
Using Information Centric Networking for Mobile 
Devices Cooperation at the Network Edge

Fabio Malabocchia*, Romeo Corgiolu*, Maurizio Martina†, Andrea Detti‡, Bruno Ricci‡, Nicola Blefari-Melazzi‡ 
*Telecom Italia - Turin, Italy 

†Department of Electronics, Politecnico di Torino, Turin, Italy 
‡CNIT - Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy 

Email: fabio.malabocchia@telecomitalia.it, romeo.corgiolu@gmail.com, maurizio.martina@polito.it, 
{andrea.detti, bruno.ricci, blefari}@uniroma2.it

 
 

Abstract—This paper presents an Android application 
exploiting a collaborative multi-RAT approach (cellular and Wi-
Fi Radio Access Technologies) for adaptively streaming video 
content. The application has been developed and tested on real 
Android devices of different vendors. Each device coordinates 
with the others to download portions of a video stream through 
its own preferred RAT, and shares the results with the 
neighboring devices through a proximity, high bit rate network 
based on Wi-Fi Direct. As a result, the aggregate bandwidth 
available to the group of collaborating devices allows a faster 
download and a higher quality of video playback streaming, with 
respect to what is achievable by a single device.  The application 
is designed to exploit common Android devices along with the 
key functionalities of an Information Centric Network: routing-
by-name, in-network caching and multicasting.  

Keywords—Information Centric Networking; live adaptive 
video streaming; cellular networks; MPEG DASH; test-bed, 
prototyping, mobile network applications. 

I. INTRODUCTION 
Video is rapidly becoming the primary source of traffic. 

According to [14], in 2018, the sum of all forms of IP video 
will be about 80-90% of all the traffic delivered to and from 
the end users. This video will be consumed on a number of 
different platforms spanning from smartphones to HD smart 
TVs. Content downloaded by a smartphone can be viewed on a 
TV through one of the many possibilities that are provided by 
new consumer electronic standards (e.g. DLNA, MHL/HDMI) 
or proprietary protocols like AllShare Play (Samsung) or Air 
Play (Apple). 

Mobility is often traded off with resolution, since there is a 
direct correlation between the size of the screen and the traffic 
volume consumed. At the same time content can be accessed 
through a variety of access technologies, and some of them 
may not be optimal for the purpose (like capacity capped 
connections, or slow technologies such as EDGE networks).  

In this scenario, common off-the-shelf devices are capable 
of accessing multiple Radio Access Networks at the same time, 
also using Device-to-Device technologies such as Wi-Fi Direct 
[6]. Application libraries and protocols like Alljoyn by 
Qualcomm and the Common Connectivity Framework by Intel 
allow developers to exploit locality in their applications. 

This paper proposes an Information-Centric-Networking 
(ICN) enabled Android application for live adaptive video 
streaming in cellular networks. A group of mobile, off-the-

shelf, un-rooted Android devices, cooperatively use their 
preferred RAT connections to achieve a better playback quality 
and offload the cellular network. In our application, each 
device coordinates with the other peers and downloads a 
portion of the stream and offers it locally to the other members 
of the group through a Wi-Fi Direct channel. Each device is 
thus able to recombine and play the whole video stream. 
Starting from the proof-of-concept of [7], we developed the 
application using the ICN architecture named Content Centric 
Network (CCN) [1], also known as Named Data Network 
(NDN), and evaluated the effectiveness of our solution using 
real Android hardware connected to real cellular networks. We 
show that it is possible to establish a collaborative network that 
exploits all the Radio Access Technologies (RAT) available on 
a device to maximize the quality of multimedia consumption. 

II. BACKGROUND 

A. Information Centric Networking 
The concept of Information Centric Networking [1] [2] has 

been proposed to supersede the current paradigm of host-to-
host communication. Among the various architectures 
proposed in the context of ICN ([1], [4], [5]), we chose the 
Content-Centric Network (CCN) architecture [1], which was 
implemented in the CCNx software. In a CCN, contents are 
addressed using unique hierarchical names. When a client 
wants to download a content, it will issue an “Interest” 
message, including the content name among its parameters. All 
interest messages are then routed-by-name by the CCN nodes, 
using a name-based Forwarding Information Base (FIB). When 
the “interest” reaches the intended content, a Data message is 
issued and transferred back on the same path of the request. In 
order to keep track of this reverse path, each node traversed by 
an interest records a <content, previous hops> tuple on a local 
Pending Information Table (PIT), which will then be used to 
forward the content to the requesting nodes. 

The benefit of using CCNx for applications development is 
the fact that a lot of functionalities that may be hard and long to 
implement using the classical TCP paradigm (such as caching, 
routing by-name and multicasting) are offered out-of-box, thus 
any implementation of a networking application can take 
advantage of these functionalities without added effort. 

B. Video standard 
We used the MPEG-DASH (Dynamic Adaptive Streaming 

over HTTP) scheme [3], in which each video is represented by 



a manifest file (MPD file), which contains some meta-
information of the video to be streamed (codec, base URL and 
so on), and by a series of video segments (M4S files), each of 
which represents a portion of the video at different bitrates and 
is identified in the manifest file with a unique URL. The main 
motivations for choosing DASH are its popularity and the 
possibility to dynamically adapt the bitrate of the stream on the 
changing radio propagation conditions experienced by each 
peer on its preferred RAT and within the group of peers.  

  
Fig. 1: structure of a video peer 

 

 
Fig. 2: structure of a video peer 

C. Previous works 
The application of ICN to the case of video streaming is not 

a novel topic, as there are in literature other solutions which 
deal with slightly different problems or objectives. 

This paper is an evolution of [7], in which a proof-of-
concept application for the same purpose was developed using 
a Java implementation running on plain laptops, without 
dealing with the possible limitation of a real off-the-shelf 
mobile device. In this paper we ported the proof-of-concept 
application on commercial Android devices, thus facing all the 
limitations and problems that this environment and platform 
implies. In addition, we report here a new extensive 
experimental campaign carried out on real Android devices. 

Similar problems are treated for example in [8] (streaming 
of single rate on demand videos), [10] (TCP/IP streaming of on 
demand single rate videos) and [9] (streaming using fixed 
network and client server approach). Streaming on fixed 
network is also treated in [13]. 

The concept of using multiple access networks to get the 
same data has been used also in [12]. Nevertheless, the solution 
proposed is based on using just one of the possible available 
access networks, while in our paper we use all possible cellular 
links, thus avoiding the limitation of the most performing 
single gateway. 

This solution presented in our paper may also be similar to 
the problem of “multi-homed” video streaming [11]: the main 
difference is that in that case all the different links used to get 
the data are hosted by the same device, and not by multiple 
devices. 

A similar concept of our application is done in [16], but 
while the authors have used rooted devices, our approach 
consider plain non-modified Android devices. 

III. THE APPLICATION 
In this section we review the logic of our application [7]. 

A. Scenario 
We consider a scenario (Fig. 1) in which some nearby 

mobile devices are interested in watching the same video 
content from the public Internet. The use case we focused on is 
mainly stationary, when people watch multimedia streams 
standing still (for instance, a family in a private house that 
wants to see a certain movie from an internet movie provider). 
The public Internet can be reached by each mobile device 
using all the different radio access networks available in the 
device (cellular, Wi-Fi infrastructure, and so on). All the 
devices take charge of a small portion of the video stream from 
the public Internet, and share it with the other nodes using a 
local one-hop full mesh Wi-Fi Direct network. This is done in 
order to (a) reduce the cellular traffic on each mobile video 
peer and (b) achieve a better global video stream quality. Each 
device can reach the public Internet with the best link 
available, provided that all the available links may have 
different performance, different radio chains (LTE cat 4, DC-
HSDPA, HSPA+, and so on), and may experience different 
coverage conditions and/or being subject to different data plan 
conditions. Of course WLANs can be used, but in case they are 
not available a devices may use the cellular network to reach 
the public Internet. 

As stated in the introduction, the devices we consider are 
off-the-shelf un-rooted Android devices. Indeed, rooting a 
device means changing the OEM configuration and give users 
root permissions (super user capabilities), via a process that is 
device-dependent and tend to be reserved to users who have a 
great technical knowledge of the device. In addition, when not 
explicitly illegal, the rooting process voids the warranty of the 
device. Thus, using un-rooted devices allows to target mass 
market devices without breaking OEM or operator policies. 

B. Video repository 
The MPEG DASH video stream is kept in a CCNx 

repository available on the public Internet. The MPD is made 
available from the beginning of the live stream, while each 
M4S file is created and published on the fly. Since each peer 
can join the video stream anytime, there is a need for a mild 
synchronization between the nodes and the video source, to 
ensure that each video peer is playing (and thus, downloading) 
the same portion of the stream. To do so, when publishing a 
new segment, the video server also publishes a Video Timing 
Information (VTI), containing a reference to the last published 
video segment, along with the repository clock. This data unit 
is the first to be downloaded by each peer, in order synchronize 
with the video source and fetch the correct video segment. 

The naming scheme used for all the video data units 
involved resembles the scheme used in [9]: 

Wi-­‐Fi
Direct
local

network

Public	
  internet

3G	
  
links

Video
server

DSL	
  connection

Wi-­‐Fi
infrastructure

Cellular
network

Wi-­‐Fi	
  Direct
mesh

Prefetcher
Playout	
  
buffer

Video
player



MPD	
   ccnx:/server-­‐prefix/video.mpd	
  

M4S	
   ccnx:/server-­‐prefix/video_BW/video_SN.m4s	
  

VTI	
  	
   ccnx:/server-­‐prefix/video.vti	
  

SN is the video segment number and BW is the coding rate. An 
example is 'ccnx:/foo.eu/video1_100/video1_3.m4s', in which 
the segment 3 of the video video1 is found at the server prefix 
foo.eu and encoded at 100 Kbps.  

C. Video peer  
A video peer (Fig. 2) is composed of three modules. The 

pre-fetcher is responsible for downloading video segments: this 
is done exploiting, at the same time, both the remote link 
(towards the video source) and the Wi-Fi Direct local mesh 
network (with the other video peers), which will be used by all 
the peers for sharing the segments downloaded from the video 
source. The segments downloaded are then queued in the 
playout buffer, which is drained by the video player. 

 
Fig. 3: example of time evolution of the video source 

and of the video peers 
 

 
Fig. 4: FIBs of video players 

 

Pre-fetcher logic 
We introduce the following notation. Each video segment s 

has a length of Ts, expressed in seconds. A batch of P segments 
is called window, and a pre-fetch round is a series of fetches 

that begins after a full window has been published by the video 
source. 

To avoid multiple remote downloads of the same segment, 
at the beginning of a pre-fetch round each video peer shuffles 
the sequence of the segments to be downloaded, and then tries 
to pull each segment s: if s is available on the Wi-Fi Direct 
mesh, the video peer will download it from the proximity 
network; if not, the peer will download it from its own 
preferred remote network and share it with the other peers.  

This process is explained in Fig. 3, which depicts the case 
of two video peers downloading a window of P=5 segments. 
While the video source is publishing the segments 15÷19, as a 
result of the presence of the playout buffer each video peer is 
playing the segments 5÷9, while downloading the segments 
10÷14 from both the remote and the local networks. To sum 
up, the total playout delay between the player and source is 
2Ts, because each playout buffer stores 2P segments. 

Segment download 
Each segment s can be downloaded in two ways: using a 

remote link towards the video source, or using the local Wi-Fi 
Direct network from another video peer. This mechanism is 
implemented using some rules in the FIB of each video peer. 

Remote downloads are supported by pre-inserting a 
preloaded route (remote route) towards the server-prefix via 
the remote face. This remote route is visible in Fig. 4 in both 
peers, in which the entry ‘ccnx:/foo.eu’ points to the remote 
address 160.80.103.202 via the remote interface (rmnet0). 

Wi-Fi Direct downloads are supported inserting a dedicated 
route (proximity route) towards a peer on the Wi-Fi direct 
network that has already downloaded the requested segment 
from its remote interface. These proximity routes are visible in 
Fig. 4 in both peers: video peer 1 has downloaded from the 
remote interface the segment 10, and thus video peer 2 will 
insert in its FIB a proximity route pointing to the video peer 1 
via the Wi-Fi Direct interface (p2p0). It’s worth noting that the 
proximity routes will be chosen instead of the remote route 
because of the longest prefix approach used in the FIBs. Each 
video peer can look for the desired segment on the Wi-Fi 
Direct mesh with the proximity route discovery. For each 
segment downloaded from the remote network, a video peer 
publishes on the Wi-Fi Direct mesh a signaling message called 
Proximity Route Information (PRI), containing all the data 
needed to establish a proximity route (the <IP,port> tuple and 
the estimated net remote rate of the peer, discussed later). This 
data unit follows the naming scheme we saw earlier:  

PRI	
  	
   ccnx:/prd/video_BW/video_SN	
  

Each FIB is preloaded with the entry ‘ccnx:/prd’ pointing to a 
preconfigured multicast address, used for searching the PRIs. 
Thus, if the desired PRI is found on the Wi-Fi Direct mesh, the 
peer will set up a route towards the peer that published the PRI. 
Note that the PRI publication and detection may not imply that 
the video peer has finished the corresponding remote 
download. Thus, each peer may become the splitting point of a 
multicast tree, and as soon as some chunks of a segment are 
received from the remote network, they are relayed both to the 
local pre-fetcher and to the Wi-Fi Direct interface.  

10

t

Video	
  
source

Pre-­‐fetch	
  round	
  #3

Peer	
  1	
  pre-­‐fetcher

11 12 13 14 15 16 17 18 19 20 21 22 23 24

t

Cellular	
  fetches

12 10

t13 14

Cellular	
  fetches

11

Wi-­‐Fi	
  Direct	
  fetches
Peer	
  2	
  pre-­‐fetcher

0

t

Video	
  
players1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIB	
  of	
  video	
  peer	
  1
Name	
  prefix
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
…
ccnx:/prd
ccnx:/foo.eu
ccnx:/foo.eu/video1_100/video1_11.m4s
…

Output	
  face
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
…
192.168.49.255:9695	
  (p2p0)
160.80.103.102:9695	
  (rmnet0)
192.168.49.2:9695	
  (p2p0)
…

FIB	
  of	
  video	
  peer	
  2
Name	
  prefix
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
…
ccnx:/prd
ccnx:/foo.eu
ccnx:/foo.eu/video1_100/video1_10.m4s
…

Output	
  face
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
…
192.168.49.255:9695	
  (p2p0)
160.80.103.102:9695	
  (rmnet0)
192.168.49.1:9695	
  (p2p0)
…



Video coding rate selection 
The selection of the video coding rate to be used in the next 

pre-fetch round is made at the end of each pre-fetch round and 
is identical to the one presented in [7]. The rate selection 
algorithm is based on i) all the available coding rates for the 
video, BWh and ii) the net rate that each peer has obtained from 
the remote interface, Ci. Given L possible video coding rates, 
all the available BWh values (1≤h≤L) are discovered by each 
peer by parsing the MPD file, while the values Ci(k) achieved 
in the pre-fetch round k-1 are added by the node i to the PRI 
during the pre-fetch round k. This value is estimated 
considering the time needed to download the segments from 
the remote link. 

Given M as the number of video peers in the Wi-Fi Direct 
mesh, the video coding rate selection relies on the resolution of 
the constrained maximization problem discussed in [7]: 

𝐽!,!   =   floor
𝑃  𝐶!(𝑘)
𝐵𝑊!

 
(1) 

max
!

𝑠. 𝑡. 𝐽!,!
!"#  (!,!)

!!!
    ≥ 𝑃  

(2) 

Equation 1 represents the number of complete video segments 
encoded at BWh that a peer may download during a single pre-
fetch round, while the maximization of (2) gives the highest 
possible video coding rate h whose segments can be 
completely downloaded within a round duration. The sum in 
(2) is limited to min(P,M) because at most P peers can carry 
out remote downloads. In addition, even if P≥M, optimizing 
(2) may require excluding some peers from downloading 
segments from the remote link.  This may happen when peers 
are obsolete or have poor coverage with respect to the others. 

Of course, more comprehensive optimizations can be 
performed taking into account other factors like the costs of 
cellular data connections or the amount of remaining battery. 
In general we have seen that the GO (Group Owner) of the 
peer to peer network may become a bottleneck (see later), and 
may be wiser to exempt it from the group of peers remotely 
downloading the content.  

IV. ANDROID IMPLEMENTATION ISSUES 
We implemented the application logic within the Android 

devices using the CCNx Android libraries. With respect to our 
previous Linux version [7], we had to cope with some Android 
limitations, which are hereafter described.    

The download phase of a window impacts heavily on the 
heap of the mobile device, since every pre-fetch round means 
launching 2P new background threads (P for the proximity 
route discovery and P for the real download). To avoid 
additional memory saturation, if a round should not end in the 
expected time (see next section), the following round will be 
launched only if the device has enough memory to handle both, 
and the rate of the round starting will be set to be the closest to 
the 60% of the coding rate of the “late running” round. 

In addition, due to the used codec, we may end up with 
some video segments with different dimensions (Fig. 6) and 
some very large outliers may show up, saturating memory. We 
solved this problem storing the video segments on the flash 
NAND mass memory available on the device: its I/O speed is 
comparable with the bandwidth of the Wi-Fi, thus not limiting 

our solution, as the bottleneck is instead generally on the 
remote access network. Considering that real devices may 
show suboptimal unexpected performances, we ran a few tests 
and concluded that the current achieved cellular download 
rates are almost one order of magnitude slower than the I/O 
speed of the device. The tests were made using a HTC One S 
smartphone, and gave a result of about 20 MB/s, higher than 
the rates we obtained on the cellular network (see next section). 

The choice of using Wi-Fi Direct comes from another 
Android limitation: indeed, Android do not allow using the 
cellular network and the Wi-Fi infrastructure ports in parallel, 
while it is permitted using the Wi-Fi Direct port in parallel to 
the cellular or the Wi-Fi infrastructure port. 

V. TESTS AND RESULTS 
The testbed we used is a set of real different Android 4.0+ 
cellular devices (smartphone and tablets), running CCNx 0.8.1 
and VLC 0.1.0. We used as reference video the movie “Big 
Buck Bunny”, composed by about 270 480p segments long Ts 
= 2 sec each and encoded at fourteen rates, ranging from 100 
kbps to 4.5 Mbps. We point out that Android devices can use 
any data connection (cellular or Wi-Fi) together with Wi-Fi 
Direct: the exploitation of multi radio access technology 
environment is one of the great benefits of this approach. Some 
tests have been carried out on multi-RAT but they are not 
reported for space reason. To show instead the effects of 
cooperation we chose a single Radio Access Technology for all 
the devices (WLAN or WWAN) in which the results could be 
analyzed without influences of other external factors. 

 
Fig. 5: video coding rate achieved with a single device 

(without cooperation) 

 
Fig. 6: size of segments downloaded during 

the test of Fig. 5 



The first test aims at finding out the performance of our 
application on a single device, thus not considering the 
cooperation among all the neighboring devices. We used a 
Samsung Galaxy Note 2, connected to a 3G network with a 
pre-fetch window set to P=10 segments. The results are shown 
in Fig. 5: the maximum video coding rate of 700 kbps obtained 
in the test reflects the real downstream rate achieved by the 
device, which never goes beyond 900 kbps. The cause of the 
bit rate drop around second 300 can be found in Fig. 6, in 
which we report the size of the downloaded segments; the 
encoder used for the movie gave some outliers, independent 
from our solution and not predictable by the coding rate 
selection algorithm. Nevertheless, our application can react to 
this situation, decreasing the quality of the video stream. 

The second test aims at evaluating the usefulness of the 
cooperation between two nodes, in terms of video coding rate 
enhancements. We repeated the previous test, using a Samsung 
Galaxy Note 2 and a HTC One X collaborating from the 
beginning of the video stream. The pre-fetch window was set 
to P=10 segments. The results are shown in Fig. 7. In the first 
pre-fetch round each device estimates its downstream rate 
downloading the segments only from the cellular interface. 

 
Fig. 7: video coding rate achieved with two devices 

 
Fig. 8: activity on interfaces during a given time period 

From the second pre-fetch round the collaboration takes place, 
enhancing the coding rate to 1100 kbps on each device: this 
behavior is due to the activity on the Wi-Fi Direct mesh, which 
allows each peer to exploit the cellular resources to download 
segments at a higher bit rate in the same pre fetch round. Note 
that the small differences of behavior of the two devices are 
due to the current status of the device itself (CPU, installed, 
running apps, and so on). As proof of the activity on both 
channels we provide, in Fig. 8, a snapshot of the activities on 
both devices in the pre-fetch between second 210 and 230: 
both devices are exploiting at the same time both the cellular 
and the Wi-Fi Direct interface.  
 The third test is related to the pre-fetch window. As 
underlined in [7] this is a critical value, because it is directly 
related with the delay that the video player suffers before it can 
start the playback. In addition, larger pre-fetch window can 
lead to a great increase of resource consumption on the device. 
We ran a series of tests with the same two devices, starting 
from a pre-fetch window of P=10 segments and lowering it 
down to P=2 segments. The results are shown in Fig. 9 and in 
Fig. 10, from which we can draw the following conclusions: 

 
Fig. 9: fairness in segments download 

 
Fig. 10: variation of aggregate bandwidth and video 

coding rate upon pre-fetch window decrease 

2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

200

Pre-fetch window length [segments]

D
ow

nl
oa

de
d 

se
gm

en
ts

 

 
Remote
Proximity



• For windows of length P≥3M (Fig. 10a, P=10) the 
average video coding rate is about 1050 kbps, and the 
collaboration between the nodes is fair (Fig. 9). In this 
configuration we have the best stability of the coding 
rate, because of the floor operator of equation (2). 

• For windows of length P=2M (Fig. 10b, P=4), the 
coding rate becomes lower (about 850 kbps), and the 
video quality becomes unstable. Nevertheless, we still 
have fairness in the remote downloads (Fig. 9). 

• For windows of length P<2M (Fig. 10c, P=2) the video 
coding rate decreases again, as well as the stability of its 
selection. In addition, we can see from Fig. 9 that there 
is no more fairness in the remote downloads. 

In the last test we analyzed how traffic overloads impact on 
the Wi-Fi Direct group owner (GO). We ran the test increasing 
the number of nodes and varying the pre-fetch window as 
underlined previously. Up to four nodes we reported no issues. 
In Fig. 11 we report the duration of each round achieved by the 
group owner in the case of five Samsung Galaxy Note 2 with 
pre-fetch window set to P=20. After the first four rounds, the 
group owner cannot keep up with the traffic generated in the 
Wi-Fi Direct link: Wi-Fi Direct networks have a star topology 
with the GO at its center, so the GO is responsible for the 
forwarding of all the traffic in the mesh. Due to the 
dependencies on the computational capabilities of the devices 
used, the lesson learnt is to choose a GO among the more 
powerful devices, as this is a point of failure in the system. 

We point out that the physical layer of Wi-Fi Direct is the 
same of the Wi-Fi Infrastructure. What change in Wi-Fi Direct 
are the computational and network loads that the GO suffers, 
since does the job of relaying every message. In addition, the 
saturation of the GO comes without any noticeable delay in 
data processing. A powerful GO may be able to support a 
larger number of active participants to the group. In addition, 
it’s worth noting that if we consider having a good bit rate with 
modern cellular networks, small groups of peers may be 
enough to achieve a good video quality on a high bit rate 
streaming download. 

 
Fig. 11: pre-fetch rounds durations in the group owner in 

the case of five nodes 

VI. CONCLUSIONS 
We developed an Android application for the live 

streaming of MPEG-DASH encoded videos, exploiting the 

functionalities of ICN and Wi-Fi Direct to allow a better user 
experience on different commercial mass market Android 
devices. We have demonstrated the feasibility of this approach, 
and gave a sketch of the bottlenecks that may hinder or limit 
the benefits of collaboration. 

Two main conclusions can be drawn. First: it is possible to 
organize a group of commercial devices to cooperate in a 
streaming activity and reduce the amount of transmitted data to 
a minimum. Second: the bottleneck of the system of the Group 
Owner, due to the star configuration of the Wi-Fi Direct group.  

Although this topic is known, to the best of our knowledge 
we are the first to exploit such a solution on real common 
hardware, without modifying the underlining behavior of the 
operating system. We strongly believe that this is actually the 
scenario in which the benefits are higher and the analyses we 
report represent the missing link to close the gap to real 
implementations. 

REFERENCES 
 

[1] Van Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, 
R.L. Braynard, "Networking Named Content," in Proceedings of the 5th 
International Conference on Emerging Networking Experiments and 
Technologies, Rome, Italy, 2009. 

[2] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, M. Varvello, From 
content delivery today to information centric networking, Computer 
Networks, Volume 57, Issue 16, 13 November 2013, Pages 3116-3127. 

[3] T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards 
and design principles”, ACM MMSys 2011 

[4] T. Koponen, M. Chawla, B.G. Chun, et al. “A data-oriented (and 
beyond) network architecture”, ACM SIGCOMM 2007 

[5] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, “Supporting the 
Web with an Information Centric Network that Routes by Name”, 
Elsevier Computer Networks, vol. 56, Issue 17, p. 3705–3722. 

[6] Wi-Fi Alliance "Wi-Fi Direct". http://www.wi-fi.org/discover-wi-fi/wi-
fi-direct 

[7] Andrea Detti, Bruno Ricci, and Nicola Blefari-Melazzi. "Peer-to-peer 
live adaptive video streaming for Information Centric cellular 
networks." Personal Indoor and Mobile Radio Communications 
(PIMRC), 2013 IEEE 24th International Symposium on. IEEE, 2013. 

[8] A.Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, A. Bragagnini, 
“Offloading cellular networks with Information-Centric Networking: the 
case of video streaming”, IEEE WoWMoM  2012 

[9] Derek Kulinski and Jeff Burke, "NDN Video: Live and Prerecorded 
Streaming over NDN", NDN Technical Report NDN-0007 

[10] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, A. Markopoulou, 
“Microcast: Cooperative Video Streaming on Smartphones”, ACM 
MobiSys 2012 

[11] Z. Xiaoqing, P. Agrawal, J.P. Singh, et. al "Distributed Rate Allocation 
Policies for Multihomed Video Streaming Over Heterogeneous Access 
Networks" IEEE Transaction on Multimedia, Vol. 11, No. 4, June 2009 

[12] B. Han, N. Choi, T. Kwon, Y. Choi, “AMVS-NDN: Adaptive Mobile 
Video Streaming and Sharing in Wireless Named Data Networking” , 
IEEE NOMEN 2013 

[13] J. J. D. Mol, A. Bakker, J. A. Pouwelse, D. H. J. Epema, H. J. Sips, "The 
Design and Deployment of a BitTorrent Live Video Streaming 
Solution," IEEE International Symposium on Multimedia, 2009 

[14] Cisco “The Zetta-Byte era: trends and analysis”, June 2014 
[15] RFC 6824 “TCP Extensions for Multipath Operation with Multiple 

Addresses” Jan 2013 
[16] Y. Kojima, J. Suga, T. Kawasaki, M. Okuta and R. Takechi. "LTE-WiFi 

Link Aggregation at Femtocell Base Station". World 
Telecommunication Congress 2014. Berlin, Germany. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

350

Pre-fetch round ID

D
ur

at
io

n 
[s

ec
]


