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1. INTRODUCTION

Consider a situation where a group of buyers would like
to jointly purchase a particular resource with the intention
of sharing it. For example, suppose two individuals who are
sharing a living space would like to purchase an object, say
an air conditioner or a television, which is available in the
market for a certain price. How do they agree upon a di-
vision of this price amongst themselves when their utilties
for using that object are private? Any scheme that recom-
mends some notion of fair division of this price has to rely
on the ability of the scheme to elicit the true utilities of the
individuals, which is difficult since each individual wants to
minimize his share of the payment. More generally, the re-
source in question may be congestible, and the utilities may
depend on the proportion in which it is shared between the
two users. In that case they not only have to decide how
to divide the price of the resource but also how it will be
shared, and the two decisions would naturally have to go
hand in hand. Moreover, it may not be a simple question of
paying a given price, but the resource itself may be offered
in an auction, in which case the two buyers need to decide
how they will jointly bid in the auction, along with the terms
of sharing the resource and the division of payment in the
event that they win.

Embracing the classical perspective of mechanism design,
we can transfer the onus of coming up with a solution to this
problem from the buyers to the seller herself. This leads us
to consider the converse problem from the perspective of the
seller in the market. She intends to sell a resource and sev-
eral competing groups of buyers are interested in purchas-
ing that resource for their respective groups. Her problem is
thus to design a mechanism to allocate the resource to one
of the competing groups, along with a proposed division of
the resource within the group. The key aspect of this design
problem is the kind of incentive properties such a mechanism
needs to satisfy. The buyers in a single group are expected
to collude in their utility reports and hence such a mecha-
nism needs to be robust to any collusive behavior within a
particular group, but perhaps not necessarily across groups.

A practical example, which is our primary motivation for
studying this kind of a market, is the market for radio spec-
trum. Recently there has been a debate concerning the
merits and demerits of allocating newly opened blocks of
spectrum for free unlicensed use (like WiFi) as opposed to
selling them for exclusive licensed use (e.g., to cellular ser-
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vice providers) as has been done for the past few decades.
It has been argued (see for example [5]) that an open-access
unlicensed spectrum can act as an enabler for technological
innovations that would increase social welfare and future tax
renevnue for the government, while at the same time mit-
igating the inefficiencies of exclusive licensed use. But one
can also argue that such a move may cause the government
to lose out on the substantial revenue that it generates by
sale to licensed users, which could have also been devoted
to social benefit. Also, an unlicensed spectrum is prone to
the ‘tragedy of the commons’, since firms and their con-
sumers whose quality-of-service requirements are stringent
are bound to suffer because of overuse and lack of regula-
tion. Thus it is not immediately evident whether one option
is clearly better than the other.

In a proposal in [2] and [3], the authors suggest that auc-
tions may serve as an effective mechanism for allocating the
spectrum between licensed and unlicensed users and thus
potentially play the role of a fair arbiter between the two
paradigms. The broad idea is that groups consisting of
smaller content or service providers and equipment vendors
who benefit from the additional access to spectrum could
jointly submit bids for a shared license, which will compete
with bids for exclusive licenses from the bigger firms. A re-
cent analysis of such a market in [9] does not account for
the natural possibility of collusive behavior within the par-
ticipating groups.

It is beneficial to look at an example of what kind of col-
lusive behavior one might expect. One simple mechanism
that the seller can use in this case is the classical Vickrey-
Clarke-Groves mechanism (VCG), which makes the welfare
maximizing allocation and makes each buyer pay the exter-
nality he imposes on others by his presence in the optimal
allocation. It is well known that VCG is highly vulnerable
to collusion (see [1] and [4]). In our case, suppose that a
particular group of buyers is competing with other buyers
or groups of buyers for procuring a resource being sold using
the VCG mechanism. Suppose that the resource is indivis-
ible and each buyer in this group has a particular utility
value for having an access to the resource (for example an
open access to an unlicensed band). Then each buyer in this
group can report an arbitrarily high utility so that even in
the absence of any particular buyer, the group would still
be allocated the resource under the welfare maximizing al-
location. Thus the externality of every buyer in the group is
zero and the entire group gets alloted the resource without
making any payment!

The main contribution of our work is the design of a



class of collusion-resistant mechanisms that enable a group
of buyers to jointly participate in a market for a resource.
Specifically, suppose that the resource is being sold in a
truthful auction that accepts single bids for the entire re-
source. Our mechanism then truthfully elicits utility func-
tions from the buyers in the group, prescribes a joint bid,
and prescribes a division of the payment and the resource
in the event that they win the auction. Moreover, it is
collusion-resistant. The notion of collusion-resistance sat-
isfied by the mechanism is the concept of strong group-
strategyproofness. A mechanism is strongly group-strategy-
proof if no coalition of buyers can find a deviation from
truthfulness such that no buyer is worse off and at least
one buyer is strictly better off, irrespective of the reports
of the buyers not in the coalition. From the perspective of
the seller, our mechanism gives her a recipe to convert any
truthful auction for single buyers into a collusion resistant
auction for groups of buyers, which performs an additional
task of prescribing a division of the resource to the winning
group.

It is important to point out that our design does not strive
to achieve any specific notion of fairness in the divisions
of the resource or the payment. Rather, we characterize a
class of mechanisms which satisfy the key property of group-
strategyproofness and which are exactly able to recover the
price needed to be paid for the resource. An additional
consideration for some notion of fairness of the divisions
would require a careful choice of a particular mechanism in
this class, and it is an interesting problem that can be looked
at separately.

1.1 Related work

The class of mechanisms that we propose are closely re-
lated to the carving mechanisms proposed by Moulin and
Shenker in [6] and [7] for sharing the cost of a service. In
that setup, a set of agents have certain valuations for a ser-
vice and the cost for the service depends on the set of agents
who will be provided the service. The problem is to design
a mechanism that decides the set of agents who will be pro-
vided the service and their cost shares that will recover the
corresponding cost. A carving mechanism sequentially of-
fers the service according to a fixed cost sharing scheme to
diminishing subsets of agents until it finds a subset that is
able to afford it. As long as this cost sharing scheme satis-
fies the property of ‘cross-monotonicity’, this mechanism is
strongly group-strategyproof.

In our case, the price to be shared between the agents does
not depend on the number of agents, but is externally deter-
mined by the auction mechanism for the resource and may
not be fixed. More importantly, the utilities of the buyers
for the resource may depend on their share of the resource.
Thus the mechanism has to decide the division of both the
resource and the price. The key insight used in our design
is that if the utility functions of the agents are concave, and
both the resource and price division is done using a single
cross-monotonic sharing scheme, then a similar carving-type
mechanism which offers the resource to a diminishing subset
of agents is strongly group-strategyproof.

2. BUYING A DIVISIBLE RESOURCE

A set L of n agents would like to buy a resource that they
intend to share. This resource is being sold in an external
market through some auction mechanism. The resource is

assumed to be divisible and each agent ¢ in the group has a
utility U;(z;) for a fraction z; of the shared resource. U; is
known only to buyer i and it belongs to the class C of non-
negative, concave, non-decreasing utility functions defined
on [0,1] such that U(0) = 0 for each U € C. In order
to participate in the auction, the group has to submit a
single bid for the resource and make the required payment
depending on the outcome of the auction.

Our goal is to design a mechanism that accomplishes the
following two tasks: 1. Elicit individual utility functions
from the agents and then output a group bid to enter into the
external auction using an aggregation procedure announced
a priori and 2. Prescribe a division of the resource and that
of the payment needed to be paid in the external auction
amongst the buyers, in the event that they win the resource.

Definition: A mechanism is strongly group-strategyproof if
for any coalition of buyers S C L, fixing any feasible utility
function reports of all buyers not in S, for every feasible de-
viation of the buyers in S from truthful reporting, either all
the buyers are indifferent between the original outcome and
the new resulting outcome or at least one buyer is strictly
worse off.

We define the following class of mechanisms.

Definition: (Cross-monotonic shares aggregation me-
chanism) For each subset A C L, fix n non-negative num-
bers (z1(A), -+ ,zn(A)) such that

1. 3% jzi(A) =1 and z;(A) > 0 only if i € A.

2. (Cross-monotonicity) If A C B, then z;(A) > z;(B)
for all ¢ € A.

The mechanism elicits utility functions G; € C from all the
agents and computes a vector of values
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corresponding to diminishing subsets of agents S1 D Sz D
-+ D S, as follows.

o Let S1 = L, the set of all agents. For each subset S;
of agents, dynamically define

B; = max{k >0 : (kx1(S;),kz2(S;), -+, kzn(S;))
= (Gi(x1(85)), -+, Gn(@a(S5))) }- 1)

Here < denotes a componentwise inequality.

e Let P(S;) be the set of agents who force the inequal-
ity in the definition above, i.e. all agents i such that
Bjxi(9;) = Gi(xi(S;)). Then Sj11 = S; \ P(S;) and
m is the smallest integer such that Sy,+1 = ¢.

e Let 8 = max{f1, -, Bm}. The mechanism submits
the bid 8* to the external auction.

e Suppose the group has to make a payment p* in the
external auction. Let r = min{i : 8; > p*}. Then each
agent i pays z;(Sr)p* and gets a fraction z;(S,) if the
group is allotted the resource.

A whole class of mechanisms can be obtained by choosing
different fractions (z1(A),- -+ ,zn(A)) for the different sub-
sets of S, as long as that they satisfy the required conditions.



Increasing prices implementation: The cross-monotonic
shares aggregation mechanism has a natural increasing price
implementation which, although not strategically equiva-
lent, is more intuitive. As defined in the mechanism, for each
subset A C L, fix n non-negative numbers (z1(A), - ,zn(A))
such they satisfy the required conditions. Call this a shar-
ing scheme. First, each buyer 7 in the set S1 = L is offered
an z;(L) share of the resource and starting from k& = 0 all
the buyers are offered an increasing set of prices {kx;(L)}
for their respective shares. Each buyer can either continue
to accept or reject at any point. If the first buyer (or a
set of buyers) to reject his price does so at k = k* then
B1 = k*. Thus for the proposed shares of the resource, 31
is the maximum price such that the entire set of buyers can
afford to buy their share of the resource for the correspond-
ing share of the price. The set of buyers who reject their
share of the price for k = 51 are removed from the set. The
mechanism continues with the remaining set Ss, proposes
the set of shares {z;(S2)} to the buyers according to the
sharing scheme, and again finds the largest price such that
all the buyers are able to afford to buy their share of the
resource for the same share of the price. This price is fs.
The ‘bottleneck agents’ who drop out at this price are re-
moved and the mechanism continues to find the rest of the
vector S in a similar way till no buyer remains. The largest
value in this vector is submitted to the auction. If a pay-
ment p* is to be made in the auction to win the resource, the
mechanism looks for the largest subset S; that can afford to
pay the price and both the price and the resource is divided
according to the corresponding shares.

Example: Let us consider an example to illustrate the mech-
anism. Consider a resource A which is being sold in a second
price auction. Suppose the group L that intends to buy the
resource consists of three buyers 1, 2 and 3 with utility func-
tions Uy (z) = z, Ua(z) = v/z and Us(z) = In(1 4+ z). Let
the aggregation mechanism prescribe equal shares for every
subset of the buyers, i.e. z;(A) = ﬁ if i € A and 0 oth-
erwise. These shares clearly satisfy cross-monotonicity. As-
sume that the buyers truthfully report their utility functions
to the mechanism. Set S; = L = {1,2,3}. The mechanism
thus computes
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B = max{k>0: (3,5, 5) 2 (1/3, \/g,ln(ug))}
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= min{1, V3, 3In(5)}

31n(§) ~ 0.86.

Thus buyer 3 is removed from the group to form S = {1, 2}.
Next, the mechanism computes

B2 = max{k>0: (g, g) =< (1/2, %)}
= min{l, vV2} = 1.

Thus buyer 1 is removed from S> to result in S3 = {2}. We
thus finally have

Bz = max{k>0:k<1}=1.

Hence the vector 3 = (0.86,1,1). Thus 8* = 1 is submitted
as a bid in the second price auction. Now assume that there
is a single other competing buyer in the second price auction

and suppose that his bid is 0.6. Thus the minimum payment
required to win the auction for the group is 0.6, which is
feasible. Now r = min{é : 8; > 0.6} = 1. Thus the entire
group, i.e. S1 = L is allotted equal shares of the resource
and each buyer pays 0.2 to the seller. Suppose instead that
the other buyer in the auction submitted a bid of 0.9. Then
in that case r = min{i : §; > 0.9} = 2. Thus the group
Sa = {1,2} is allotted equal shares of the resource while
buyer 3 does not get any share of the resource. Both the
winning buyers pay 0.45 to the seller. Thus in short, the
resource is shared between the largest subset of buyers who
can jointly afford to pay the price, divided according to the
prescribed shares.

We can then prove the following main result:

THEOREM 2.1. Suppose that the resource is being sold in
a deterministic dominant strategy truthful auction, in which
the payment for not winning the resource is 0. Also, assume
that a buyer strictly prefers the outcome where he obtains
a non-zero fraction of the resource with a payment equal to
his utility for that fraction of the resource, over the outcome
where he does not obtain anything and makes no payment.
Then any cross-monotonic shares aggregation mechanism is
strongly group-strategyproof.

A deterministic dominant strategy truthful auction is one
in which the mapping from the bids to an allocation is de-
terministic and bidding truthfully is a dominant strategy for
all the buyers. An example would be the second price auc-
tion with any reserve price. The additional condition that
the payment for not winning the resource is 0 is benign and
any dominant strategy truthful auction can be modified to
satisfy this condition, while maintaining the same allocation
rule. For more details, see [8]. Note that the result clearly
holds if instead of competing in an auction, there is simply
a fixed price for buying the resource.

3. NON-EXCLUDABLE BUYERS

The cross-monotonic shares aggregation mechanism is al-
lowed to exclude buyers from enjoying the resource by as-
signing them a zero fraction of the resource. But in many
cases, the resource is neither divisible nor congestible, but
rather each buyer has a particular utility for having an access
to the resource. Typically, once that resource is purchased,
then a buyer cannot be excluded from enjoying it. An ex-
ample would be buying a block of spectrum for unlicensed
use. Once the block has been assigned for unlicensed use, no
user would be restricted from having an access to it. Another
example would be buying a centralized air-conditioning sys-
tem for the house. Once it is bought, a roommate cannot
be excluded from enjoying it. In this case how do we de-
sign a group strategyproof aggregation mechanism which is
not allowed to exclude buyers from enjoying the resource?
The solution is obtained from a simple modification of the
cross-monotonic shares aggregation mechanism. As before,
consider a group L of n buyers. Suppose each buyer ¢ has
a utility value V; for enjoying access to the resource. We
define the following class of mechanisms.

Definition: (Non-excludable aggregation mechanism)
Fix n non-negative numbers (1, -+ ,z,) such that > | «; =
1. The mechanism elicits bids (b1, -+ ,byn) from the buyers.



It then submits a bid 8* defined as:

8" =max{k >0 : (kz1,kxa, - ,kzn) < (b1, - ,bn)}.
(2)
If the group wins the auction and it is supposed to pay a
price p* < 8%, then each buyer j pays z;p".

Note the difference between the cross-monotonic shares ag-
gregation mechanism and the non-excludable aggregation
mechanism. Since it is not a divisible resource, the frac-
tions only correspond to division of the price to be paid
in the auction and not of the resource. Also in a cross-
monotonic shares mechanism, from the computed vector
B = (B1, B2, -+, Bm), the maximum of these values is sub-
mitted as the bid, while the non-excludable mechanism sim-
ply submits ;. Thus the submitted bid is lower. This
is because the cross-monotonic shares mechanism computes
the best bid it can submit by sequentially excluding low
utility ‘bottleneck’ buyers, while the non-excludable aggre-
gation mechanism is not allowed to do so and thus submits
the best bid that all the buyers can together afford. The
non-excludable aggregation mechanism also has a natural
increasing prices implementation. Starting from k = 0, each
buyer i is offered an increasing price kx;. Each buyer can
continue to accept or reject at any point. If the first buyer to
reject his price does so at k = 8%, then 8 is the submitted
bid.

Example: Consider a resource A which is being sold in a
second price auction. Suppose the group L that intends
to buy access to the resource consists of three buyers 1, 2
and 3. Assume that the shares chosen in the mechanism
are (%7 %, %) Let utilities of the buyers be Vi =1, V5 = 2
and V3 = 3 and suppose they truthfully report them to the
mechanism. Then the mechanism computes:

111

g 2123} =2

Thus a bid of 2 will be submitted to the auction. If they
win the auction then the payment is divided according to
the shares. If the shares were instead chosen to be (%, %, %)
then we can verify that the submitted bid will be 6, thus
improving their chances of winning the resource.

8" =max{k > 0: k(

We have the following result:

THEOREM 3.1. Suppose that the resource is being sold in

a dominant strategy truthful auction. Then any non-excludable

aggregation mechanism is strongly group-strategyproof.

Note that in contrast to Theorem 2.1, the auction mecha-
nism for selling the resource is only required to be dominant
strategy truthful and not necessarily deterministic. Hence
it is a stronger result, although for a simpler mechanism.

4. CONCLUSION AND FUTURE WORK

We designed a class of group-strategyproof mechanisms
that enable a group of agents to make purchasing decisions
for a shared resource under lack of information about each
others’ utilities. The key design requirements were collusion-
resistance, which was captured through the notion of group-
strategyproofness, and the ability to exactly recover the
price required to be paid for the resource in the market. As
mentioned in the introduction, no consideration has been

given to the problem of choosing the divisions of the re-
source and the price that adhere to any particular notion of
fairness.

Since the shares in our mechanism are to be decided be-
fore the utility functions can be elicited, it is not clear what
information could be used to form the basis for some notion
of fairness. Here we would like to use the fact that even if the
exact utilty functions of buyers are not known to each other,
there is typically a vague idea of the preferences of the buy-
ers which is commonly known to them. For example, when
two roommates buy a television set, they know from behav-
ioral observations in the past that one roommate would like
to buy it more than the other. Or if they want to share a
cab ride, they know who needs it more than the other and
hence should be willing to pay a larger share. A straightfor-
ward way to capture this information is to define distribu-
tions over utilties of the buyers and assume that these are
commonly known between the buyers. In ongoing work we
are trying to define a notion of fair allocation of the shares
depending on these commonly known distributions of the
utilities of the buyers. We can also ask questions like what
allocation of shares maximizes the chance that the resource
is won by the group? Or what allocation of shares maxi-
mizes the expected revenue of the seller? These questions
form the basis of our future exploration.
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