
Why Share in Peer-to-Peer Networks?

Lian Jian∗and Jeffrey MacKie-Mason†

May 26, 2006

Abstract

Prior theory and empirical work emphasize the enormous
free-riding problem facing peer-to-peer (P2P) sharing net-
works. Nonetheless, many P2P networks thrive. We ex-
plore two possible explanations that do not rely on altru-
ism or explicit mechanisms imposed on the network: di-
rect and indirect private incentives for the provision of
public goods. The direct incentive is a traffic redistri-
bution effect that advantages the sharing peer. We find
this incentive is likely insufficient to motivate equilibrium
content sharing in large networks. We then approach P2P
networks as a graph-theoretic problem and present suffi-
cient conditions for sharing and free-riding to co-exist due
to indirect incentives we callgeneralized reciprocity.

1 Introduction

Studies of peer-to-peer (P2P) networks as static games
predict these systems should suffer from enormous free-
riding— peers download but do not upload—in the ab-
sence of altruism or explicit incentive mechanisms to en-
courage content uploading [Ranganathan et al., 2003].
The fact that many peers free ride is empirically con-
firmed by [Saroiu et al., 2002] and [Adar and Huber-
man, 2000]. However, in practice P2P networks such as
eDonkey, KaZaa, and Gnutella, persist and flourish de-
spite free-riding. One possible explanation for this puz-
zling phenomenon is that altruism might sustain these net-
works. Rather than rely on this deus ex machina, we ex-
plore two alternative explanations: direct and indirect in-
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centives for the private provision of public goods.1 2 Our
immediate goal is to understand economic conditions un-
der which networks of self-interested participants might
be sustainable despite equilibrium free-riding. Our ulti-
mate goal is to develop a plausible model of P2P behavior
in order to evaluate various proposed mechanisms to in-
crease sharing, and to develop our own mechanism for the
same.

In the next section, we investigate a direct private in-
centive to provide public goods proposed by Krishnan
et al. [2004], who suggest that sharing redistributes traffic
in the network to the advantage of the sharing peer. We
explore, in Section 3, generalized reciprocity as an indi-
rect incentive explanation of both sharing and free riding
on P2P networks. We close with a discussion of limita-
tions in our work, and plans to continue this research.

2 Direct Private Incentives

Providing files (sharing) to a P2P network is an instance
of theprivate provision of public goods [Bergstrom et al.,
1986].3 Sharing provides direct benefits to others for
which, in the absence of an explicit incentive mechanism,
the sharing peer is not compensated. One suggested ex-
planation for the nonetheless observed sharing is that in

1We are not claiming that altruism does not exist or is unimportant.
Rather, taken as a primitive, it is not susceptible to analysis, and does not
help answer design questions. For example, if sharing occurs solely due
to axiomatic tastes for altruism, we will have nothing to say about how
to encourage increased sharing, unless we have a story aboutwhypeople
want to be altrustic: that is, what incentives do they have for sharing?

2Some P2P protocols impose “altruistic” (always on) sharing as a
default setting. It may be a good design principle to encourage people to
act as if they were altruistic, but that leaves open the incentives question:
why do they not change the default setting?

3We adopt the widely-used convention of referring to uploading as
sharing.
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the process of providing a benefit to other users, a sharing
peer is simultaneously obtaining a direct private benefit,
similar to the personal incentive to donate, for example,
to support a public radio station. Krishnan et al. [2004]
model a particular form of this, which we call the “of-
fload effect”: sharing redistributes traffic in the network
to the advantage of the sharing peer. In a P2P network,
suppose peers A and B each want a different file, but both
files are available from peer C. If peer A has the file that
B desires, by offering to share with B agent A may get her
file sooner from C, by offloading some of the demand on
C.4

Krishnan et al. show that an offload effect could sup-
port a network in which all peers share is a dominant strat-
egy equilibrium. After modeling the traffic redistribution
and network congestion more precisely, we find it implau-
sible that the offload effect alone is sufficient to motivate
the amount of sharing seen on successful P2P networks.

2.1 Modeling offloading

We construct a four-period game. In period 1,n ≥ 3
players join the network. In period 2, each player chooses
whether to share or not, at a fixed cost ofc or zero, re-
spectively. Capacity is fixed and scaled so that a player
can share at most one unit in a sharing period. In period 3,
each player requests a unit of content from the network.
The network protocol randomly assigns each request to
one player who has decided to share in period 2. For con-
sistency we adopt the important simplifying assumption
made by Krishnan et al. that every node has at least one
file wanted by any other node. Supposek ≥ 2 players
have decided to share their content in period 2; then the
probability that playeri’s request is assigned to sharing
players is 1

k . If multiple requests are assigned to a shar-
ing player, she randomly chooses one to serve. In period
4, files are shared, and payoffs are realized.

Suppose in period 3,i’s request, together withm other
requests, has been assigned to players. s will pick i’s re-
quest to serve with probability 1

m+1 . Given that the event
of any peer’s request being assigned to a sharing peer is1

k ,
this event follows a Bernoulli distribution, and the event

4We take a game-theoretic approach to studying incentives in P2P
networks, and will use graph theory in the next section, so we usepeer,
node andplayer interchangeably.

thatm other players will be assigned to nodes follows a
binomial distribution,m ∼ b(n− 2, p).5

Consider an arbitrary nodei deciding whether to share.
She calculates the expected value from sharing or not (vS

i ,
vN

i ). These values are defined as the probability of ob-
taining one unit of content. Ifi shares, the total number
of sharing nodes isk + 1; if she doesn’t, it’sk. Thus, the
probability that another peer will choose the same source
node asi is p = 1

k+1 if i shares, andq = 1
k if i does not

share. Now we need to calculate the expected value fori
of being served bys, or E[(m + 1)−1]. We calculate this
as sum of the probabilities ofm taking on each possible
value on{0, . . . , n−2}, times the probability thati gets a
file from s when there are exactlym other demanders on
s. Thus, the expected values,vS

i andvN
i , are:6

vS
i (n, p) = Σn−2

m=0C
m
n−2p

m(1− p)n−2−m 1
m + 1

=
1− (1− p)n−1

(n− 1)p
(1)

and similarly,

vN
i (n, q) =

1− (1− q)n−1

(n− 1)q
, (2)

whereCy
x is the number of combinations “x choose y”.

We define the marginal benefit of sharing (MBS) as the
difference betweenvS

i andvN
i :

MBSi(n, p, q) = vS
i (n, p)− vN

i (n, q). (3)

2.2 Privately provided public good

If the sharing cost is low enough, nodes will share to ob-
tain the offloading benefit.

Lemma 1. MBSi(n, p, q) > 0.

5The number of trials isn − 2 because there aren downloading
agents, but the set of possibleother agents thani downloading froms
excludesi ands.

6Equations (1) and (2) are a simplified approximation. The differ-
ence is qualitatively unimportant; seehttp://www-personal.
umich.edu/ \∼jmm/papers/NetEcon06-supp-appendix.
pdf .
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Proof. See appendix.

Lemma 1 implies if the cost of sharing,c, is less than
MBS(n, p, q), there is a dominant strategy equilibrium
in which all peers choose to share. This verifies that
our model is consistent with the results in Krishnan et al.
[2004].

2.3 How large is the offloading benefit?

It is straightforward to show thatMBS is decreasing in
the number of other sharing nodes,k, so the incentive for
a marginal node to share decreases in larger networks. But
the equilibrium outcome of the game depends on the rela-
tive values ofc andMBS. Without an empirical estimate
for c, it is difficult to determine whether the offload effect
is meaningful for a P2P network. We can, however, gain
an appreciation for the magnitude of the offloading effect
by analyzing it as a percentage increase in a non-sharing
peer’s utility. Denote this increase byGi:

Gi(n, p, q) =
MBS(n, p, q)

vN
i (n, q)

(4)

Lemma 2 below characterizes the asymptotic properties
of Gi. As n → ∞, Gi converges to1

k . For example,
whenk = 30, by sharing her content, a player can only
increase the probability of obtaining one unit of content
by 3.3%. It seems implausible that in medium or large
networks this small gain would motivate many peers to
share their content. Further, sincek ≤ n by definition, we
see thatGi converges to zero ask increases, which means
the benefit of sharing vanishes the more other peers are
sharing.

Lemma 2.
lim

n→∞
Gi =

1
k

.

Proof. See appendix.

In Figure 1 we plotGi againstn, for various small val-
ues ofk. This illustrates our point that the gain of sharing
becomes independent of the number of peers in large net-
works, and it decreases in the number of nodes that are
sharing their content. We conclude that although the of-
floading effect may play some role in P2P networks, the
private incentives it suggests are likely insufficient to mo-
tivate equilibrium content sharing in large networks.

3 Indirect Private Incentives: Gen-
eralized Reciprocity

We turn to a different candidate explanation for sharing:
generalized reciprocity in a repeated game. In BitTorrent,
a form of direct reciprocity is implemented by embedding
a tit-for-tat type of strategy in the client software [Cohen,
2003]. This provides a form of direct incentive for upload-
ing, similar to the offloading incentive we studied in the
previous section. One type of indirect incentive for con-
tributing to the public good is “generalized reciprocity”
[Putnam, 2000]:

I’ll do this for you without expecting anything
specific back from you, in the confident expec-
tation that someone else will do something for
me down the road. (p. 21)

In a P2P network, generalized reciprocity may be loosely
described as a cycle in the directed graph in which each
peer contributes to second peer, but receives a contribu-
tion from a third peer. We shall formally characterize
conditions on the topology of the graph such that it has
an equilibrium in which some self-interested peers con-
tribute while others free-ride. Generalized reciprocity can
arise when direct reciprocity is impossible, for example
when demands between node pairs are very asymmetric.

We suppose there is no private benefit from sharing
(i.e., no altruism, and no offloading effect), but that peers
are interconnected through a network topology, and an-
ticipate participating for an indefinite length of time.
Feigenbaum and Shenker [2002] suggested graph theory

100 200 300 400 500 600 700
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1
Gi The gain of sharing

k=2 k=4 k=6 k=8 k=10 k=12

Figure 1:The gain of sharing for playeri.
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to model incentives in network problems because peer
incentives might affect the formation of the graph. We
follow Shneidman and Parkes [2003] who suggest graph
configuration may affect incentive structures. In partic-
ular, we characterize a family of graphs that support a
generalized reciprocity equilibrium. Like us, Afergan and
Sami [2006] use repeated games theory to study problems
on network topologies.

We illustrate with the simple graph in Figure 2. Each
labeled, directed link represents the direction and volume
of the traffic between the two end nodes of the link. In a
repeated game of indefinite duration, B and C want a file
from each other and both want a file from A. A, however,
is a free rider. Suppose peers restrict themselves to either
sharing with every node or not sharing at all.7 Suppose
further that the benefit of receiving one unit of content
is significantly higher than the cost of sharing it. With
these assumptions B and C sharing is an equilibrium as
long as they are receiving enough content. If say, B stops
sharing, C will find it unprofitable to share, hence will
also stop sharing. Thus the network breaks down due to
B’s deviation.

3.1 Definitions and assumptions

We model peers’ interactions as an infinitely repeated
game with a fixed time discount factorδ adopted by
all peers.8 A set of demand relationships among the
n peers in the network is given exogenously, and re-
mains constant through out. These relationships can
be represented as a directed graph,D. Loosely speak-
ing, a directed graph is a set ofnodes connected by di-
rectededges [Deo, 1974]. Apath is a sequence of con-

7We remove this assumption for Proposition 2.
8With an appropriate increase to the discount rate, we can accom-

modate a finite but random time in the network, rather than an infinite
horizon.
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Figure 2:A simple example

secutive nodes and edges, with no nodes repeated. A
path which ends at the node it begins is called acy-
cle. Two cycles areindependent if they do not share
any nodes in common. A graph isconnected if there
is an undirected path connecting every pair of nodes. A
graph that is not connected can be divided into connected
components, each of which is a connected subgraph.
For example, Figure 3 is a directed connected graph
with independent cycles (1, a12, 2, a23, 3, a34, 4, a41) and
(10, a1011, 11, a1110). The link label values are the de-
mand quantities. The graph has an equivalent representa-
tion as ann × n adjacency matrix with each elementσij

the demand from peerj to peeri.

3.2 Game setup

For simplicity, we define matrixB as a binary demand
matrix obtained by converting the positive link intensities
in D into 1, with elementbij the demand fromj to i. We
focus on an arbitrarycomponent of the graph with the ad-
jacency matrixK associated with it.K is thus connected
and consists ofk players. K remains constant through
out the game and its member peers have complete infor-
mation ofK. In each stage game, permissible actions for
playeri, aij , are defined as follows,

aij =
{

1 if σij 6= 0 andi shares to j
0 if σij = 0 or i does notshare to j

In each round, the stage game is played and then pay-
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Figure 3:An example of equilibrium action graph
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offs are realized. Players observe all players’ actions in
the previous round before the next round starts. Each peer
receives a positive value ofv when she obtains a unit of
file, and incurs a positive cost ofc when she shares a unit
of file to any other peer.

In round t, the actions chosen by the peers constitute
a k × k action matrix,A, which again corresponds to
a directed graph. For nodei, Σk

i=1aij is its out-degree
andΣk

i=1aji is its in-degree. WhenΣk
i=1aij = 0, which

means peeri does not share her file to any other peer, she
is considered afree-rider; otherwise she is considered a
sharing peer. We also define a parameterρi as the ratio

betweeni’s out-degree and in-degree,ρi = Σk
i=1aij

Σk
i=1aji

.

3.3 Equilibrium analysis

We propose that an action matrixA∗ can be sustained in
equilibrium, if its corresponding graph satisfies the fol-
lowing properties,

P.1 No nodes have an in-degree of zero, and
maxi{ρi} < δv

c .

P.2 Any two cycles in the graph are independent.

P.3 Any leaf node is connected to a node that par-
ticipates in a cycle.

Figure 3 shows a graph that satisfies properties P.1–P.3.
The condition on the out-degree/in-degree ratio in P.1 lim-
its consideration to networks in which users get enough
net benefit that participating is better for them than is
dropping out of the network. This condition can surely
be relaxed to accommodate altruistic users. Property P.2
is purely to simplify the analysis, and we know from ex-
amples that there are networks in which users participate
in more than one cycle and yet the result of our propo-
sition still holds. We are working to relax this condition
in ongoing research. Property P.3 rules out an agent who
does not provide anything that “comes back around”; the
node uploading to such an agent (e.g., node 6 uploading
to some other leaf, say 12, in Figure 3) would always be
better off to stop contributing since there is no generalized
return on the contribution.

We claim that free-riding on such a graph may exist in
equilibrium even without altruistic players or the offload-
ing effect. We formalize this intuition in Proposition 1,

as asubgame perfect Nash equilibrium (SPNE). A profile
of strategies is a SPNE if it is a Nash equilibrium of the
game itself, and if it induces a Nash equilibrium in every
subgame [Fudenberg and Tirole, 1991].

Proposition 1. In an infinitely repeated game with the
afore-mentioned stage game, if the action matrixA satis-
fies property P.1–P.3, there exists a SPNE which can have
both sharing peers and free-riders.

Proof. See appendix.

Thus even without altruistic peers, an offloading effect
or an explicit incentive mechanism to encourage sharing,
sharing can exist due to generalized reciprocity. More-
over, free-riding may exist too. The intuition is simple:
peers care a lot about fulfilling their demands, and the
cost of sharing is low, so they can tolerate free-riding to
a certain extent. More free-riding does not occur because
of the threat of alocal grim trigger strategy(LGTS)9: if
a node stops uploading to A, node A will leave the net-
work forever, which through the generalized reciprocity
cycle punishes the miscreant node, discouraging it from
free-riding in the first place (see proof).

We derived Proposition 1 under restrictive conditions:
all nodes could observe all flows (theflow topology), and
nodes may only choose from a strategy space restricted to
either upload to every requestor, or upload to none. These
two assumptions taken together are clearly not very gen-
eral: if nodes know the entire flow topology then why
punish all requestors when a single node deviates? Like-
wise, if node 4 knows node 8 is a free-rider in Figure 3,
why not cut off only node 8 rather than all nodes?

We are working on a model of generalized reciprocity
with incomplete information about the flow topology, and
with an unrestricted space of strategies. These assump-
tions seem reasonable for the pseudonymous Internet. We
have one preliminary result that illustrates how general-
ized reciprocity can support P2P networks with equilib-
rium free-riding in more general settings. We assume
peers only know the flows in which they participate and
each peer selectively shares to other peers to maximize
her value.

9Or others; LGTS is sufficient to support the equilibrium, but may
not be unique.
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Proposition 2. In an infinitely repeated game, with only
local knowledge of the flow graph and selective strategies,
the flow graph depicted in Figure 4.(a) is a weak perfect
Bayesian equilibrium.

Proof. See appendix.

4 Discussion

We have shown the existence of an equilibrium in a con-
strained family of network topologies, under two different
game forms. Both cases are restrictive. We would like to
characterize theset of equilibria to assess the plausibil-
ity of outcomes with a mixture of sharing and free-riding.
Further, we would like to characterize other families of
network topologies, to uncover those features (size, con-
nectedness, overlapping cycles, etc.) that affect the equi-
librium configurations. Of course, we would also like to
address the question we asked about the offloading effect:
is generalized reciprocity important enough to explain the
amount of sharing we see in large networks?

Our ultimate goal is to use the model as a principled
foundation to explore the design and performance of var-
ious incentive mechanisms to encourage sharing in P2P
networks.
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APPENDIX

Proof of Lemma 1

vS
i (n, p) =

1− (1− p)n−1

(n− 1)p
(5)

=
1− (1− p)n−1

(n− 1)(1− (1− p))

=
1 + (1− p) + · · ·+ (1− p)n−2

n− 1
.

Here we used the sum of a geometric series
∑n

k=0 rk =
1−rn+1

1−r . Let In,p = 1+(1− p)+ · · ·+(1− p)n−2. Then
vS

i (n, p) simplifies tovS
i (n, p) = In,p/(n− 1). Simi-

larly, letIn,q = 1+(1−q)+· · ·+(1−q)n−2, thenvN
i (n, q)

can be written asvN
i (n, q) = In,q/(n− 1). Sincep =

1
k+1 < q = 1

k , 1 − p > 1 − q and(1 − p)x > (1 − q)x,
x = 0, · · · , n− 2. ThereforeMBS(n, p, q) > 0.

Proof of Lemma 2

lim
n→∞

MBS(n, p, q)
uN

i (n, q)

= lim
n→∞

1−(1−p)n

p

1−(1−q)n

q

− 1 =
1
k

.

Proof of Proposition 1

Two types of nodes in any graphA satisfy properties P.1
∼ P.3. We label the nodes on the cycle ascycle nodes
and the nodes that do not have child nodes asleaf nodes.
We restricts peers in each round to play either Share or
Not Share with all demanding nodes: ifi plays Share,
aij = bij , ∀j 6= i; and if i plays Not Share,aij = 0, ∀j.

We consider two peer strategies, Not Share and the lo-
cal grim trigger strategy (LGTS). In LGTS peeri plays
Share in the first round and continues sharing as long as
ρi < δv

c . We show that a strategy profile in which the
cycle nodes play LGTS and the leaf nodes play Not Share
is a SPNE. First, leaf nodes, by playing Not Share while
receiving value from their parent nodes do not have any
incentive to deviate.

Second, cycle nodei can either follow LGTS or deviate
by playing Not Share. We calculate the continuation pay-
offs of each from roundt onwards, asut

i. If she follows
the equilibrium strategy, LGTS, her continuation payoff
is,

ut
i = vΣk

i=1aji − cΣk
i=1aij (6)

If player i deviates from LGTS in roundt, the other nodes
in the same cycle will know before roundt+1 that she has
deviated. Therefore in roundt + 1 no nodes will share to
her. This is due to P.2, which implies that a peer belongs to
no more than one cycle, such that once one peer deviates
from LGTS, the cycle is going to be broken. Foreseeing
this happening, no peer in the cycle will share in round
t + 1. Thus playeri’s continuation payoff is,

ut
i = (1− δ)vΣk

i=1aji (7)

The cycle nodes will choose to follow LGTS if the fol-
lowing inequality holds,

vΣk
i=1aji − cΣk

i=1aij > (1− δ)vΣk
i=1aji, (8)

which is equivalent to ,

ρi <
δv

c
(9)

Inequality (9) is satisfied by property P.1. For com-
pleteness, we can easily verify that once a cycle node or
a leaf node has deviated, there is no incentive for her to
return to the equilibrium strategy. In this equilibrium, the
cycle nodes are sharing peers and the leaf nodes are free-
riders.

If P.3 is not satisfied, then there will be a third type of
node in the graph: a sub-leaf node that receives a file from
a leaf node, but does not participate in a cycle.10 A graph
with sub-leaf nodes will not be an SPNE because the leaf
node providing only to sub-leaves will be unambiguously
better off not uploading any files, and thus will deviate
from the proposed equilibrium.

Proof of Proposition 2 (sketch)

Suppose all the peers adopt individual grim-trigger strat-
egy (IGTS). Whenever a pair of peers each demand one

10The sub-leaf may upload a file to another node, but at some point a
node in that chain will be a terminal leaf node.
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unit of content from each other, IGTS requires they start
by sharing with each other and stop sharing forever if one
has deviated in the previous period. Suppose further that
a node has diffuse (uniform) priors over the distribution
of possible flow topologies (each possibility is equally
likely). These beliefs will be sustained in equilibrium be-
cause there are no moves by nature and the problem is
stationary so there are no changes in flows that are infor-
mative about the unobserved links. The proof follows 5
steps:

Step.1 Show that node B in Figure 5(a) will choose
to stop sharing to C. This can be done by exam-
ining Figure 5(c), (d), (e), and (f), which repre-
sent all of B’s possible beliefs. Given that each
peer is individually rational, in (c), (e), and (f)
B can gain by cutting off C. In (d), B can gain
by cutting off either A or C. Thus it is profitable
for B to stop sharing to C.

Step.2 Following the same logic in Step. 1, show
that node B in Figure 5.(b) will choose not to
deviate and continue sharing to A.

Step.3 To show that Figure 4 can be sustained in
a weak perfect Bayesian equilibrium, we only
need to show that node B in both Figure 6.(a)
and (b) will not deviate, since these two cases
represent scenarios for all nodes in Figure 4.

Step.4 In Figure 6.(a), B only knows the links that
she participates in, and the total number of
nodes in the graph. There are 64 possible flow
graphs in total, out of which only 28 are ratio-
nal according to the results of Step.1 and 2.11

In 19 scenarios B gains by cutting off either A
or D. And in 2 cases B gains by not sharing to
any nodes — she free-rides. Thus the gain of
cutting off A or D is 19

28 × (v− c)− (v− 2c).12

And the gain of free-riding is2v
28 − (v − 2c).

Apparently the gain of free-riding is too small

11see http://www-personal.umich.edu/ \∼jmm/
papers/NetEcon06-supp-appendix.pdf for an analysis
of all 64 graphs.

12This is an approximate calculation for illustration purpose only.
For detailed calculations please refer tohttp://www-personal.
umich.edu/ \∼jmm/papers/NetEcon06-supp-appendix.
pdf .

to be interesting. And only ifc > 9v
37 , it is prof-

itable for B to cut off A or D. Assuming thatv
is sufficiently larger thanc, this condition is not
satisfied. Hence the most profitable strategy is
not to deviate.

Step.5 Similar logic applies to Figure 6.(b).
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Figure 5:Three Node Scenarios
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Figure 6:Node B’s Beliefs
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