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Abstract

In this paper we argue that a robust incentive mechanism
is important in a real-world peer-to-peer streaming system
to ensure that nodes contribute as much upload bandwidth
as they can. We show that simple tit-for-tat mechanisms
which work well in file-sharing systems like BitTorrent do
not perform well given the additional delay and bandwidth
constraints imposed by live streaming. We present pre-
liminary experimental results for an incentive mechanism
based on the Iterated Prisoner’s Dilemma problem that al-
lows all nodes to download with low packet loss when there
is sufficient capacity in the system, but when the system is
resource-starved, nodes that contribute upload bandwidth
receive better service than those that do not. Moreover, our
algorithm does not require nodes to rely on any information
other than direct observations of its neighbors’ behavior to-
wards it.

1 Introduction

In recent years, BitTorrent [4], a peer-to-peer file sharing
protocol has become one of the most widely used tools for
bulk data dissemination to large numbers of nodes. Bit-
Torrent allows a large number of nodes to simultaneously
download a large file by breaking it into chunks and having
different nodes exchange chunks among each other.

While BitTorrent is effective for transferring files, the file
is not downloaded in sequence and is therefore generally
unusable till the download is complete. Moreover the band-
width delivered often varies over time, making it unsuitable
for applications like streaming video.

Many peer-to-peer streaming protocols [2, 6, 5, 10] have
been proposed. However, in order to perform well, most
of them assume a resource-rich environment where there is
sufficient upload capacity in the system to support all down-
loaders.

However, several studies [1, 11] have shown that users
of peer-to-peer networks tend to be selfish and try to bene-
fit from a system without contributing resources in return.
Moreover, several nodes are unable to contribute as much

upload bandwidth as the download bandwidth they con-
sume because they are using an asymmetric Internet con-
nection like a consumer cable-modem or ADSL line.

This could result in a system where the demand for
download bandwidth exceeds the supply of available up-
load bandwidth, making it impossible to satisfy all demand.
In such a system we would like to give nodes an incentive
to upload as much as they can by making the probability of
suffering packet loss inversely proportional to the upload
bandwidth contributed.

To achieve this, we tried to design an incentive scheme
for peer-to-peer streaming on top of the Chainsaw [9]
streaming protocol. We found that due to the strict time
and bandwidth constraints and intolerance to long delays in
streaming, incentive schemes designed for file-sharing pro-
tocols perform very poorly in streaming systems. In this
paper, we start by presenting some of our unsuccessful at-
tempts along with our reasoning of why they failed to per-
form well, in the hope of generating discussion.

In addition, we present an incentive scheme called Token
Stealing based on an Iterated Prisoner’s Dilemma that ap-
pears promising based on our preliminary experiments on
PlanetLab [3].

2 Background

We implement our incentive schemes on top of Chain-
saw [9], a streaming protocol based on an unstructured
mesh network. Chainsaw uses a simple request-response
protocol which is briefly described here.

Chainsaw Streaming Protocol

Chainsaw is designed to deliver a stream of data from one
node (called the seed) to a large number of recipients.
While Chainsaw may be generalized to multiple seeds, as
well as many-to-many multicast, in this paper we only con-
sider one-to-many multicast with a single seed. We refer to
the set of nodes to which a peer is connected as its neigh-
bors.



Every node maintains a list of packets that its neighbors
are willing to provide. To ensure that this list is updated
properly, whenever a node receives a new packet, it broad-
casts a NOTIFY message to its neighbors to inform them
of the change. The seed obviously does not receive pack-
ets, but does generate new packets periodically. The seed
sends out NOTIFY messages to its neighbors every time it
generates a new packet.

Every node also maintains a window of interest, which is
the set of sequence numbers that the node is interested in
acquiring at the current time. The node slides its window
of interest forward over time as new packets stream in. If
a packet has not been received by the time it “falls off”
the trailing edge of the window, the node will consider that
packet lost and will no longer try to acquire it.

For every neighbor, a node creates a list of desired pack-
ets, i.e. a list of packets that the node requires that the
neighbor is able to provide. It will then pick one or more
packets from the list at random and request them via a RE-
QUEST message.

A node keeps track of which packets it has requested
from which neighbor to ensures that it does not request
the same packet from multiple neighbors. It also limits the
number of outstanding requests with a given neighbor to en-
sure that requests are spread out over all neighbors. Finally,
when a node receives a REQUEST message, it responds
with a corresponding DATA packet as bandwidth permits.

Chainsaw has no global routing tables, so it does not de-
pend on any specific network topology. In this paper, we
will assume a topology in which every node repeatedly con-
nects to a randomly picked node from the list of known
hosts until a predefined minimum number of neighbors (the
node degree) is reached. This network has the advantage
of being very easy to construct and maintain even in the
face of the sudden departure of a large fraction of nodes.
Many practical peer-to-peer networks like BitTorrent and
Gnutella use an unstructured random graph topology.

3 Poor Performance: Naive Tit-for-
Tat

Chainsaw’s request-response protocol is similar to that used
by BitTorrent, as well as SWIFT[12], a pairwise currency
mechanism for file-sharing that we showed to be more ef-
fective at providing fairness in file-sharing than BitTorrent’s
incentive mechanism.

In SWIFT, every node maintains credit for each of
its neighbors and honors packets requests only when the
neighbor has enough credit. Whenever it receives a packet
from a neighbor, the node extends it o packets worth of
credit. In addition, trading is jump-started by initializing
neighbors with ~ packets worth of credit instead of zero,

and deadlocks are avoided by periodically extending nodes
a small fraction 5 of their total upload capacity in credit
every second, regardless of data received from it.

As long as nodes consistently upload, they will keep
earning credit with their neighbors and be able to down-
load. However, nodes that do not upload will soon deplete
their credit with their neighbors and not be able to down-
load anymore, except for small trickle of free credit they
receive from their neighbors in the form of 5.

While SWIFT was very effective at ensuring fairness in
file-transfer applications, we found a similar mechanism to
perform very poorly when applied to streaming. In our sim-
ulations we found that over time, a large fraction of nodes
started to suffer severe (> 50%) packet loss even in a sys-
tem where every node tried to upload as much as their ca-
pacity allowed. This was caused by small imbalances be-
tween nodes (eg. due to different delay characteristics, dis-
tance from seed, number of neighbors) being amplified by
an undesired positive-feedback loop.

For instance, consider a pair of nodes A and B, where
A is closer to the seed than B. In this situation, node A is
likely to receive new packets before node B. As a result,
node B has fewer opportunities to upload packets to node
A, resulting in a net loss of credit. Eventually, node B runs
out of credit and is no longer able to download from node
A. However, given its proximity to the seed, it is likely that
node A was a source of packets that was of interest to node
B’s other neighbors. Therefore, the loss of node A as a trad-
ing partner puts node B in a less favorable position to trade
with the rest of its partners. This creates a positive feedback
loop where a slight disadvantage is ultimately amplified to
the point where a node is unable to earn enough credit to
avoid packet loss.

4  Partial Success: Compensating for
Trading Imbalances

We experimented with a number of mechanisms for com-
pensating for these small imbalances.

4.1 Preferential Uploading

In the naive tit-for-tat experiments, we found that nodes ran
out of credit because they were unable to upload enough
packets to some of their neighbors to maintain a stable sup-
ply of credit. Therefore, we implemented a system where
nodes aggressively tried to upload to neighbors they were
running out of credits with by giving requests from those
neighbors a higher priority. Quickly satisfying existing re-
quests results in more requests for packets from that neigh-
bor because nodes limit the number of requests outstanding
with a given neighbor at any time.



Unexpectedly, this strategy made the problem worse.
Some nodes were at an advantage with respect to most of
their neighbors, which led to an “arms race” among neigh-
bors to upload as quickly as possible to the advantaged
node. This created a new positive feedback loop where ad-
vantaged nodes were put at an increasingly greater advan-
tage by neighbors aggressively uploading to them. Eventu-
ally, the neighbors that lost the arms race ran out of credits
as they did in the naive tit-for-tat system.

4.2 Advantaged Nodes Back Off

Our next approach was to have advantaged nodes attempt
to reduce the number of packets they uploaded rather than
increase the number of packets their disadvantaged neigh-
bors uploaded to them. We did this by having nodes keep
track of every neighbor’s balance ratio,

total-download

balance-ratio =
total-upload + total-download

Note that this calculation is done purely based on di-
rect local observations of a neighbor’s behavior towards the
node.

Nodes with balance-ratio < 0.5 have been uploading
more than they have been downloading. By default, nodes
send NOTIFY messages to all their neighbors when they
receive a new packet to enable them to download it. How-
ever, as the balance-ratio fell below 0.5, we linearly reduced
the number of neighbors notified. This ensured that the ad-
vantaged nodes only uploaded a small number of copies of
every packet.

This is beneficial to the advantaged node, disadvantaged
node, and the system as a whole. The advantaged nodes
benefit by having some of the burden of uploading taken
off them, while the disadvantaged nodes benefit by having
a greater opportunity to upload packets to their neighbors
and earn credit. The overall amount of upload bandwidth
in the system is generally not reduced because some of the
burden of uploading packets is shifted from the advantaged
to the disadvantaged nodes. The advantaged node is then
able to use its upload bandwidth to rapidly propagate new
packets rather than multiple copies of old packets.

This scheme worked very well in our simulations, and
we were able to maintain a balance-ratio between 0.45 and
0.55 across all pairs of neighbors in the network. Unfortu-
nately, the algorithm failed to produce a significant benefit
in real-world tests on real a implementation of the proto-
col on the PlanetLab testbed. We found that the variation in
bandwidth capacity and round-trip delays between different
pairs of nodes in the network so great that it was not pos-
sible to accommodate the slowest nodes without dragging
down the performance of the entire system.

5 Promising: Token Stealing Algo-
rithm

Our next attempt was an algorithm we call Token Stealing,
which builds on the standard token bucket model commonly
used to allocate limited bandwidth among competing pro-
cesses. The Token Stealing algorithm sets up local mar-
kets at every node where neighbors compete for the node’s
upload capacity. When the demand for bandwidth from
the node exceeds the node’s capacity, nodes that upload
receive preferred service, while this constraint is relaxed
when there is adequate bandwidth to fulfill all requests.

We first outline the standard token bucket algorithm.

The token bucket algorithm works by having a virtual
bucket into which tokens are added periodically. When-
ever a packet is transmitted, an equivalent number of to-
kens must be removed from the bucket—packets may only
be transmitted when there are a sufficient number of tokens
available in the bucket. Thus, the overall bandwidth can be
controlled by controlling the rate at which tokens are added
to the bucket.

The number of tokens that may accumulate in the bucket
is limited to some maximum value to prevent a large num-
ber of tokens from accumulating during periods when there
is low demand for bandwidth.

The basic token bucket algorithm only ensures that the
overall bandwidth doesn’t exceed a specified limit. We aug-
ment this with the Token Stealing algorithm to give a higher
priority to nodes that have been consistently uploading than
those that haven not.

The Token Stealing algorithm is a simple extension of
the token bucket algorithm. In this algorithm, every node
maintains a standard token bucket that we refer to as the
shared bucket into which tokens are added periodically. In
addition, the node maintains a separate bucket for each of
its neighbors. We refer to these as private buckets. When-
ever a node receives a packet from one of its neighbors, it
removes tokens from the shared bucket and transfers them
to that neighbor’s private bucket. This has the effect of re-
serving a portion of the node’s upload bandwidth to repay
the neighbor for the packets it has uploaded.

To prevent neighbors from reserving large amounts of
bandwidth that they never utilize (for example, because
they are connected to other nodes with large upload capac-
ities), there is a limit on the size of the private buckets. To-
kens that overflow the private buckets are returned to the
shared bucket.

Which Bucket First?

The question of which bucket to deduct tokens from when a
neighbor requests a packet is interesting. One may choose



to first deduct tokens from the private bucket and dip into
the shared bucket only if there are not enough tokens in the
private bucket, or one may use up tokens from the shared
bucket first.

In our experiments we found that the both strategies give
the neighbors that upload (and therefore have tokens in their
private buckets) an advantage, but that advantage is consid-
erably greater in the latter case. When tokens are deducted
from the private buckets first, neighbors that upload do not
compete in the market for the shared tokens unless their pri-
vate buckets are empty. This makes it easier for neighbors
that do not upload to receive a portion of the bandwidth.

When tokens are deducted from the shared bucket first,
all neighbors compete equally in the market for shared to-
kens before dipping into their private buckets, which act as
a “reserve”. This amplifies the priority given to the nodes
that upload.

Therefore, the strategy we choose is to deduct tokens
from the shared bucket first and only dip into the private
bucket when the shared bucket is empty.

5.1 Analysis

With the Token Stealing algorithm, the total upload capac-
ity of the node is still limited by the rate at which tokens
are added to the token bucket, i.e. the upload bandwidth
limit. However, unlike a simple token bucket system where
all nodes have an equal opportunity to use up tokens from
the bucket, the Token Stealing algorithm favors neighbors
that upload.

Whenever a neighbor uploads a packet to a node, the
node reserves tokens for that neighbor’s use. Every packet
the neighbor uploads serves to a node increases the chances
that the neighbor will be able to download a packet in the
future.

If all neighbors upload equally, all private buckets will
have the same number of tokens in them, which gives all
neighbors equal priority. However, a neighbor that does not
upload will not have tokens in its private bucket and will be
limited to competing with other neighbors for tokens from
the shared bucket.

Whether or not the non-uploading neighbor succeeds in
downloading depends on the total supply and demand at
that node:

5.1.1 Node has excess upload capacity

If the node has more than enough upload capacity to fulfill
the demand of all of its neighbors, the shared bucket will
have tokens in it and the neighbor that does not upload will
still be able to download. This ensures that a node’s upload
capacity is utilized as much as possible.

It is possible for a few nodes, known as free-ridersto try
to leach off the system by selectively connecting to nodes
with excess capacity. This strategy will work so long as the
number of free-riders is small. If a large number of nodes
attempt to leach off the system, they will compete among
each other for tokens from the shared token bucket. This
makes the effect of free-riders self-limiting.

5.1.2 Node haslimited upload capacity

If the node does not have enough capacity to satisfy all
requests, most of the tokens will be moved to the private
buckets of the neighbors that do upload, and the shared
bucket will generally be empty. As a result, the neighbors
that upload will be able to use the tokens from their private
buckets to download packets, but nodes that do not upload
will be forced to compete for the scarce tokens from the
shared bucket.

5.2 Prisoner’sDilemma

The Token Stealing Algorithm may be modeled as an Iter-
ated Prisoner’s Dilemma problem. If all of a node’s neigh-
bors defect (refuse to upload), they all share the common
pool and none of the neighbors has an advantage. However,
a neighbor that chooses to upload (cooperate) can “steal”
tokens away from the shared bucket. The neighbor will
still compete equally for the remaining tokens in the shared
bucket, but will have a private reserve for itself in addition
to the tokens it receives from the shared bucket. In this case,
the best strategy for the other neighbors to upload in order
to move tokens to their own private buckets. Thus, when-
ever the upload capacity at a node is scarce, the dominant
strategy for every neighbor is to upload to that node, i.e. to
cooperate.

6 Experimental Evaluation

To evaluate the performance of the Token Stealing algo-
rithm, we build an application and deployed it on 350 nodes
across the globe on the PlanetLab[3] testbed. All nodes
joined the network before the seed (source node) started
broadcasting data, and connected to an average of 15 neigh-
bors each. The stream was divided into 4 kilobyte packets
at a rate of 25 packet/second to give a total stream rate of a
100 kilobytes/sec.

We did not constrain the download capacity of nodes in
any way, but capped the upload capacity of nodes to put
them in one of two classes:

1. Fast Nodes. Maximum upload capacity = 200 kilo-
bytes/sec
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Figure 1: In aresource-rich system both fast and slow nodes
are able to download with very little packet loss.

2. Sow Nodes: Maximum upload capacity = 25 kilo-
bytes/sec

6.1 Resource-Rich System

In our first experiment, the system had 75% of fast nodes
and 25% of slow nodes. This made the average supply of
upload capacity 156.25 kB/node. The demand from every
node regardless of their upload capacity was the full 100
kB/sec stream rate. Thus, the system had approximately
one and a half time the supply as demand.

We ran this system for 300 seconds and measured the
packet loss rate experienced by different nodes. Note
that machines on PlanetLab are shared between many re-
searchers and are often very heavily loaded, resulting in se-
vere and unpredictable constraints on available bandwidth
and CPU time. This causes some nodes to suffer severe
packet loss even when there are adequate resources in the
system.

In this system, over 90% of the fast nodes as well as
slow nodes suffered less than 10% packet loss regardless of
whether or not the Token Stealing algorithm was used. This
shows that the Token Stealing algorithm does not harm the
performance of a resource-rich system.

6.2 Resource-Starved System

In our second experiment, the system had 25% of fast nodes
and 75% of slow nodes. This made the average supply of
upload capacity 68.75 kB/node. Thus, the system had ap-
proximately two third the supply as demand.

In this system, there is a major benefit to having the To-
ken Stealing algorithm enabled. Without token stealing,
barely 3% of fast and 6% of slow nodes had less than 10%
packet loss. With Token Stealing enabled, things improved
dramatically for the fast nodes—68% of them had less than
10% packet loss. Clearly, in a resource-starved system with
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Figure 2: In a resource-starved system without Token Steal-
ing, both fast and slow nodes suffered heavy packet loss.
Barely 3% of fast nodes and 6% of slow nodes were able
to download with less than 10% packet loss. With Token
Stealing enabled, however, 68% of the fast nodes and 14%
of the slow nodes suffered a packet loss rate under 10%.

Token Stealing enabled, nodes have a big incentive to up-
load as much as they can.

7 Discussion

Our investigations have shown that despite the many
similarities between BitTorrent-like file-sharing systems
and mesh-based peer-to-peer streaming systems, incentive
schemes used in file-sharing can not be easily applied to
streaming.

Simple tit-for-tat schemes do not work well because of
the additional constraints imposed by live streaming. For
example, in a file-sharing network, every packet is useful
until all nodes in the system have downloaded that packet.
In streaming, however, packets quickly become obsolete.

Our preliminary work with the Token Stealing algorithm
has shown promising results. We find that it allows nodes
that are unable to contribute much upload bandwidth to still
download the stream with low packet loss so long as the
supply of bandwidth in the system exceeds the demand.
This allows the system to take advantage of altruistic nodes
that contribute more upload bandwidth than the stream rate,
and to avoid imposing harsh penalties on nodes that are un-
able to upload (for example ADSL nodes).

However, when the system is resource-constrained be-
cause there aren’t enough altruistic nodes to close the gap
between the supply of and demand for bandwidth, it is
impossible for all nodes to download the stream with no
packet loss. Under these circumstances, nodes that con-
tribute upload bandwidth to the system are given a higher
priority and tend to suffer much lower packet loss.

So far we have only investigated this algorithm under



very limited circumstances. While our initial results are
promising, we still need to investigate the effect of many
real-world conditions, such as the fact that node bandwidths
do not fall into a small number of well-defined categories,
and that available bandwidth varies over time. Moreover,
we have yet to investigate the ways in which nodes may
game the system.

We believe that every practically deployed peer-to-peer
streaming system needs to give nodes an incentive to up-
load as much as they can in order to ensure that the system
remains resource-rich and operates well. However, it is bet-
ter to avoid shutting out nodes that are unable to upload as
fast as they download unless there are insufficient altruistic
nodes in the system to make up the deficit.

8 Related Work

Traditional multicast approaches have relied on building
spanning trees over the network and pushing data over
those trees in order to minimize delay. This creates parent-
child relationships that make it hard to identify and penalize
nodes that do not upload based purely on local observations.
However, Ngan, Wallach, and Druschel propose a gen-
eral reputation-based system [8] to detect and penalize free-
riders. Their solution can be applied to any tree-based mul-
ticast system. However, their solution require the multicast
trees to be rebuilt continuously. We believe our system to be
easier to implement in a decentralized manner in practice.
Levin, Sherwood and Bhattacharjee describe an interest-
ing overlay structure[7] for file swarming that is a radical
departure from BitTorrent and other tit-for-tat approaches.
However, in the current form it has two severe limitations.
Firstly they assume that every node in the system has ex-
actly the same upload capacity. Secondly, the disincentive
to defect comes from the collapse of the entire systemwhen
a single node defects. As the authors acknowledge, these
drawbacks make the system impractical in its current form,
but these problems may be alleviated with further research.

9 Conclusion

We argue that in order for a peer-to-peer streaming system
to be robust, it is important to have an effective mecha-
nism to give nodes an incentive to upload as much as they
can. Our investigations show that naive application of tit-
for-tat mechanisms that work well in file-sharing systems
do not perform satisfactorily in streaming systems due to
additional bandwidth and delay constraints. We have out-
lined an algorithm called “Token Stealing” that runs locally
on every node and relies only on direct observations with-
out the need for network-wide or third-party coordination.

6

Our experiments show that this algorithm helps reduce the
packet loss for nodes that contribute upload bandwidth in a
resource-constrained system, while not shutting nodes with
poor upload capacities out of resource-rich systems.
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