
Havelaar: A Robust and Efficient Reputation System
for Active Peer-to-Peer Systems

Dominik Grolimund, Luzius Meisser, Stefan Schmid, Roger Wattenhofer
{grolimund@inf., meisserl@, schmiste@tik.ee., wattenhofer@tik.ee.}ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, CH-8092 Zurich

Abstract— Peer-to-peer (p2p) systems have the potential to har-
ness huge amounts of resources. Unfortunately, however, it has
been shown that most of today’s p2p networks suffer from a large
fraction of free-riders, who consume resources without contributing
much to the system themselves. This results in an overall perfor-
mance degradation, and hence proper incentives are needed to
encourage contributions. One interesting resource is bandwidth.
Thereby, a service differentiation approach seems appropriate,
where peers contributing higher upload bandwidths are rewarded
with higher download bandwidths in return. Keeping track of the
contribution of each peer in an open, decentralized environment,
however, is a difficult task; many proposed systems are susceptible
to false reports. Besides being prone to attacks, some solutions have
a large communication and computation overhead, which can even
be linear in the number of transactions—an unacceptable burden in
practical and active systems. In this paper, we propose a reputation
system which is robust to false reports and overcomes this scaling
problem. Our results are promising, indicating that the mechanism
is accurate and efficient especially when applied in systems where
there are lots of transactions.

I. INTRODUCTION

The power of peer-to-peer (p2p) computing is based on the
resource contribution of the network’s constituent parts, the
peers. Therefore, the success of a system in practice crucially
depends on its ability to cope with selfish peers which aim at
consuming more than they contribute.

When faced with the task of implementing a fairness scheme
for upload bandwidth for our distributed p2p storage system
Kangoo1, we could not find a solution which entirely fits our
needs. In Kangoo, erasure codes are employed to achieve high
data availability with moderate redundancy. Files are divided into
blocks, which are encoded into many small fragments. All these
fragments are then stored on a different peer. Consequently, in
Kangoo, there is a large number of transactions. Our goal was to
develop a scheme for this environment, where peers contributing
higher upload bandwidths for longer time periods are rewarded
with a higher download bandwidth in return.

This paper presents the reputation system Havelaar which we
have implemented for Kangoo. Unlike many existing solutions,
Havelaar does not rely on transitivity of trust, and achieves a
high robustness to attacks by design. This is accomplished by
a novel aggregation technique in which a peer u always reports
directly observed or aggregated contributions to the same set of
peers. These successor peers are determined by a hash function
h(u) on the identifier (e.g., the IP-address) of u. This scheme
allows a successor to detect and defend against egoistic cheating

1To be released (http://www.caleido.com/kangoo).

(e.g., reporting too large values, or reporting too often). Hence,
our solution is different from distributed hash table (DHT)-based
approaches where a peer u benefitting from a peer v reports v’s
contribution value to peers determined by a hash function h(v)
(i.e., depending on v rather than u).

Our results are promising: Havelaar is not only robust to
attacks, but also efficient and—unlike many other solutions—
scales well in the number of transactions. Therefore, we believe
that Havelaar is well-suited for other active p2p systems with
many transactions.

The rest of this paper is organized as follows. In Section II,
related work is reviewed. Section III gives background informa-
tion on Kangoo and on the intended environment for Havelaar.
Section IV quickly outlines how peers could be rewarded given
their contribution values. The Havelaar reputation system is then
presented in detail in Section V. In Section VI, the accuracy of
Havelaar’s approximation of the real contributions is analyzed.
We report on our results concerning communication costs in
Section VII. Section VIII shows how Havelaar copes with
various attacks. Finally, Section IX presents some simulation
results, before Section X concludes the paper.

II. RELATED WORK

It is not hard to find evidence of selfish behavior in existing
p2p systems [2], [14], and the field has already spurred a large
body of research [8], [12], [18], [20], [28].

Perhaps the simplest fairness mechanism is to directly in-
corporate contribution monitoring into the client software. For
instance, in the popular file-sharing system Kazaa, the client
records the contribution of its user. However, such a solution
can simply be bypassed by implementing a different client which
hard-wires the contribution level of the user to the maximum,
as it was the case with Kazaa Lite.

In systems such as BitTorrent [6], where peers upload to the
same set of peers from which they also download, a simple tit-
for-tat mechanism [3] may be fine. When interactions between
the same pairs of peers are less frequent, however, such barter
systems [32] fail.

Inspired by real economies, some researchers have also pro-
posed the introduction of some form of virtual money which is
used for the transactions. However, these monetary or credit
based approaches have a substantial overhead in terms of
communication costs and infrastructure, and are inefficient [11],
[33]. Often these systems also require market regulating mecha-
nisms [31] to cope with inflation or deflation—a complex issue.



Additionally, monetary based systems may deter users from
participating [21].

If a peer makes too few direct observations to judge a peer’s
contribution, it has to take into account indirect observations
from other peers [17]. Such systems are generally called reputa-
tion (or reciprocity based) systems, and are well-known from
auctioning applications such as eBay. However, second-hand
observations introduce the problem of false reports [4], [17].
Many proposals seek to mitigate these effects [1], [5], [9], [15],
most of them relying on transitivity of trust, where observations
are weighted by the reputation of the reporter. Additionally to
the problem of false reports, an infrastructure to exchange the
second-hand observations is needed [17]. In most reputation-
based systems, second-hand observations are either requested
before a transaction from other peers [1], [4], or they are simply
flooded throughout the system. Alternatively, the contribution
values can be stored in a distributed hash table (DHT) [25],
[27], [30] (“DHT-based approach”). For systems with lots of
transactions where contribution values are updated constantly,
however, this results in an unacceptable communication over-
head: updating and checking a peer’s reputation entails costly
(wide-area) DHT lookups [22], [23].

In contrast, in the Havelaar reputation system, a peer is
able to compute the reputation of a requesting peer locally.
By aggregating the contribution values of a large number of
peers, our system tackles also the problem of transitivity of trust.
Finally, a peer is able to defend against cheating by checking the
credibility of reports, thus preventing many reputation attacks by
design.

III. SYSTEM MODEL

Havelaar was designed with a special application in mind:
Kangoo, a large-scale distributed storage system for the Internet.
Kangoo divides files into blocks, which are encrypted and then
encoded into redundant fragments using erasure codes. These
encrypted fragments are stored on different peers in a DHT.
However, in Kangoo, peers fall into different categories, and
fragments are only stored on so-called storage peers which fulfill
some minimal requirements such as having long uptimes (e.g.,
more than 6 hours a day). How storage peers are selected among
the set of all available peers, and why rational peers also have
incentives to become storage peers is beyond the scope of this
paper. However, in the following, we will assume that all peers
store data, and that these peers generally have long uptimes.

Because of the used encoding scheme, storing and retrieving
files in Kangoo results in lots of transactions with many different
peers in the system (e.g., 500 transactions with different peers
to store and retrieve one file). While this is necessary for high
availability and for fast parallel downloads, it is crucial that the
fairness mechanism scales well in the number of transactions—
an important objective of Havelaar.

There are a number of other properties of Kangoo which in-
fluence Havelaar. Since fragments are stored in the Kangoo DHT
depending on hash functions on the fragment itself, an attacker
cannot determine the destination of a transaction. Furthermore,
peer identifiers are securely assigned by Kangoo—i.e., externally
to Havelaar—, and therefore Havelaar can rely on randomly

assigned node identifiers and does not tackle Sybil attacks [7] or
white-washing [9], [10] itself. However, Havelaar also minimizes
incentives to create new identifiers by assigning new peers a low
initial reputation.

Finally, in Kangoo, churn [16] is not a major concern, as
(storage) peers are required to stay online on almost a daily
basis and for several hours, and are also expected to remain in
the system for longer time periods (months or years).2

IV. REWARDING MECHANISM

Havelaar is mainly a reputation system (cf Section V) and
therefore independent of a concrete rewarding mechanism; that
is, given the contribution values of Havelaar, many strategies can
be applied to allocate bandwidth to the peers.

However, to complete the picture, we briefly sketch the
approach we have chosen for our system. We make use of a
mechanism similar to the one described in [19]. But as perfor-
mance is crucial in Kangoo, we only apply fairness mechanisms
in situations of contention, i.e., when several peers want to
download from the same node concurrently. Assuming that
bandwidth is free—and lost when not used—, the maximum
possible bandwidth will always be allocated to a requesting peer;
no artificial limits are used. For our system, this is the desired
behavior because—unlike monetary-based systems—we do not
want to provide any disincentives to participate and download in
the network. We only limit the resource allocation for excessive
downloaders, as will be described in Section V.

V. REPUTATION SYSTEM

In this section, we describe the main ideas behind Havelaar.
The goal of Havelaar is to track the contribution of each peer
in the system. Since it would be very expensive to inform each
peer about all transactions happening in the system, we seek
to provide the peers with a good approximation of the real
contribution values. Thereby, our solution must be efficient and
also resilient to cheating. Basically, Havelaar has three goals:
(1) accurate estimation of the real (global) contribution values
of other peers, (2) robustness against selfish peers, and (3)
efficiency, i.e., scalability in the number of transactions.

In our system, the reputation of a peer u should be reflected
by the peer’s contribution value Cu, which in turn depends
on the bandwidth bu the peer provides, and the size s of the
corresponding fragments. Hence, the total contribution value of
peer u is given by Cu =

∑
transactions t (bu,t · su,t). Note that the

contribution value will only be increased after a complete upload
in order to reward proper transactions only.

So how does Havelaar track these contributions? Each peer u
maintains a vector ~o (observations) of size n (number of peers
in the network) to store the contributions of other peers which
u has directly experienced itself. That is, after each download,
u updates its vector ~o accordingly.

Even in active systems with lots of transactions, a peer only
gets in touch with a subset of all peers. Therefore, peers need to
share their private observations by sending them to other peers
once in a while. To achieve this, Havelaar employs a round-
based aggregation technique. Thereby, once in a round, each

2Note that in Kangoo, peers represent long-term customers.



peer u sends its observation vector ~o to a small number k (e.g.,
7) of other peers in the system, called u’s successors (similarly,
we will refer to u as a predecessor of such a successor peer).
The successor peers are determined by a set of k hash functions
{h1(u), ..., hk(u)} on u’s identifier.3 Moreover, we will assume
that a round is roughly one week. Note that it does not matter
when exactly in this time interval a peer sends its report to the
successors, i.e., when a peer u cannot contact a peer v (e.g.,
because v is offline), it can try again later.

A peer u always informs the same set of peers, independently
of which peers contributed resources to u. Upon receiving a
vector, a peer can check whether it has been sent by a correct
predecessor by verifying the hash function4—otherwise, it can
simply drop the vector. The “observed” contribution value of the
predecessor itself is not taken into account, in order to render the
most attractive attack impossible by design. What is more, each
peer can also ignore the vector of a peer that sends too frequently
(more than once per round). Therefore, a peer can only attack
the system with a false praise or accusation of another node.
However, such an attack can either be detected or it will be
averaged out, as we will see in Section VIII.

Unfortunately, sending direct observations to the k successors
is still not sufficient in order to accurately estimate the contri-
butions of all peers in large networks. Therefore, we extend the
mechanism as follows: Upon receiving the observation vectors
from its k predecessors, each peer aggregates them with its
own observations, and sends the new vector to its k successors.
Thus, one vector can summarize a large number of observations.
However, we have to make sure that the values in the vectors
do not contain too many observations from the past which do
not reflect the current behavior of each peer. What is needed
is a scheme where old observations can be truncated in the
observation vector, but where there are still enough observations
to update the contribution vector after each round.

This is accomplished as follows. In every round, a peer
puts its own observations into a vector ~o0 (so far denoted by
~o). After each round, it sends a message to its k successors
containing its own (direct) observations from this round (~o0),
the aggregated observations of its k predecessors from the last
round (~o1), the aggregated observations of the k predecessors
of its own k predecessors from the round before the last round
(~o2), and so forth. The message thus contains a matrix O :=
[~o0, . . . , ~or−1]. Upon receiving the matrix Oi := [~o1, . . . , ~or]
from predecessor i ∈ [1, k] (note that when sending, the index
runs from 0 . . . r−1, and when receiving, it is renamed to 1 . . . r),
a peer aggregates all observations and updates its contribution
vector ~c accordingly. Thus, the vectors from previous rounds
aggregate an exponentially growing number of observations. The
oldest observations lie r rounds in the past.

A simplified description of the Havelaar reputation system
is given in Algorithm 1. Here, the algorithm is generalized by
an aging factor γ ≤ 1. However, since the aggregation vectors
already include many observations from the past, using γ = 0

3Due to the hash function, some peers will have slightly more, others slightly
less predecessors.

4To verify the predecessor identifier, public/private-key pairs among peers are
presumed.

is fine for our purpose, but can be increased in order to account
for longer absences from the system.

Algorithm 1 Simplified Havelaar Reputation System
1: observe ~o0;
2: receive O1 := [~o1, . . . , ~or] , . . . , Ok from predecessors;
3: for j ∈ [1, r]: ~oj =

∑k
i=1 Oij ;

4: ~c = γ~c + (1− γ)(
∑r

i=0 ~oi);
5: send O := [~o0, . . . , ~or−1] to k successors;

In Havelaar, a peer u increases the contribution values only
after downloading fragments from other peers, but it never
decreases any contribution values if it has to provide upload
bandwidth to some peer. This has the drawback that if two peers
have contributed to the system equally, they will be assigned
the same amount of download bandwidth, independently of
their downloading behavior—it is questionable whether this is
fair. However, as mentioned, we do not want to provide any
disincentives for downloading in our network.

But the behavior of excessive downloads should be discour-
aged. Such downloads could trigger a vicious circle: because of
excessive downloads, the network is congested, which in turn
encourages other users to download in advance, resulting in an
even more congested network. Therefore, in Havelaar, each peer
u additionally maintains a second vector ~d (downloads). After
another peer downloads from u, u will increase the download
value of that peer. As opposed to the observation vector, the
download vector will not be sent to other peers. Before allocating
resources among competing peers, the download values will be
subtracted from the respective contribution values of ~c, and only
then used to allocate the bandwidth. Since excessive download-
ers are more likely to be involved in repeated interactions, they
are eventually slowed down.

Finally, note that downloads could of course also be treated
differently. For instance, downloads could be punished with a
mechanism similar to the one used to reward uploads.

VI. ANALYSIS

A. Overview

Assume that two peers u and v compete for the same upload
bandwidth of a given peer w. In order to achieve the desired fair-
ness, peer w should allocate the bandwidth to u and v according
to their real, i.e., global, contribution values Cg

u and Cg
v , i.e.,

with respect to all transactions to which they have contributed.
However, in Havelaar, peer w does not have precise information
about Cg

u and Cg
v , but only knows the local approximations Cl

u

and Cl
v (values from its contribution vector ~c). Hence, we want

to achieve a good approximation Cg
u/Cg

v ≈ Cl
u/Cl

v such that the
peers indeed receive the corresponding share of the bandwidth.

In this section, we will analyze how many observations x are
needed such that the ratios of the values in the local vectors
~c are an acceptable approximation of the ratios of the real
contributions. Consequently, we can compute the number of
rounds r that are necessary in Havelaar to get the required
number of (aggregated) observations. Henceforth, let Cu and
Cv denote Cl

u and Cl
v , respectively.



Our network consists of n peers, not all of which are always
online. We simplify the analysis by assuming that at any time
exactly m < n peers are online. Furthermore, we assume
that each peer downloads t fragments from other peers; the
transactions are assumed to be distributed uniformly at random
among the peers and over time. Hence, the probability of
downloading a fragment from a given peer is p = 1/m.

B. Analysis
Whenever a peer downloads from peer u, it increases the con-

tribution value Cu of peer u. Let us first assume that bandwidth
and fragment sizes are equal to 1, that is, Cu is increased by
1 after each download from u. As explained before, peer u is
chosen with probability p for every download. Therefore, Cu is
a random variable. What is the probability distribution of Cu

after x downloads?
This situation corresponds to a balls-into-bins problem [24],

where x balls are tossed into m bins, and where p = 1/m
is the probability that a tossed ball lands in any given bin.
For a given bin u, the ball tossing process is a sequence of x
random, independent Bernoulli trials, each with a probability p
of success. Therefore, the random variable Cu follows a binomial
distribution Cu ∼ Bin(x, p), where µCu

= E(Cu) = x · p and
σ2

Cu
= V ar(Cu) = x · p · (1− p).

This assumes that peers u and v are online all the time and
can thus be chosen for all x transactions. In reality, however,
some peer u might be online much longer than some other peer
v. Therefore, u is likely to be involved in more transactions and
will hence also contribute more to the network. This should be
reflected in the local approximations Cu and Cv .

Let us assume that peer u is online with a fixed probability
pu, and peer v with probability pv . Based on the assumption
that the transactions are distributed uniformly over time, peer u
can only be chosen for xu = pux transactions on average, and
peer v for xv = pvx transactions.

Furthermore, since the ultimate goal of Havelaar is to encour-
age high upload bandwidth, we need to include the provided
upload bandwidth into the model. Let us assume that peer u
uploads fragments at a fixed bandwidth of bu, and peer v at a
bandwidth of bv . Instead of adding 1 to the contribution value
of each peer, the corresponding bandwidth is added.

Putting everything together, the mean of Cu is given by µCu
=

E(Cu) = bu · pu · x · p, and the variance is σ2
Cu

= V ar(Cu) =
b2
u · pu · x · p · (1− p). Note that the bandwidth bu is multiplied

twice in the variance (b2
u): The variance in the contribution Cu

does not increase linearly in the bandwidth, but quadratically.
Of course, our model can be extended in several ways, for

example by incorporating variable fragment sizes or issues of
contention. However, this would be overly exact (cf technical
report [13]); in order to keep things simple, we restrict ourselves
to the main factors, omitting this generalization in our analysis.

For small x, the coefficient of variation σCu
/µCu

(or, simi-
larly, also the variance-to-mean ratio σ2

Cu
/µCu

) is large. How-
ever, for x → ∞, it converges to 0. This indicates that with
lots of observations, relative estimates become accurate enough.
We are interested in the ratio of the contribution values of two
peers competing for resources at the same time. Therefore, let us
introduce a random variable Z reflecting this ratio: Z := Cu/Cv .

What is the mean and the variance of Z? Since Cu and Cv are
independent, the following approximations are reasonable [26]:

µZ = E(Z) ≈ µCu

µCv

+ σ2
Cv

µCu

µ3
Cv

,

and

σ2
Z = V ar(Z) ≈ σ2

Cv

µ2
Cu

µ4
Cv

+
σ2

Cu

µ2
Cv

.

As can be seen from these formulas, for x → ∞, the variance
decreases quickly, and hence, for lots of observations x, Z is
a good approximation of the ratio of the real contributions of
peers u and v. In the following subsection, we will make use
of another helpful approximation of the coefficient of variation
[29]: (

σZ

µZ

)2

≈
(

σCu

µCu

)2

+
(

σCv

µCv

)2

(1).

C. Results

We can now estimate the number of observations necessary for
a good approximation, that is, for small coefficients of variation
of Z. Plugging µCu , σCu , µCv , and σCv into (1) yields(

σZ

µZ

)2

=

(√
b2
upux(p− p2)
bupuxp

)2

+

(√
b2
vpvx(p− p2)
bvpvxp

)2

=
1− p

puxp
+

1− p

pvxp
.

Solving this for x gives the following fact.
Fact 6.1: The number of observations needed in order to

achieve a desired approximation (as expressed by the coefficient
of variation) of the real contribution values is

x ≈ −pv(p− 1) + pu(p− 1)(
σZ

µZ

)2

pupvp
.

As an example, for a network with n = 100, 000 peers, where
at any time m = 1

4n = 25, 000 peers are online, and if we
assume that pu = pv = 1

4 (in Kangoo, storage peers are online
for more than six hours per day), x ≈ 107 observations are
required for an acceptable coefficient of variation of 0.15.

Having computed the number of observations x which are
approximately needed for an acceptable accuracy, we can now
determine the number of aggregation rounds. Assuming that
every peer makes t transactions (= observations), the number
of rounds r is r = dlogk

x
t e. For the above example of x =

107 observations, assuming that each peer makes t = 5, 000
transactions and sends its observations to k = 7 peers, r ≈ 4
rounds are already enough!

VII. COMMUNICATION COSTS

The Achilles’ heel of Havelaar are the communication costs:
Every peer has to send—for example, once a week—the aggre-
gated observations to its successors. However, we believe that
in many practical systems, the burden is tolerable. Moreover,
as described in the technical report [13], various compression
techniques—e.g., due to sparseness—can be employed to reduce
the size of the messages further.

Concretely, we have computed Havelaar’s estimated message
size [13] depending on the number of rounds r and the number of



transactions t in the system, and assuming that the contribution
values can be encoded with 8 bits each (in a simulation, the
entropy was only ≈ 7 bits). We have then compared Havelaar
to solutions where the contribution value is recorded in a DHT.
In this approach, the contribution value of peer u is stored at
a peer which is chosen based on a hash function h(u). Since
the contribution values in Havelaar are only approximations and
since the local vector is only updated once per round, we have
compared the communication costs to a DHT-based approach
with the same level of approximation and the same amount of
updates. That is, instead of updating the contribution value after
each download and retrieving the contribution value before each
upload, peers only update the contribution value in the DHT
probabilistically (with a probability resulting in the same level
of approximation as Havelaar), and they only update their local
vector by a look-up operation once per round.

As an example, in a network with n = 100, 000, t = 5, 000,
k = 7, and r = 4, the communication costs are ≈ 2.2 MB
per peer and week. In comparison, an approximate DHT-based
approach would require ≈ 3.7 MB. Thereby, the costs for the
DHT-based approach are only a lower bound: More commu-
nication would be necessary in order to store the contribution
values persistently. Havelaar scales much better in the number
of transactions. For the same example, but with t = 20, 000
transactions, the communication costs of Havelaar are ≈ 2.5
MB, compared to ≈ 13.8 MB of the DHT-based approach.
Finally, for a network with n = 1, 000, 000 and t = 40, 000,
the communication costs in Havelaar are ≈ 23.3 MB and the
DHT-based approach ≈ 87.7 MB. We refer the reader to the
technical report [13] for a more detailed comparison.

In conclusion, although the costs of Havelaar can be relatively
high for a small number of transactions (e.g., up to ≈ 1.73 MB
for t < 2000 in a network of n = 100, 000, compared to ≈
1.51 MB for the DHT-based approach), our system scales much
better than various forms of DHT-based solutions. Moreover,
we believe that the communication costs are acceptable in many
practical environments.

VIII. ATTACKS

Havelaar is designed to cope with peers aiming at selfishly
consuming larger shares of resources than other peers. The fact
that every peer can send its observations only to its k successors
facilitates local defenses.

A peer uses several defense mechanisms. A receiver checks
whether a sender is one of its predecessors, and otherwise
ignores the report. Moreover, it can make sure that a peer does
not report contributions too often.

A peer does not take into account observations about the
reporting predecessor itself. Thus, the most attractive attack is
made hard by design: It is only possible to falsely “praise” or
“accuse” another peer.

In addition to limiting the range of possible values, other
measures are taken in our system to detect and ignore false
reports. Before updating the local contribution vector ~c on the
basis of the observation matrices, for each value the average
and variance is calculated. If one value is extremely large, it is
considered an outlier with respect to the other k− 1 values, and

is dropped. Then, the average of the other k− 1 values is taken
as the input to the update function.

Clearly, one can think of several further local defense mech-
anisms. For instance, statistical measures could be included
to detect a possible false report by studying the distribution
(histogram) of the observation vector, e.g., by checking whether
the histogram is spiked. In any of the above cases where the
successor is suspicious of an attack, it could reduce the trust
value associated with each predecessor. The trust value can be
used to either drop observations by misbehaving peers, or to
weigh their observation values accordingly. However, it has not
been necessary to make use of these techniques so far.

Besides the advantages of local defense, the robustness of
Havelaar comes from the extensive aggregation: A single wrong
value hardly influences the overall outcome. In this sense, also
the damage which can be done by a small fraction of colluding
peers is limited. In particular, collusion is also made difficult by
the fact that successor peers are determined by hash functions,
and hence becoming a predecessor of a specific peer is hard.

In summary, Havelaar’s design is based on local defense
and extensive accumulation, and unlike many other approaches
does not rely on transitivity of trust. This renders attacking the
system a difficult endeavour. Finally, recall that several other
attacks such as Sybil attacks and whitewashing are tackled by
mechanisms which are part of Kangoo and hence are external
to Havelaar.

IX. SIMULATION

We have performed several simulations of Havelaar which
fortify our results. In this section, we present the most interesting
findings.

In Figure 1, the real ratio of the contribution values of two
peers is compared to the ratio from the local approximation in a
network of size n = 100, 000, with k = 7 successors and r = 4
rounds. In each round, the peers change their upload bandwidth.
In the first round, for instance, peer u contributed exactly three
times more than peer v. Note that the approximation is shifted to
the right; this is due to the fact that contribution values are only
updated once a round, based on observations from the past. Note
also that the standard deviation of the approximation is generally
low—being higher when peers change their behavior abruptly.

5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

Rounds

R
at

io
 Z

 =
 C

u
 / 

C
v

Global ratio
Local (approx.) ratio
Stddev of approx.

Fig. 1. Local approximation vs. global (real) contribution value of two peers
in several rounds. Note that after a short bootstrapping phase in the beginning,
the approximation becomes good quickly.



0 1 2

x 10
−4

0

1

2

x 10
−4

Global normalized contribution

L
o

ca
l (

ap
p

ro
xi

m
at

ed
) 

n
o

rm
al

iz
ed

 c
o

n
tr

ib
u

ti
o

n

Fig. 2. Global normalized contribution value plotted against the locally
approximated one.

The figure reveals that the bootstrapping process is quite fast,
which implies that newly joining peers—or peers which return
after a long period of absence—are up-to-date soon. Of course,
this delay may still be unacceptably large for many systems
where appropriate solutions which further speed up the process
would be needed. However, this is not the case in Kangoo, as
peers are expected to remain in the system for months or even
years.

Figure 2 plots the local contribution vector for the same
network against the global (real) contribution vector. Both
vectors are normalized by dividing each entry by the sum of
the whole vector. That is, each contribution value reflects the
proportional contribution of the entire network. Again, the local
approximation reflects the real contribution accurately (almost a
straight line). For peers with higher contribution, however, the
variance becomes larger. This is due to the fact that the variance
is multiplied by the square of the bandwidth, as described in
Section VI.5

X. CONCLUSIONS

The main goals of the Havelaar reputation system are (1)
accurate estimation of the real contribution values of other peers,
(2) robustness to selfish peers, and (3) efficiency, i.e., scalability
in the number of transactions. This is achieved by a novel
aggregation technique where peers always report the observed
contributions values to the same set of peers. This allows for
a local control of a peer’s behavior. Encouraged by our results,
we have integrated Havelaar in our distributed storage system
Kangoo. We believe that Havelaar is a good choice for many
active p2p systems requiring a fairness mechanism.

5Note, however, that the coefficient of variation is constant for every peer
since it does not depend on the bandwidth.

REFERENCES

[1] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information
System. In Proc. of the 10th Intl. Conf. on Information and Knowledge
Management (CIKM), pages 310–317, 2001.

[2] E. Adar and B. Huberman. Free Riding on Gnutella. First Monday, 5(10),
2000.

[3] R. Axelrod. The Evolution of Cooperation. Science, 211(4489):1390-6,
1981.

[4] D. Banerjee, S. Saha, S. Sen, and P. Dasgupta. Reciprocal Resource Sharing
in P2P Environments. In Proc. 4th AAMAS, 2005.

[5] S. Buchegger and J.-Y. L. Boudec. A Robust Reputation System for P2P
and Mobile Ad-hoc Networks. In Proc. 2nd Workshop on the Economics
of Peer-to-Peer Systems, 2004.

[6] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. Workshop
on Economics of Peer-to-Peer Systems, 2003.

[7] J. R. Douceur. The Sybil Attack. In Proc. 1st Int. Workshop on Peer-to-
Peer Systems (IPTPS), pages 251–260. Lecture Notes in Computer Science
(LNCS), Springer, 2002.

[8] M. Feldman and J. Chuang. Overcoming Free-Riding Behavior in Peer-
to-Peer Systems. ACM Sigecom Exchanges, 6, 2005.

[9] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust Incentive Techniques
for Peer-to-Peer Networks. In Proc. ACM Conf. on Electronic Commerce,
2004.

[10] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding
and Whitewashing in Peer-to-Peer Systems. In Proc. ACM SIGCOMM
Workshop PINS, 2004.

[11] F. D. Garcia and J.-H. Hoepman. Off-Line Karma: A Decentralized
Currency for Peer-to-Peer and Grid Applications. In Proc. 3rd Applied
Cryptography and Network Security (ACNS).

[12] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives in Peer-to-Peer File
Sharing. In Proc. 3rd ACM Conf. on Electronic Commerce (EC), 2001.

[13] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer. Havelaar: A
Robust and Efficient Reputation System for Active Peer-to-Peer Systems.
Technical report, TIK Report 246, available at http://www.tik.ee.ethz.ch/.
ETH Zurich, Switzerland, 2006.

[14] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella
Revisited: The Bell Tolls? IEEE Distributed Systems Online, 6(6), 2005.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
Algorithm for Reputation Management in P2P Networks. In Proc. WWW,
pages 640–651, 2003.

[16] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing Peer-to-Peer
System Resilient to Dynamic Adversarial Churn. In Proc. 4th Int. Workshop
on Peer-To-Peer Systems (IPTPS), Ithaca, New York, USA, February 2005.

[17] K. Lai, M. Feldman, J. Chuang, and I. Stoica. Incentives for Cooperation in
Peer-to-Peer Networks. In Proc. Workshop on Economics of Peer-to-Peer
Systems (P2PEcon), 2003.

[18] Q. Lianz, Y. Pengx, M. Yangx, Z. Zhangy, Y. Daix, and X. Li. Robust
Incentives via Multi-level Tit-for-Tat. In Proc. 5th Int. Workshop on Peer-
to-Peer Systems (IPTPS), 2006.

[19] R. B. Ma, S. M. Lee, J. S. Lui, and D. Y. Yau. A Game Theoretic Approach
to Provide Incentive and Service Differentiation in P2P Networks. In
SIGMETRICS, 2004.

[20] S. J. Nielson, S. Crosby, and D. S. Wallach. A Taxonomy of Rational
Attacks. In Proc. 4th Int. Workshop on Peer-to-Peer Systems (IPTPS),
pages 36–46, 2005.

[21] A. M. Odlyzko. The Case Against Micropayments. In Financial Cryptog-
raphy, pages 77–83, 2003.

[22] T. G. Papaioannou and G. D. Stamoulis. Effective Use of Reputation of
Peer-to-Peer Environments. In Proc. IEEE/ACM CCGRID 2004, GP2PC
Workshop, 2004.

[23] T. G. Papaioannou and G. D. Stamoulis. Reputation-based Policies that
Provide the Right Incentives in Peer-to-Peer Environments. Computer
Networks, 50(4):563–578, 2006.

[24] M. Raab and A. Steger. ”Balls into Bins” - A Simple and Tight Analysis. In
Proc. 2nd Int. Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), pages 159–170. Springer-Verlag, 1998.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content Addressable Network. In Proc. of ACM SIGCOMM 2001, 2001.

[26] J. A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press,
1995.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc. 18th
IFIP/ACM Int. Conf. on Distributed Systems Platforms (Middleware), pages
329–350, 2001.

[28] J. Shneidman and D. C. Parkes. Rationality and Self-Interest in Peer to Peer
Networks. In Proc. 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS),
2003.

[29] W. Stahel. Statistische Datenanalyse. Eine Einfuehrung fuer Naturwis-
senschaftler. Vieweg, Braunschweig, 2000.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proc. ACM SIGCOMM Conference, 2001.

[31] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A Secure
Economic Framework for P2P Resource Sharing. In Proc. P2PEcon, 2003.

[32] W. Wang and B. Li. Trust Based Incentive in P2P Network. In Proc. Int.
IEEE Conf. on E-Commerce Technology for Dynamic E-Business (CEC-
East), pages 302–305, 2004.

[33] W. Wang and B. Li. Market-driven Bandwidth Allocation in Selfish
Overlay Networks. In Proc. IEEE INFOCOM, 2005.


