brack-
ets represent the identities of agents that owns the
edges. There are 5 agents in this game and 5 paths
from s to t:

Path 1: (s, p1, p2, p3, t)
Path 2: (s, p4, p5, p6, p7, p8, p9, p10, t)
Path 3: (s, p4, p5, p6, p12, t)
Path 4: (s, p11, p8, p9, p10, t)
Path 5: (s, p11, p8, p6, p7, p6, p12, t)
Let b be the ε-Nash equilibrium bidding vector.

We claim that the cost of each path respect to b can
differ at most by ε. We prove this by contradiction.
Suppose P k is the winning path and ∃j, Wb(P j) >
Wb(P k) + ε. For any agent i ∈ [1...5] in Figure
3, there is only one path that does not have edges
owned by i. We can assume that path P j does
not have edges owned by the agent i, but for all
other 4 paths, agent i owns edges on all of them.
Thus agent i can increase the bidding prices of its
edges(but still keep P k as the winning path) such
that its payoff can increase by at least ε. Then
contradiction occurs. Therefore, if b is an ε-Nash
equilibrium bidding vector, the cost of each path
respect to b can differ at most by ε. Based on this
fact, we can get the following two equations:
|(bp8,p7 + bp7,p6 + bp6,p12 + bp12,t) − (bp8,p9 +

bp9,p10 + bp10,t)| ≤ ε...(1)

|(bp6,p7 + bp7,p8 + bp8,p9 + bp9,p10 + bp10,t) −
(bp6,p12 + bp12,t)| ≤ ε...(2)

According to equations (1) and (2), we can get:
(bp7,p8 + bp6,p7) + bp8,p9 + bp9,p10 + bp10,t − ε

≤ −(bp7,p6 + bp8,p7) + bp8,p9 + bp9,p10 + bp10,t + ε

Therefore, the following inequality holds:
bp7,p6 + bp8,p7 + bp6,p7 + bp7,p8 ≤ 2ε

Moreover, according to our assumption ∀e, ce ≤
be, the following inequality holds

cp7,p6 + cp8,p7 + cp6,p7 + cp7,p8 ≤ 2ε

When ε is small enough, but the true cost of each
edge is large enough, contradiction occurs. There-
fore, there is no ε-Nash equilibrium of first-price
auction in Figure 3. ¤
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