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Abstract— During the last couple of decades, evolutionary and 

swarm intelligence algorithms have significantly advanced the 

state of the art for both discrete and numerical optimization. 

Without niching strategies, they usually converge to a single 

optimum, even in multimodal search spaces where numerous 

global or local solutions exist. In the literature, several niching 

approaches have been proposed for simultaneously computing 

multiple optima, though most of them require some user-

specified parameters that should be calculated a priori, i.e. 

additional knowledge about the problem domain is required. 

Recently, it was demonstrated that particle swarm optimization 

(PSO) using a ring topology for neighborhood definition can give 

rise to robust and parameterless niching methods. Nevertheless, 

their performance dramatically worsens when the dimensionality 

of the solution space hikes, thus increasing the number of local 

optima. This paper aims at enhancing the performance of these 

types of PSO-based algorithms by introducing two procedures: 

(1) a differential operator for improving the search ability and (2) 

a heuristic clearing operator for controlling the swarm diversity. 

Such operators are probabilistically activated through a novel 

self-adaptive learning strategy. Empirical results confirm the 

superiority of our proposed scheme with respect to six other 

competitive niching techniques. 

Keywords—multimodal optimization; particle swarm optimizer; 

ring topology; differential operator; heuristic clearing. 

I.  INTRODUCTION 

Evolutionary and swarm intelligence algorithms are 
stochastic search methods mimicking biological processes 
observed in nature. In contrast to the simple trajectory-based 
approaches, population-based techniques involve a set of 
artificial individuals that are capable of solving challenging 
optimization problems. The solution encoded by each agent is 
mapped onto a fitness value, which is used by the algorithm to 
craft its corporate search strategy, thus ignoring analytical 
properties of the heuristic cost function such as convexity, 
continuity, differentiability or gradient information. Despite 
their overwhelming success, these bio-inspired methods tend to 
converge to a single optimum, hence causing a gradual loss in 
population diversity as the search goes on [1]. 

In practice, most scientific and engineering optimization 
problems are highly multimodal, i.e. multiple global optima 
exist; therefore, it is often desirable to locate either all or a 
substantial number of these solutions [2] [3]. For example, 
industrial designers usually prefer to have a wide range of 
solutions to choose from, instead of only ending up with the 
best one according to the objective function selected. Actually, 
the final design is often decided not only considering the 
optimization results but introducing further factors like cost, 
simplicity and reliability [4]. 

In order to retain many local or global solutions found 
when optimizing multimodal functions, niching methods were 
introduced as a suitable extension of evolutionary algorithms 
[5]. Like a plethora of other computational models, niching 
mechanisms have drawn much inspiration from living 
organisms, where biological ecosystems are composed of 
several natural species exhibiting diverse features, which allow 
the development of numerous types of wildlife. It is assumed 
that a species is formed by individuals with similar biological 
traits that are capable of breeding among themselves yet are 
unable to do so with members of other species [6]. Thus, since 
niche resources are frequently finite, the density of the species 
heavily depends on both the amount of resources in the 
environment and the ability of the species members to exploit 
them. The fitness of an individual, then, measures its ability to 
exploit environmental resources to generate offspring [7].  

Multimodal optimization methods, then, attempt to discover 
and maintain multiple subpopulations in a single run, where 
each niche corresponds to a specific peak of the fitness 
landscape. These methods have been developed to reduce the 
undesirable effects of genetic drift. Niching strategies should 
be capable to preserve the diversity in the artificial population, 
thus allowing individuals to simultaneously converge toward 
diverse solutions. On the other hand, niching methods are a 
convenient way to avoid potential stagnation or premature 
convergence in global optimization problems where many sub-
optimal solutions exist. It means that niching also provides an 
escaping alternative from local optima. 

 



Several niching methods have been proposed, including: 
fitness sharing, conserving techniques, restricted tournament 
selection, crowding methods, clearing procedures, clustering, 
species etc. [8]. Frequently, most of these algorithms require 
one of more parameters that enable the system to distinguish 
among different optima. Perhaps the most widely used is the 
niche radius, which defines the optimal separation distance 
between dissimilar niches. Setting this value requires a priori 
knowledge of the problem domain, which in many real-world 
problems is scant or simply unavailable [2] [3] [9].  

Recently, X. Li proved that particle swarm optimization 
(PSO)-based schemes adopting a ring topology for local-best 
(lbest) neighborhood definition are capable of discovering 
multiple local/global optima and that they are robust and 
effective niching methods [10].In particular, one key advantage 
of such PSO niching algorithms is that there is no need to 
specify any niching parameter [10], which is an important 
contribution in multimodal optimization. However, these lbest 
models still exhibit some drawbacks that need to be 
circumvented in order to enhance their overall performance, 
such as: (a) they require a reasonably large population size 
uniformly distributed in the search space to form stable species 
across several local neighborhoods; (b) given that the local 
swarms in ring-topology-based PSO models may contain very 
few particles, their search capabilities are quite limited and (c) 
as a result of (a) and (b), when the dimensionality of the search 
space increases –and thus the number of local/global optima–, 
the percentage of the discovered optima dramatically drops. 

To overcome these disadvantages, this paper makes the 
following contributions: (1) a hybrid extension of the ring-
topology-based PSO algorithms is introduced, thus enhancing 
the performance of such models in presence of multimodality; 
(2) a novel differential operator that induces a controlled 
perturbation on the particles’ trajectories is put forth, thus 
driving local swarms to unexplored regions of the search space 
and therefore increasing the likelihood of discovering more 
peaks; (3) a heuristic clearing procedure that is able to preserve 
the swarm diversity more efficiently without removing 
previously found solutions is devised and (4) an iteration-wise 
self-adaptive learning scheme that probabilistically activates 
both operators is depicted. As a result, we formalize a simple 
and powerful model called Self-adaptive differential PSO with 
heuristic clearing (S-PSO-DC) which considerably outperforms 
existing lbest niching strategies. Besides, the S-PSO-DC model 
does not require any additional knowledge about the problem 
domain, which makes it an appealing algorithm to deal with 
entangled multimodal problems. 

 The rest of the paper is organized as follows: In Section II, 
PSO basics are outlined and a brief overview of PSO models 
for multimodal optimization is provided. Section III dissects 
the proposed S-PSO-DC algorithm. The empirical analysis can 
be found in Section IV. As a final point, the authors provide 
observations and insights on further research in Section V. 

II. PARTICLE SWARM OPTIMIZATION 

PSO is an effective and robust global search method for 
solving challenging numerical optimization problems. This 
metaheuristic technique is concerned with a set of particles 

called a swarm which explores the search space trying to locate 
promising regions [11]. Therefore, particles are interpreted as 
solutions for the optimization problem and they are represented 
as points in an  -dimensional search space. In the case of 
standard PSO, each particle    moves through the space using 
its own velocity   , a local memory of the best position    it has 
ever obtained and the knowledge of the best solution    found 
in its neighborhood. Equations (1) and (2) show how to update 
the particle’s position based on these components, where   
indexes the current iteration,           are random 
numbers drawn from a uniform distribution, whereas    and    
are two positive user-specified parameters denoting the 
cognitive and the social aspects of the search, respectively. In 
addition, a novel factor called constriction coefficient     was 
introduced by Clerc and Kennedy [12] to avoid the swarm 
explosion and ensure its convergence. 
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Topological neighborhoods are unrelated to the protocol in 
the particle’s communication. They are grouped into two 
models: gbest (global topology) and lbest (local topology). In 
the first model, particles use global knowledge obtained from 
the entire swarm, which means that at each iteration, the best 
solution   refers to the fittest particle in the whole population. 
In the case of lbest, each particle shares information with only a 
limited subset of the swarm members. Obviously, this feature 
induces a partition of the whole population into multiple sub-
populations, each having its own topological global best. In 
other words, the lbest model involves not just a single global 
best record but several topological global best solutions    
emerge. Consequently, each particle adjusts its position in the 
search space using its own personal best information and also 
global knowledge about its fittest neighbor. In Section IV we 
showcase a novel lbest PSO algorithm to optimize multimodal 
functions that yielded a competitive performance and does not 
require any niching-related parameter specification. 

A large number of multimodal methods using PSO update 
rules have been proposed, which are able to discover and 
maintain multiple optima in a single execution. As an 
illustration, the speciation-based PSO (SPSO) in [13] was 
motivated by the behavior of species-conserving approaches. 
Recently, other PSO models for solving multimodal problems 
were introduced [8]. Although these approaches are able to 
induce stable niching behavior, they frequently need to know 
the niche radius or other complex parameters should be 
estimated. In following Section III, we bring forward a novel 
lbest PSO algorithm for multimodal function optimization with 
competitive performance that does not require any niching-
related parameter specification. 

III. SELF-ADAPTIVE DIFFERENTIAL PSO 

Recently, X. Li demonstrated in [10] that an lbest PSO 
using a ring topology is capable of inducing stable niching 
behavior in the swarm. The lbest ring model connects each 
particle with only two other particles, i.e. its immediate left 
and/or right neighbors, as opposed to the gbest model where 
every particle communicates with the very best particle in the 



entire swarm. Figure 1 illustrates the simplest form of this lbest 
topology called r2PSO, where a subpopulation is formed only 
by the current particle and its right neighbor. In a similar way, 
another model termed r3PSO may be also defined where each 
subpopulation is composed by three individuals: the current 
particle and its left and right neighbors. Given the limitations of 
these approaches described in Section I, our work, therefore, 
aims at improving r2PSO and r3PSO models. 

It is easy to notice that each subpopulation may converge to 
a single optimum in the fitness landscape owing to the presence 
of different local attractors. Thus, niches naturally emerge from 
the global population without any knowledge of the problem 
domain. Yet since subpopulations involve only a few particles, 
the search capabilities of such models are quite poor, especially 
for large search spaces having both local and global optima. To 
overcome this disadvantage, we first introduce a differential 
operator to improve the search process in an lbest model, i.e. 
their exploration as well as exploitation abilities.  

 

Figure 1.  Simplest Local PSO using a Ring Topology a) Interaction among 
swarm particles and b) Overlapped subpopulations.  

In addition, this paper presents a heuristic clearing operator 
for efficiently controlling the swarm diversity. It is well known 
that in multimodal fitness landscapes, peaks regularly have 
different size and height. In fact, in most cases, there exist very 
strong peaks attracting multiple agents, thus leading to the 
convergence of a significant portion of the global swarm to a 
single optimum. This problem could be reduced by using a 
reasonably large, uniformly distributed population yet at the 
expense of a steep computational price. To deal with this 
deficiency, we alternatively apply local heuristic clearing. 

A. Differential Operator 

When multimodal problems are tackled, the main 
advantage of the lbest model appears to lie in its slower 
convergence rate relative to the gbest model, for it allows 
concurrent discovery of several optima. Ironically, it is the 
slight interaction among the particles that is highly responsible 
for the meager performance of the PSO-based algorithms using 
a ring topology. To improve the search competence of such 
models, we introduce a simple differential operator that is 
straightforwardly inspired by the popular differential evolution 
strategy DE/current-to-rand/1 [14]. As a first step, we design a 

mutation operator as illustrated by equation (3), where    

denotes the personal best position of the current individual,     
and     are the global best records achieved by two randomly 
selected particles and       is a real-valued parameter 
that regulates the differential amplification. 
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The mutated particle  ̃  completely recombines the particle 
position based on the differential information by using the 

personal best memory    as an attractor to guide the flying 
direction. Next, a selection operation takes place as depicted in 

equation (4) and assuming maximization, where  ̃  is accepted 
as the current particle position only if it improves the local best 
position generated by the PSO update rule; otherwise, the 
mutated particle is rejected. Notice that the new differential 
operator introduces a perturbation based on the best global 
knowledge achieved by individuals belonging to neighboring 
subpopulations. Small values for the differential amplification 

parameter   (e.g.       ) results in further exploitation 

around the personal best point, whereas large values (e.g.   
   ) ensure higher exploration. To simplify the model, factor   
is fixed to 0.5 as it guarantees a good-enough tradeoff between 
exploitation and exploration.     
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Generally speaking, Differential Evolution operators show 
an implicit self-adaptation capability which could improve the 
search in a ring-topology-based PSO. However, activating this 
operator at each iteration may significantly hit the algorithm’s 
efficiency, as equation (4) demands that the objective function 
be additionally evaluated, which in a large number of real-
world problems entails complex time-consuming operations. 
As a suitable alternative, we strongly suggest to trigger the 
proposed differential operator probabilistically. Nevertheless, a 
challenging issue remains: how to efficiently estimate the 
activation probability at each iteration?  Section III-C sheds 
light on this important aspect. 

B. Heuristic Clearing Operator 

The basic clearing operator put forth by Petrowski [15] 
allocates the entire resources of a niche to a single individual: 
the dominant or species seed, while resets the fitness value of 
all the other individuals of the same subpopulation to zero. 
Then, to discover those agents belonging to the same niche, 
clearing uses the niche radius   : if the distance between the 
dominant    and an agent    is less than a fixed threshold  , 
then    and    belong to same subpopulation. Towards the end, 
the global population is represented by several dominant 
individuals. In some sense, bio-inspired algorithms using a 
clearing procedure seem to be convenient to solve multimodal 
functions having large number of optima. Conversely, this 
mechanism is heavily sensitive to the niche radius. 

Following a similar reasoning on the conventional clearing, 
we present a novel diversity-fostering procedure: heuristic 
clearing. This operator preserves the swarm diversity in lbest 
PSO schemes that employ a ring neighborhood topology yet 
needs not the specification of any niche parameter. Heuristic 
clearing only takes into account global optimal particles, as 
portrayed in (5). In this procedure the non-optimal particles are 
not considered since they could find better solutions, and thus 
they preserve their position in the search space. If the fitness 
value associated with the local best position    achieved by the 



particle    only differs in an infinitesimal constant   regarding 
the global best fitness value   , then the problem solution     
will be considered as a global optimum. In most real problems 
the value    is often known by designers, but it also could be 
computed at each iteration as          {     }, ensuring a 
further simplification of the clearing model. 

|        |                                     (5) 

Once the set of optimal particles   is determined, then we 
sort particles in descending order of their personal fitness 
values. After that, a local clearing is applied. This procedure 
consists in reallocating the position    of the  -th particle 
having the closest Euclidean distance from the current particle 
  , only if both particles    and    belong to the same niche. It 
allows preserving the swarm diversity and also the knowledge 
about highest discovered peaks. Although the proposed model 
seems to be quite reasonable, a significant problem persists: 
how to determine if two particles belong to the same niche? To 
address this question, we use the simplest form of the well-
known “hill valley” concept, i.e., two distinct particles    and 
   belong to the same niche    if their middle point   is also 
an optimal solution. This idea is formalized in next equation 
(6):   

          |       |                      (6) 

Lastly, it should be mentioned that this operator will be 
probabilistically activated during the algorithm execution, in 
order to reduce the extra computational cost needed to sort the 
swarm and compute the Euclidean distance. Assuming that the 
heuristic clearing operator is triggered at each iteration with 
probability 1.0, then the temporal cost                  will 
still be low for a given swarm size  .  

C. Self-adaptive learning scheme  

A large variety of real-world problems have irregular 
fitness landscapes where several local/global optima with 
different properties may exist. That is a serious problem which 
negatively affects both differential and clearing operators’ 
performance. As a practical example, imagine a solution search 
space with numerous global optima of different size. At this 
time, local sub-swarms tend to quickly find global optima with 
higher size, which means that for these particles, the clearing 
probability should be high. But this design is unacceptable for 
local sub-swarms tending to form niches around peaks with 
lower size where particles need to exploit the neighborhood in 
detail. Then, based on the above illustration, it is easy to notice 
that probabilities used to activate both operators should be 
estimated according to the topological features of the particles 
in the different neighborhood (e.g. fitness values, distance to 
other particles, or progress in optimization). 

The well-known no free lunch theorem [16] ensures that a 
single algorithm is unable to effectively solve all optimization 
problems regardless of the nature of the problem at hand. It 
confirms that there is a need to design more adaptive 
algorithms that boost the final performance of multimodal 
methods. For this reason, we devised a self-adaptive strategy 
for estimating the clearing probability (  ) during the search. 
Here we only focus on this parameter due to its influence on S-
PSO-DC’s convergence. As to the    factor, it will be anchored 
to 0.5, which is a reasonable probability value. 

The value of    is computed by using a diversity measure 
ensuring the activation of the clearing procedure when the 
population is crowded. More specifically, this parameter is 
estimated as           where            is a function 
that computes the diversity over the swarm   in the solution 
space. That is why the lower the swarm diversity, the higher 
the clearing probability. We adopted the average distance around 
each swarm center as     , since Olorunda and Engelbrecht 
verified in [17] that this measure is less sensible to outliers, 
thus it is more robust with respect to other measures. 

IV. PERFORMANCE STUDY 

In this section, we evaluate the ability of the proposed S-
PSO-DC scheme to handle multimodal problems with various 
characteristics. In other words, we are keen on studying the 
niching behavior of a revamped local PSO with a ring 
topology. To this end, the user needs to specify a level of 
accuracy   for each tested problem. If the absolute distance 
from a computed solution       to the known optimum value 
   is less that the specified threshold  , then    is considered as 
a global peak. Our method is compared against six competitive 
niching models including: SPSO [13], FER-PSO [18] and also 
four lbest models using a ring topology which were widely 
commented in [10]. As a brief description, these approaches 
may be summarized as follows: 

 r2PSO:  lbest PSO with a ring topology, where each 
particle solely interacts with its immediate member on 
its left and right sides.   

 r2hPSO: Idem as r2PSO but with no overlapping 
neighborhoods. Basically, multiple PSOs search in 
parallel like local hill climbers. This variant is more 
appropriate if the goal behind the optimization is to 
find global optima as well as local optima. 

 r3PSO: lbest PSO with a ring topology, where each 
member only interacts with the particle to its right. 

 r3hPSO: This model is similar to r3PSO, but with no 
overlapping neighborhoods, hence acting as multiple 
local hill climbers, being more suitable for finding 
global as well as local optima. 

Both differential and heuristic clearing operators are 
integrated into the abovementioned lbest models, which lead to 
four new niching algorithms: r2PSO-DC, r3PSO-DC, r2hPSO-
DC and r3hPSO-DC. It should be noticed that only SPSO 
requires the niche radius. Moreover, to gauge the general 
performance of all models, we lean on a method that identifies 
the species’ dominants [13]. It checks if a niching algorithm 
has located all known global peaks. Hence, with exception of 
the SPSO algorithm, the radius factor is only needed to 
measure the performance of the models under consideration, 
which means it is not used in the optimization. 

We also include two performance measures: the success 
rate and the peak ratio. The former is a ratio of the number of 
runs in which all global peaks were successfully located with 
respect to the total number of runs. The latter statistic measures 
the number of optimal solutions found in a run with regards to 
the total number of known global peaks. 



A. Benchmark  functions 

We tested 12 well-known problems taken from [10], which 
are commonly employed in niching literature since they exhibit 
different properties such as deceptiveness, multiple evenly and 
unevenly spaced global optima, solution spaces characterized 
by local/global peaks and high dimensionality. These functions 
may be categorized into four major groups: 1-D Deceptive 
Functions (f1, f2, f3), 1-D Multimodal Functions (f4, f5, f6, f7), 2-
D Multimodal Functions (f8, f9, f10), and also More Challenging 
Two or Higher-Dimensional Multimodal Functions (f11 and f12) 
ranging from simpler to more intricate ones.  

B. Simulation results 

In all experiments discussed in this section we use the same 
parametric settings reported in [10]. It includes, for each tested 
function: a level of accuracy   , the maximum number of 
evaluations  , the population size   and the niche radius  . 
Notice again that the level of accuracy   and a fixed niche 
radius   are exclusively for performance measurements. Table I 
shows the success rate averaged over 50 independent trials, for 
f1-f10, f11

2D, and f12
1D which are relatively simple functions 

(although the search space of these functions is certainly tough 
for any niching algorithm, they have few global optima). From 
these simulations, a promising conclusion came out: r2PSO-
DC, r3PSO-DC, r2hPSO-DC and r3hPSO-DC are able to find 
all solutions over 50 trials. As well, it is clear that lbest models, 
in general, show stable performance over SPSO and FER-PSO 
on all benchmarks under discussion. 

Table II portrays the average peak ratios (over 50 runs) 
achieved by the algorithms in presence of more complicated 
functions. In this case, no algorithm was able to discover all 
peaks. Conversely, it is quite remarkable that improved lbest 
methods are much better equipped to handle these challenging 
functions. As an illustration, for problem f11

3D, r3PSO-DC 
reports a significant improvement with respect to its analogous 
method r3PSO; here the peak ratio increases by 31% which 
means that about 25 new optima were found. In general, 
r3PSO-DC seems to be more effective for optimizing search 
spaces having numerous global as well as local optima, while 
r2hPSO-DC is preferable for problems where only global peaks 

exist. Despite this, for search spaces having large number of 
optima (e.g. for problem f11

4D), the algorithms’ performance is 
still poor, even for the proposed models. This suggests the need 
to incorporate more competent optimizers in order to improve 
the scalability properties of lbest PSO-based methods. The 
authors are currently working towards this goal. 

More explicitly, for functions f1, f2, f3, f10 and f11, SPSO 
achieves the worst performance against peer schemes. That 
undesirable behavior is severely conditioned by the topological 
properties of such problems, where existing local optima can 
easily misguide the particle swarm to move away from the true 
global optimum. In this context, FER-PSO seems to be more 
consistent but it definitely cannot outperform the improved 
lbest models, which speaks about the efficacy of the proposed 
methodology. As an illustrative example, Figure 2 unveils the 
niching behavior induced on the whole swarm by improved 
ring-based lbest models, where r3PSO-DC was able to discover 
all global peaks of the Vincent-2D function. 

 

Figure 2.  Niching behavior induced by the proposed  lbest model  

over Vincent-2D function a) at initial steps b) at final steps 

In a second experiment, we studied the scalability features 

of the algorithms for two complex benchmarks, i.e., Inverted 

Shubert (f11) and Inverted Vincent (f12) functions. They serve 

this purpose quite well since they display a similar behavior: 

the number of local and global optima exponentially increases 

with the dimensionality of the solution space. For instance, the 

number of global solutions of Inverted Shubert-3D is 81, but 

for a 4D-search space there are 324 global optima (while it has 

a huge number of suboptimal solutions). 

TABLE I.  SUCCESS RATES FOR SIMPLER FUNCTIONS 

Id       SPSO FER-PSO r2PSO  r3PSO r2hPSO r3hPSO r2PSO-DC r3PSO-DC r2hPSO-DC r3hPSO-DC 

f1
1D 1 0.50 0.10 24% 88% 98% 100% 94% 78% 100% 100% 100% 100% 

f2
1D 1 0.50 0.10 22% 100% 100% 96% 98% 88% 100% 100% 100% 100% 

f3
1D 2 0.50 5.00 40% 98% 100% 96% 96% 96% 100% 100% 100% 100% 

f4
1D 5 0.01 0.01 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

f5
1D 1 0.01 0.01 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 

f6
1D 5 0.01 0.01 100% 100% 98% 98% 100% 100% 100% 100% 100% 100% 

f7
1D 1 0.01 0.01 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

f8
2D 4 0.50 0.10 100% 98% 92% 74% 100% 98% 100% 100% 100% 100% 

f9
2D 2 0.50 0.01 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

f10
2D 1 0.50 0.01 50% 100% 100% 100% 72% 78% 100% 100% 100% 100% 

f11
2D 18 0.50 0.10 49% 56% 90% 98% 98% 100% 100% 100% 100% 100% 

f12
1D 6 0.20 0.01 84% 88% 94% 86% 92% 90% 100% 100% 100% 100% 

 



 

TABLE II.  PEAK RATIO FOR CHALLENGING FUNCTIONS 

Id       SPSO FER-PSO r2PSO r3PSO r2hPSO r3hPSO r2PSO-DC r3PSO-DC r2hPSO-DC r3hPSO-DC 

f11
3D 81 0.50 0.20 0.01 0.03 0.16 0.61 0.27 0.66 0.16 0.92 0.32 0.78 

f11
4D 324 0.50 0.20 0.00 0.00 0.00 0.25 0.00 0.14 0.00 0.27 0.00 0.14 

f12
2D 36 0.20 0.01 0.77 0.65 0.69 0.61 0.69 0.66 0.94 0.95 0.96 0.94 

f12
3D 216 0.20 0.01 0.34 0.31 0.35 0.30 0.38 0.37 0.40 0.41 0.48 0.42 

 

It is obvious that, even with a large enough population size, 
it was becoming problematic to find all peaks in any run. For 
this reason, the next experiment only considers the peak ratio 
attained by each algorithm instead of the success rate. From 
these simulations, we observed that the improved lbest models 
notably outperform other methods for all functions, thus finding 
a higher number of global optima. 

In the model implementation, the self-adaptive parametric 
optimization only got activated at the iteration   if a proper 
number of objective function evaluations were reached 
(e.g.       ). In this sense, the clearing operator may be 
more difficult to handle since it could indiscriminately disperse 
the swarm, hence bringing about serious problems. However, 
this undesirable effect is actually notably reduced due to the 
local properties of the clearing operator.  

V. CONCLUSIONS 

Several niching methods have been proposed in the 
literature, though a large number of them are impractical due to 
their reliance on additional knowledge about the problem 
domain. This paper presents a revamped lbest PSO version 
termed S-PSO-DC with augmented capabilities to face 
multimodal problems. The differential operator in S-PSO-DC 
uses knowledge attained by other subpopulations to provoke a 
controlled perturbation in the lbest search process, exploring 
new regions of the search space. The heuristic clearing operator 
in S-PSO-DC is able to preserve the swarm diversity without 
discarding previously encountered solutions. 

 Furthermore, S-PSO-DC possesses a self-adaptive scheme 
to adjust control parameters. In that way, the end user gets a 
self-adaptive black box framework for solving multimodal 
optimization problems. S-PSO-DC was tested against 12 well-
known functions of varying difficulty and reported superior 
performance in all cases against six other niching methods. 
Future work will concentrate on improving the global 
scalability of the lbest PSO models, thus enhancing the 
applicability and robustness of our method. 
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