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 Combinatorial optimization problems, including many NP-
hard problems, are central in numerous important applica-
tion areas, including operations and scheduling, drug dis-
covery, finance, circuit design, sensing, and manufacturing. 
Despite large advances in both algorithms and digital com-
puter technology, even typical instances of NP-hard prob-
lems that arise in practice may be very difficult to solve on 
conventional computers. There is a long history of attempts 
to find alternatives to current von-Neumann-computer-
based methods for solving such problems, including using 
neural networks realized with analog electronic circuits (1, 
2) and using molecular computing (3–5). Both lines of inves-
tigation continue to inspire related work (6, 7). A major top-
ic of contemporary interest is the study of adiabatic 
quantum computation (AQC) (8) and quantum annealing 
(QA) (9, 10). Sophisticated AQC/QA devices are already un-
der study (11–14), but providing dense connectivity between 
qubits remains a major challenge (15) with important impli-
cations for the efficiency of AQC/QA systems (16). 

Networks of coupled optical parametric oscillators 
(OPOs) are an alternative physical system, with an uncon-
ventional operating mechanism (17–20), for solving the Ising 
problem (21, 22), and by extension many other combinatori-
al optimization problems (23). Formally, the N-spin Ising 

problem is to find the configuration of spins { }1, 1iσ ∈ − +  (i 

= 1, ..., N) that minimizes the energy function 

1 1
ij i j i i

i j N i N
H J hσ σ σ

≤ < ≤ ≤ ≤

= − ∑ ∑ , where the particular problem 

instance being solved is specified by the N × N matrix J 
(with elements Jij) and the length-N vector h (with elements 
hi). 

We have realized a system with a scalable architecture 
that uses measurement-feedback in place of a network of 
optical delay lines (which were used in initial, low-
connectivity, non-reprogrammable demonstrations of the 
concept (18, 24, 25)). Our 100-spin Ising machine allows 
connections between any spin and any other spin, and is 
fully programmable. We show that measurement-feedback-
based OPO Ising machines can solve many different Ising 
problems, and in cases where exact solutions are not easy to 
obtain, we can find good approximate solutions. 

The schematic of our experimental setup (Fig. 1) shows 
that our Ising machine is formed by the combination of 
time-division-multiplexed OPOs (18) in a single fiber-ring 
cavity, with measurement and feedback (injection) stages 
that act to couple the pulses in the cavity such that the Ising 
Hamiltonian is realized. Details are provided in the Sup-
plementary Materials (26). 

We have focused our experiments on Ising problems on 
undirected, unweighted graphs (V (vertices), E (edges)), 
where Jij = –1 when Spin i and Spin j are connected, and Jij 
= 0 otherwise, and for which the linear (Zeeman) terms hi 
are zero. An Ising problem of this form is equivalent to the 
MAX-CUT problem on the underlying graph (17). MAX-CUT 
is the problem of partitioning the vertices of a graph into 
two disjoint subsets such that the number of edges between 
the two subsets is maximized; the partition is called a cut. 
MAX-CUT remains NP-hard even when the input is restrict-
ed to unweighted cubic graphs (27). We refer interchangea-
bly to the MAX-CUT problem and to the Ising problem, and 
the solutions thereof. The energy of a particular spin con-
figuration {σi}i=1,...,N for an Ising problem is given by
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{ }( )
1 1

i ij i j i i
i j N i N

H J hσ σ σ σ
≤ < ≤ ≤ ≤

= − −∑ ∑  . The same spin configu-

ration {σi} represents a cut of size 

{ }( ) { }( )
1

1 1
2 2ij

i j N
i iC J Hσ σ

≤ < ≤

= − −∑ ; i.e., there is a direct 

mapping between the energies in the Ising problem and the 
cut sizes in the MAX-CUT problem, and we note that mini-
mizing the Ising energy maximizes the cut. 

Figure 2A shows the unweighted, undirected Möbius 
Ladder (cubic) graph with N = 16 vertices. We programmed 
the corresponding J matrix into our feedback electronics, 
and ran the problem on our experimental apparatus. Figure 
2B shows, from a single run of this single problem instance, 
the evolution of the in-phase component of each OPO pulse 
(ci) as a function of the number of times each pulse circulat-
ed around the cavity (the number of roundtrips). The com-
putation time is given by Tcomp = TrtNrt, where Trt = 1.6 μs is 
the single roundtrip time and Nrt is the number of round-
trips. Each spin σi in the Ising problem is represented by a 
single OPO pulse; if the in-phase component ci of the ith 
OPO pulse is less than zero, i.e., ci < 0, we make the spin 
assignment σi = –1, and if the in-phase component is greater 
than zero, i.e., ci > 0, we make the spin assignment σi = +1. 
As the feedback signal level is gradually increased, the OPO 
amplitudes increase. Most of the OPOs obtain their ultimate 
signs by Roundtrip 60. By Roundtrip 100, all the OPOs have 
reached a steady state. Figure 2C shows the graph cut size, 
or equivalently the Ising energy, represented by the spin 
configuration after each roundtrip for the run shown in Fig. 
2B. We see that the system evolves toward solutions repre-
senting larger graph cuts, or equivalently lower Ising ener-
gies, and the steady-state configuration is that of a ground 
state. The system finds the ground state within 120 μs. If we 
rerun the computation many times, we find that our system 
always returns the optimal solution for this particular prob-
lem instance (Fig. 2D). Figure 2, E and F, shows the distri-
butions of obtained solutions for two other N = 16 cubic 
graphs. In both cases the system finds the ground state in a 
large fraction of the runs, and when the system does not 
return a ground state, it returns a state that has energy 
close to that of the ground state, i.e., a good approximate 
solution. To illustrate that these instances are not special 
cases for which the Ising machine finds exact solutions 
(ground states), we attempted to solve all possible problem 
instances of N = 16 cubic graphs, of which there are 4060. 
Figure 2G shows that we were able to find ground states 
with probability greater than 20% for every single instance. 
In this experiment, and all that follow, every run was set to 
proceed for Nrt = 300 roundtrips, i.e., a computation time of 
Tcomp = 480 μs. 

 

We next explored how the Ising machine performs as a 
function of the size of the problem. In this first scaling 
study, we used the Möbius Ladder graphs with varying size. 
This is a convenient choice as there is a closed-form solution 
for the maximum cut and Ising energy for every instance in 
this family of graphs. The Möbius Ladder graphs with N = 8, 
12, ..., 100 were solved (Fig. 3A). For each instance we per-
formed multiple sets of 100 runs. Each 100-run set resulted 
in a solution-energy histogram (Fig. 3B shows an example 
for N = 8). Note that for the runs in which the ground state 
is not found, the system again finds good approximate solu-
tions (Fig. 3, C and D). 

To understand how the performance of our system scales 
as a function of problem size for more general problems, 10 
random instances of cubic graphs were generated for each 
graph size N = 10, 20, ..., 100, and each instance run on our 
apparatus. Figure 4A shows the success probabilities for 
each instance, aggregated by graph size. In contrast to the 
previous results, not only the probability of obtaining a 
ground state, but also the probability of obtaining a solution 
that is within x% of the optimal (maximum cut) solution is 
shown. The error bars indicate a spread in success probabil-
ities primarily due to the fact that different random in-
stances of each size may be more or less difficult to solve. 

Figure 4B shows, for each graph size, the total computa-
tion time required to obtain a solution with the given accu-
racy with probability 99% within that time, and is derived 
directly from Fig. 4A. The total time is given by Tcomp × log(1 
– 0.99)/log(1 – ps), where ps is the corresponding success 
probability from Fig. 4A. The total computation time re-
quired to obtain ground states (100% accuracy) grows rapid-
ly with problem size N, although it is still small in absolute 
terms for N = 100: less than 200 ms. The growth in total 
computation time is far less severe when the required solu-
tion accuracy is reduced: for 95% accuracy, the required 
time increases from approximately 1 ms when N = 10 to ap-
proximately 4 ms when N = 100; for 90% accuracy, the re-
quired time remains roughly constant at approximately 1 
ms. 

Figure 4, C and D, shows the OPO amplitudes and cut 
sizes/energies, respectively, as a function of the number of 
roundtrips for a single run on a single non-regular random 

graph instance with N = 100 vertices and 495E =  edges. 

We see that the global optimum is reached within 100 μs, 
and the system reaches a steady state after approximately 
120 μs. This graph instance is one of 10 instances that were 
generated having 495 edges. We generated 10 random 
graphs with a fixed number of edges, for each of 

50,495,990,1485,1980,2475,2970,3465,3960,4455,4900E = , 

and ran these instances on our apparatus. Figure 4E shows 
the results of this study of the performance on random 
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graphs as a function of edge density ( )2 1d E V V = −   ; 

the system was able to find good solutions for all the at-
tempted densities. 

OPO Ising machines have the potential to harness a 
number of quantum features, including squeezing and su-
perposition (20). Pulsed OPOs already have a substantial 
quantum-mechanical nature (28), and networks of OPOs 
can generate spatial multimode entanglement (19). The ex-
perimental system reported in this work is well-described by 
a quantum-mechanical model (20) (with very good agree-
ment between our experimental results and numerical simu-
lation results (26)). However, the extent to which classical 
models can capture the behavior of OPO Ising machines is 
not yet known, and follow-up studies are needed to deter-
mine the fundamental computational power of OPO Ising 
machines. Two future modifications to the experiment that 
could increase the relevance of quantum mechanics are re-
ducing the cavity round-trip loss, and injecting squeezed 
vacuum states into the open port of the measurement 
beamsplitter (29), which is predicted to improve the success 
probability (26). 

While we find the overall direction of OPO Ising ma-
chines promising, the techniques we have demonstrated are 
not necessarily restricted to OPO Ising machines, and pho-
tonic-AQC and boson-sampling (30) experiments, amongst 
others, may be able to adapt our methods. 
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Fig. 1. Experimental schematic of a 
measurement-feedback-based 
coherent Ising machine. A time-division-
multiplexed pulsed degenerate optical 
parametric oscillator is formed by a 
nonlinear crystal (PPLN) in a fiber ring 
cavity containing 160 pulses. A fraction of 
each pulse is measured and used to 
compute a feedback signal that effectively 
couples the otherwise-independent pulses 
in the cavity. IM: intensity modulator; PM: 
phase modulator; LO: local oscillator; 
SHG: second-harmonic generation; FPGA: 
field-programmable gate array. 
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Fig. 2. Results with N = 16 cubic graphs. (A) A Möbius Ladder graph with N = 16 vertices. (B) The 
evolution of the in-phase components ci of the N = 16 OPO pulses as a function of the computation 
time. (C) The graph cut size achieved as a function of the computation time. (D to F) Histograms of 
obtained solutions in 100 runs for the graphs shown in the insets. (G) Histogram of the observed 
probabilities of obtaining a ground state in a single run, for all 4060 unweighted, undirected cubic 
graphs with N = 16 vertices.  
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Fig. 3. Results with various-size 
Möbius Ladder graphs. (A) 
Observed probability of obtaining 
a ground state of the Möbius 
Ladder graph in a single run, as a 
function of the size N of the graph. 
Multiple 100-run batches were 
performed for each graph size to 
obtain the standard deviations, 
which are shown as error bars. (B 
to D) Histograms of obtained 
solutions in 100 runs for the 
graphs shown in the insets. 
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Fig. 4. Results with various-size and various-density random graphs. (A) Observed probability of 
obtaining a solution whose cut size is at least x% of the global optimum (maximum cut), as a function of 
graph size N, for random cubic graph instances. Error bars indicate one standard deviation, which is 
dominated by the difference in difficulty between the various problem instances. (B) The runtime that 
would be required to obtain a solution of a particular accuracy with 99% probability. (C) The evolution of 
the in-phase components ci of the N = 100 OPO pulses as a function of the computation time, for a single 
run with the graph shown in the inset of Panel D. (D) The graph cut size achieved as a function of the 
computation time. Inset: the graph being solved. (E) Observed success probability of obtaining a solution 
with a particular accuracy as a function of the density of edges in the graph. Experiments were 
performed on randomly-generated N = 100-vertex graphs with fixed numbers of edges. Error bars 
indicate one standard deviation. 
 

First release: 20 October 2016  www.sciencemag.org  (Page numbers not final at time of first release) 8 
 

 o
n 

N
ov

em
be

r 
23

, 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/
http://science.sciencemag.org/


published online October 20, 2016
Fejer, Hideo Mabuchi and Yoshihisa Yamamoto (October 20, 2016) 
Takesue, Shoko Utsunomiya, Kazuyuki Aihara, Robert L. Byer, M. M.
Hamerly, Carsten Langrock, Shuhei Tamate, Takahiro Inagaki, Hiroki 
Peter L. McMahon, Alireza Marandi, Yoshitaka Haribara, Ryan
all-to-all connections
A fully-programmable 100-spin coherent Ising machine with

 
Editor's Summary

 
 
 

This copy is for your personal, non-commercial use only. 

Article Tools

http://science.sciencemag.org/content/early/2016/10/19/science.aah5178
tools: 
Visit the online version of this article to access the personalization and article

Permissions
http://www.sciencemag.org/about/permissions.dtl
Obtain information about reproducing this article: 

 is a registered trademark of AAAS. Scienceall rights reserved. The title 
Washington, DC 20005. Copyright 2016 by the American Association for the Advancement of Science;
December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, 

(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week inScience 

 o
n 

N
ov

em
be

r 
23

, 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/871704235/Top1/AAAS/PDF-Bio-Techne.com-WEBOE-W-009269/RNDsytems.raw/1?x
http://science.sciencemag.org/content/early/2016/10/19/science.aah5178
http://www.sciencemag.org/about/permissions.dtl
http://science.sciencemag.org/

