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Abstract

Part-of-speech tagging (POS tagging)  and dependency parsing are fundamental
syntax tasks in the field of Natural Language Processing. POS tagging is the process of
assigning a tag (e.g. noun, verb, etc.) to each word in a sentence.  Dependency parsing
aims to automatically analyze the dependency structure of a sentence. This thesis involves
the implementation and evaluation of a POS tagger and a dependency parser, with a focus
on Greek. Both models utilize deep neural network architectures in order to produce state
of the art performance. Our POS tagger produces near state of the art performance in the
Greek language. Our dependency parser produces state of the art  performance in the
Greek and near state of the art performance in English and Bulgarian.
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Περίληψη

Η  επισημείωση  μερών  του  λόγου  (part-of-speech  tagging)  και  η  εξαγωγή
συντακτικών  δέντρων  εξαρτήσεων  (dependency  parsing)  είναι  θεμελιώδεις  συντακτικές
διεργασίες του πεδίου της Επεξεργασίας Φυσικής Γλώσσας (ΕΦΓ).  Η επισημείωση μερών
του λόγου είναι η διαδικασία ανάθεσης ετικετών (π.χ ρήμα, ουσιαστικό, άρθρο κ.λπ.) σε
κάθε λέξη μίας πρότασης. Η εξαγωγή συντακτικών δέντρων εξαρτήσεων στοχεύει  στην
αυτόματη ανάλυση της συντακτικής δομής μιας πρότασης. Στη διάρκεια της συγκεκριμένης
διπλωματικής εργασίας αναπτύξαμε και αξιολογήσαμε ένα μοντέλο επισημείωσης μερών
του  λόγου,  καθώς  και  ένα  μοντέλο  εξαγωγής  συντακτικών  δέντρων  εξαρτήσεων
εστιάζοντας  κυρίως  στην  ελληνική  γλώσσα.  Και  τα  δύο  μοντέλα  χρησιμοποιούν
αρχιτεκτονικές  βαθέων  νευρωνικών  δικτύων  (deep  learning)  που  οδηγούν  σε  διεθνώς
ανταγωνιστικές επιδόσεις. 

Η  επίδοση  του  επισημειωτή  μερών  του  λόγου  που  αναπτύξαμε  είναι  ελάχιστα
κατώτερη από την καλύτερη επίδοση που αναφέρεται στην βιβλιογραφία για την ελληνική
γλώσσα. Η επίδοση του μοντέλου μας για την εξαγωγή συντακτικών δέντρων εξαρτήσεων
είναι  ανώτερη  από  την  καλύτερη  επίδοση  που  αναφέρεται  στην  βιβλιογραφία  για  την
ελληνική  γλώσσα.  Τέλος,  το  μοντέλο  εξαγωγής  συντακτικών  δέντρων εξαρτήσεων που
αναπτύξαμε  επιτυγχάνει  ανταγωνιστικά  αποτελέσματα  σε  σύγκριση  με  το  καλύτερο
μοντέλο που αναφέρεται στην βιβλιογραφία για την αγγλική και την βουλγαρική γλώσσα.
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1. Introduction

In this chapter we describe briefly the Natural Language Processing (NLP) tasks of
part-of-speech (POS) tagging and dependency parsing. The dependency parsing section
draws heavily on terminology and characterizations outlined in the “Dependency parsing”
book (Kubler et al.,    2009  ). POS tagging is a fundamental NLP task that assigns a tag to
each  word  in  a  sentence.  Dependency  parsing  is  another  NLP  task  that  aims  to
automatically analyze the dependency structure of a given input sentence. A dependency
structure can be represented as a directed acyclic graph (DAG) where nodes and edges
correspond to words and dependency arcs respectively. We explain also the notion of
projectivity  regarding  the  dependency  structures.  Finally,  we  focus  on  data-driven
dependency parsing approaches. These approaches include transition-based and graph-
based parsing algorithms. 

1.1 Part-of-Speech tagging

POS  tagging  is  the  process  of  assigning  a  tag  to  each  word  in  a  sentence.
Sentence splitting and word  tokenization are usually performed before, or as part of the
tagging process. Sentence splitting or sentence boundary disambiguation is an NLP task
that decides where sentences begin and end. Tokenization is the process of breaking up a
sentence into pieces (tokens) like words, punctuation symbols etc.

Tagging is a disambiguation task. Words are ambiguous since they have more than
one part-of-speech tags and the goal  is to find the correct  tag for  each situation.  For
example, the word  book is a verb in the sentence “book that ticket” but a noun in the
sentence  “read  the  green  book”.  The  problem  of  POS  tagging  is  to  resolve  these
ambiguities.  A tagging algorithm takes as input  a sequence of tokens and produces a
sequence of  tags as output.  Each token of  the sentence is  assigned a tag.  Common
algorithms that are used for POS tagging include Hidden Markov Models (Eisner 1996),
Conditional Random Fields (Lafferty    et  al.,  2002  ) and deep neural networks (Goldberg
2017).

POS tags  are  very  useful  because they encode  a  large  amount  of  information
regarding a word and its neighbors. Knowing whether a word is a verb or noun gives us a
lot  of  information  for  the  neighboring  words.  For  example,  nouns  are  preceded  by
determiners and adjectives whereas verbs are usually preceded by nouns. Also, knowing
the POS tag of a word tells us a lot about the syntactic structure around the word. For
instance, nouns are usually parts of noun phrases. 
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The information encoded in POS tags is very useful for other NLP tasks such as
dependency parsing (Dozat et al., 2017), information retrieval (Chowdhury et al., 1993)
and  speech  synthesis  (Ming  et  al.,  2011).  The  POS  tags  influence  the  possible
morphological affixes and so can influence stemming for information retrieval. A POS tag
of a word is important for producing pronunciations in speech synthesis or recognition.  For
example,  the word  content is  pronounced differently when it  is  a noun (CONtent)  and
differently when it is an adjective (conTENT). 

1.2 Dependency parsing

Dependency representations of syntax are well established in the field of descriptive
linguistics, with many different formalisms such as Word Grammars (Hudson 1984), and
Meaning Text Theory (Mel’čuk 1987). The basic assumption of all dependency grammar
varieties  is  that  syntactic  structure  consists  of  words  linked  by  binary,  asymmetrical
relations called dependency relations. In every dependency relation there is a word, called
the dependent, and another word on which it depends, called the head. The image below
depicts a dependency structure for a simple English sentence. Dependency relations are
represented by arrows pointing from the head to the dependent. Furthermore, each arrow
has a label, indicating the dependency type.

Dependency  parsing  has  attracted  considerable  interest  from  researchers  and
developers in the NLP field. One reason for this popularity is the fact that dependency-
based  syntactic  representations  seem  to  be  useful  in  other  applications  of  language
technology, such as machine translation (Quirk et al., 2006). The task of a dependency
parser is to produce a labeled dependency structure (figure 1.1), where the words of the
sentence  (including  the  artificial  word  ROOT)  are  connected  by  typed  dependency
relations (e.g. object, subject etc). Thus, we can define the dependency parsing problem
as that of mapping an input sentence S, consisting of the words w0, w1, …., wn (where w0 is
the ROOT), to its dependency graph G. 
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Figure 1.1: Dependency structure for an English sentence. Example from Kubler et al. (2009).
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Figure 1.1: Dependency structure of an English sentence. Example from Kubler et al. (2009).



The approaches to solve the parsing problem can be divided into two classes, data-
driven and grammar-based respectively. A data-driven approach uses machine learning on
linguistic data in order to parse new sentences. A grammar-based approach relies on a
formal grammar,  defining a formal  language,  in  order to  decide whether  a given input
sentence is  in  the language defined by the  grammar  or  not.  Data-driven  methods for
dependency parsing have attracted the most attention in recent years.

 Data-driven or  supervised  methods presume that the input  sentences used for
machine  learning  have  been  annotated  with  their  correct  dependency  structures.  In
supervised dependency parsing, there are two different problems that need to be solved
computationally. The first is the learning problem, which is the task of learning a parsing
model  from a representative sample of sentences and their dependency structures. The
second is the parsing problem, which is the task of applying the learned model in order to
parse a new sentence. So we can view supervised dependency parsing as two problems,
following the discussion of Kubler et al. (2009):

• Learning: Given  a  training  set  S of  sentences  (annotated  with  the  correct
dependency structures), learn a parsing model  M that can be used to parse new
sentences.

• Parsing: Given  a  parsing  model  M and  a  sentence  s,  derive  the  optimal
dependency graph G for s according to M.

The  two  main  classes  of  data-driven  methods  are  graph-based  and  transition-based
respectively.

Graph-based approaches define a space of candidate dependency graphs for a
sentence. The learning problem is to derive a model for assigning scores to the head-
modifier pairs. The aforementioned model will calculate (n+1)2 arc-scores for a sentence of
length n (+1 for the artificial word ROOT), i.e., the model will score every possible head-
modifier pair in the sentence. The parsing or decoding problem is the task of finding the
highest-scoring dependency graph for the input sentence, given the scores produced by
the learned model. This is often called maximum spanning tree parsing, since the problem
of finding the highest-scoring dependency graph is equivalent to the problem of finding a
maximum spanning tree in a dense graph.

Transition-based approaches is another paradigm that is well studied (Nivre et al.,
2008). Transition-based parsing has configurations and transitions between configurations.
A sequence of configuration-transition pairs defines a tree and the goal is to learn the
correct transitions out of configurations. The idea is that a sequence of valid transitions,
starting  in  the  initial  configuration  for  a  given  sentence  and  ending in  one  of  several
terminal configurations, defines a valid dependency tree for an input sentence. There are
many instantiations for transition-based parsing but the most common is the shift-reduce
parsing technique (Shieber et al.,   1983  ).
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1.3 Dependency trees

 A common assumption is that valid dependency graphs are represented as trees.
Following the discussion of Jurafsky et al. (2017), a dependency tree is a graph G = (V, E),
where V is a set of vertices and E is a set of pairwise connections (arcs) of the vertices in
V. The number of vertices is equal to the number of words in a given sentence plus one
more  vertex  for  the  artificial  word  ROOT.  The  arcs  of  the  set  E  capture  the  head-
dependent and grammatical function relationships between the vertices (words) in the V
set. 

A  valid  dependency  tree  is  a  directed  acyclic  graph  (DAG)  that  satisfies  the
following constraints:

1. There is a unique ROOT node with no incoming arcs.

2. Each vertex has exactly one incoming arc.

3. There is a unique path from the ROOT node to each vertex (word) in V.

The aforementioned constraints ensure that each word has a single head word (incoming
arc)  but  a  head  word  may  have  multiple  dependent  words  (outgoing  arcs).  Also,  the
dependency structure is connected and there is a unique root node from which there is a
unique directed path to every other vertex in the graph.

1.4 Projectivity

Projectivity is an additional constraint that is derived from the order of the words in a
given sentence. Following the discussion of Jurafsky et al. (2017), an arc from a head to a
dependent  is  projective if  there is  a  path from the head to  every other  word that  lies
between the head and the dependent in the sentence. If all arcs of a dependency tree are
projective then the dependency tree is projective. However, if a dependency tree has at
least one non-projective arc then the dependency tree is called non-projective. Below we
have drawn two dependency trees of English sentences that are projective (figure 1.2) and
non-projective (figure 1.3) respectively.
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As we can  see  in  the  first  (projective)  sentence  all  arcs  satisfy  the  projectivity
constraint. In contrast, the second (non-projective) sentence has an arc from the head
flight to the dependent  was that is non-projective since there is no path from the head
flight to the intervening words this and morning. In general, a dependency tree is projective
if it can be drawn with no crossing edges. In our example there is no way to connect flight
to its dependent was without crossing the arc that links morning to its head. 

Our  concern  with  projectivity  arises  mainly  because  there  are  computational
limitations  regarding  the  transition-based  approaches.  Projectivity  usually  allows  for
polynomial run time parsing algorithms. 

1.5 Graph-based parsing

Graph-based  dependency  parsing  approaches  search  through  the  space  of
possible trees of a given sentence to find a tree (or trees) that maximize some score.
Graph-based methods encode the search space as directed graphs and sometimes utilize
methods from graph theory to search the space for optimal solutions. Unlike transition-
based methods that parametrize models over transitions used to construct a tree, graph-
based methods parametrize models over substructures of a dependency tree.

We can define a graph-based method through a model  Μ =(λ , Γ , h)  where λ  is

the  model  parameters  (we  learn  them during  training),  Γ  is  a  set  of  constraints  on
permissible structures and h  is a parsing algorithm. Γ  is simply a set of constraints that
force the model to produce well-structured dependency graphs (spanning trees originated
from a unique root). 

A fundamental part of graph-based parsing systems is the notion of the score of a

dependency tree G=(V , E)∈Gs , where Gs  is the set of all possible trees for a sentence

s :

score(G)=score(V , E)∈ℝ
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Figure 1.3: Non-projective English sentence. Example from Jurafsky et al. (2017).Figure 1.3: Non-projective English sentence. Example from Jurafsky et al. (2017).



This  score  (real  value)  represents  how likely  it  is  that  a  particular  tree  is  the  correct
analysis of the sentence s . The fundamental property of graph-based parsers is that this
score is assumed to factor through the scores of sub-graphs of G :

score(G)=f (Ψ 1, Ψ 2, ... ,Ψ n)∀Ψ i∈Ψ G

The function f  is some function over sub-graphs Ψ and ΨG  represents the relevant set of
subgraphs of G. Most commonly, the function  f is equivalent to a summation over factor
parameters and the score formula can be rewritten as:

score (G)= ∑
Ψ ∈Ψ G

φΨ

The most common graph-based approach is the arc-factored models which use the
smallest and most basic parametrization over single dependency arcs. We can define arc-
factored models for a given dependency tree G=(V ,E)  as follows:

1. Ψ G=E

2. φΨ =φ(w i, r , w j)
∈ℝ∀(wi , r , w j)∈E

Thus, arc-factored models assign a real value parameter to every labeled arc in the tree.
So we can rewrite the score formula as follows:

score (G)= ∑
(w i ,r , w j )∈E

φ (wi , r , w j)

With  φ(wi , r , w j)  we denote  the score  that  the  model  assigns to  the  dependency arc

(w i , r , w j) .

To solve the parsing problem we need an algorithm that finds the tree whose arc
scores sum to the maximum value. We can define the parsing (decoding) function as:

h(S , Γ , λ)=argmaxG=(V , E)∈GS
∑

(w i ,r . w j)∈E

φ (w i , r , w j)  

The argmax problem is equivalent to find the maximum spanning tree with the additional
constraint that one tree node (root) should have no incoming edges in order to form a valid
dependence tree.

There  are  two  polynomial  time  algorithms  to  solve  the  parsing  problem.  First,
Eisner’s decoder (Eisner 1996) which is a CKY-like O(n3) dynamic programming algorithm
that is used for projective dependency parsing.  Second, in order to parse non-projective
sentences we can use Edmond’s decoder (Chu and Liu, 1965 and Edmonds, 1967) which
finds the maximum spanning tree over all possible spanning trees of a sentence with O(n 3)
complexity. Given a sentence of length n we first select the n-1 highest-scored arcs. If
there is no cycle on the selected arcs we are done. If a cycle is detected we contract it by
merging in a new node all the nodes that it contains. We also recalculate the ingoing and
outgoing arcs  for  the  newly  created node and keep pointers  to  the  original  arcs.  We
recursively repeat the same procedure until we find a solution with no cycles. Then, we
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can backtrack using the pointers we have stored during cycle(s) contraction and find the
edges of the maximum spanning tree. 

Beyond the 1st order arc-factored models where each head-modifier arc is assumed
to  be  independent  other  higher-order  factorizations  have  been  investigated  in  the
literature. Though arc-factored models are appealing computationally, they are not justified
linguistically as their underlying arc independence assumption is simply not valid. For the
purpose of this thesis, though, we focus on 1st order arc-factored models that are the most
commonly used.  

1.6 Evaluation metrics

In  order  to  evaluate the performance of  a dependency parser,  we compare the
produced output of the parser on a test treebank with the gold standard annotation found
in the treebank. The two most commonly used evaluation metrics are:

• Unlabeled Attachment Score (UAS): the percentage of words in an input that are
assigned the correct head.

• Labeled Attachment Score (LAS): the percentage of words in an input that are
assigned the correct head and the correct dependency relation.
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2. Related work

The creation of the tagged Brown Corpus and the Penn treebank (Marcus et al.,
1993) led to a number of advances in POS tagging. The Brill tagger (Brill 1992) was an
early  accurate  rule  based  system,  that  used  a  form  of  machine  learning  (called
“transformation based learning”) to learn its rules. The Ratnaparkhi tagger (Ratnaparkhi
1996)  was  one  of  the  first  linear  discriminative  models  (maximum  entropy/logistic
regression) that utilized rich features to predict POS tags. Furthermore, the TnT tagger
(Brants 2000) was a generative HMM model. These taggers were highly used for years,
with the Stanford tagger (Toutanova et al., 2003) probably being close to the state-of-the
art for a decade.

The first statistical models for dependency parsing that were not based on context-
free grammars (CFG)  were proposed by Eisner (1996). Eisner developed three different
probabilistic models for dependency parsing and an efficient O(n3) dynamic programming
parsing  algorithm.  He  presented  a  flexible  probabilistic  parser  that  simultaneously
assigned both POS tags and a bare-bones dependency structure. Each word was linked to
a single parent and the head of the sentence was linked to the EOS (end of the sentence).
Crossing links and cycles were not allowed.

Arc-factored  discriminative  linear  models  with  rich  features  were  proposed  by
McDonald et al. (2005a). The proposed arc-factored model had a rich feature set including
word and POS tag information for parent and child nodes, POS tag information of the
surrounding and between parent-child nodes and distance/direction information of parent-
child  dependencies.  Eisner’s  parsing  algorithm was used for  parsing.  The same year,
McDonald  et  al. (2005b) formalized  weighted  dependency  parsing  as  searching  for
maximum spanning trees (MSTs) in directed graphs. The Chiu-Liu-Edmonds algorithm was
utilized for MST extraction. The proposed MST parsing algorithm was capable of non-
projective dependency parsing  in  contrast  to  Eisner’s  algorithm that  can produce only
projective dependency structures.

In  subsequent  work  McDonald  et  al. (2006,  2007)  investigated  several  non-
projective  parsing  algorithms for  dependency parsing,  providing  novel  polynomial  time
solutions under the assumption that each dependency decision is independent of all the
others  (arc-factored  models).  Furthermore,  they  also  investigated  higher-order  non-
projective  algorithms  and  found  that  exact  non-projective  dependency  parsing  is
intractable  for  any  model  richer  than  the  edge-factored  model  (1st order),  but  the
intractability can be circumvented with new approximate parsing algorithms.

Koo  et  al. (2010) presented  algorithms  for  higher-order  projective  dependency
parsing. The proposed parsers utilized both sibling-style and grandchild-style interactions
and were efficient since they required O(n4) time. From 2011 until  Kiperwasser et al.’s
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(2016)  model  most  of  the  field  focused on  incremental  improvements  to  graph-based
parsing and on multilingual and low-resource parsing.

2.1 The parser of Kiperwasser et al.

To the best of our knowledge Kiperwasser et al. (2016) were the first that utilized
LSTMs  as  feature  extractors  for  the  task  of  dependency  parsing.  They  presented  a
transition-based and a graph-based approach for dependency parsing using bidirectional
LSTMs as feature extractors. The aforementioned architecture was then used by many
other authors as the backbone for the development of their dependency parsing systems.
The reported results of their transition-based and graph-based implementations on English
and Chinese treebanks were almost the same. We have chosen to present their graph-
based approach since graph-based approaches can parse also non-projective sentences
which is very important for highly non-projective languages like Greek.

2.1.1 Input encoder

Traditional first-order graph-based parsers use a core of features that usually take
into account the word and the POS tag of the head and the modifier, as well as POS-tags
of the words around the head and the modifier, POS tags of the words between the head
and the modifier and the distance and direction between the head and the modifier. In the
literature there are such feature sets based on hand-crafted feature functions. But, feature-
engineering is a tedious task that requires a lot of expertise in the domain of the specific
task. Kiperwasser et al.’s model attempts to alleviate parts of the feature function design
problem by moving to neural network models using recurrent inputs, enabling the modeler
to  focus  on  a  small  set  of  “core”  features  and  leaving  it  up  to  the  machine-learning
machinery to come up with good feature combinations. The proposed feature extractors

are based on bidirectional LSTMs that take into account both the past x1: i  and the future

x i: n  elements  regarding  the  ith element  of  a  sequence  (sentence).  Long  short-term

memory (LSTM) is a specific type of recurrent neural network (RNN) that can learn longer-
term  dependencies. For  example,  given  an  n-words  input  sentence  s with  words

w1,w2, ..... ,wn  together with the corresponding POS tags  t1 , t2 , ...., t n . Each word wi and

POS tag ti are associated with embeddings vectors e(wi) and e(ti) respectively. A sequence
of input vectors x1:n is created where xi is the concatenation of the corresponding word and
POS tag embeddings:

14



x i= e (w i)⊕e (t i)

The embeddings are trained together with the model. This encodes each word and POS
tag  in  isolation  disregarding  its  context.  The  word  and  POS  tag  embeddings
concatenations are fed into the BiLSTM network (figure 2.1) in order to acquire a deep
context-aware encoding for each word in the sentence.

The BiLSTM network is  a  stack  of  a  forward  and a  backward  LSTM. The only
difference between the forward and the backward LSTM is the order in which the input
vectors are fed. The forward LSTM consumes sequentially the input vectors. In contrast,
the backward LSTM consumes the same input vectors but in reversed order. At each time
step, the LSTM is fed with one input vector that corresponds to a word in the sentence and
produces a hidden vector for the next time step and an output vector. Also, at each time
step the LSTM’s memory cell is updated. When the entire sentence is consumed from the
LSTMs the output vectors are concatenated in order to get a deep context-aware encoding
for each word in the sentence.
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Figure 2.1: The input BiLSTM encoder of Kiperwasser et al. (2016). 

The special <ROOT> token is treated as the first word of the sentence.

Figure 2.1: The input BiLSTM encoder of Kiperwasser et al. (2016). The special <ROOT>
token is treated as the first word of the sentence. 



2.1.2 MLP score function, parsing and hinge loss objective

Given  a  sentence  of  length  n  there  are  n2 possible  head-modifier  pairs.  Each
possible head-modifier pair is scored (figure 2.2) via a multilayer perceptron (MLP)  with
one hidden layer using the following formula:

   score (h , m)=W 2 tanh(W 1 [v (h)⊕v (m)]+b1)+b2

The input to the MLP is the concatenation of the BiLSTM’s encodings that correspond to
the head and modifier words. Head-modifier relation labels are scored in a similar manner
using the same encodings but a different MLP. The MLP produces a score for every label
in the set of labels (figure 2.2). 

  

Given the produced by the model arc scores for all the possible head-modifier pairs

of  a  sentence  s,  the  highest-scoring  dependency  tree  y in  the  space  Y(s) of  valid

dependency  trees  of  S  should  be  selected  during  parsing.  The  parsing  process
decomposes the score of a tree to the sum of the score of its head-modifier arcs (h,m)
using the formula:

 parse(s)=argmax y∈Y (s) ∑
(h ,m )∈y

score(h ,m)

The model utilizes Eisner’s decoding algorithm to extract the highest-scoring projective
tree during test time.

During training time a margin-based objective is defined. The goal is to separate the

score of each gold (correct) tree y from the score of the highest-scoring incorrect tree y',
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Figure 2.2: Scoring arcs and labels in the system of Kiperwasser et al. (2016).



such that the former score will be higher than the latter and there will be at least a margin

(set to 1) between them. The following hinge loss with respect to a gold tree y is used:

       loss=max(0,1− ∑
(h ,m)∈y

MLP(vh⊕vm)+max y '≠ y ∑
(h, m)∈ y '

MLP (v h⊕vm))

The BiLSTM-produced encodings for the head (vh) and the modifier (vm) are used as input.

A similar margin-based hinge loss is used for the labels. A different scoring function
(MLP) but the same BiLSTM-produced encodings for the head (vh) and the modifier (vm)
are used. The label loss is computed using the gold tree arcs rather than the predicted-
ones. Both arc and label losses are optimized together. This can be seen as an instance of
multitask learning. Training the BiLSTM feature encoder to be also good at predicting arc-
labels significantly improves the parser’s unlabeled accuracy. 

2.2 The parser of Dozat et al.

To the best of our knowledge the graph-based parser of  Dozat et al. (2017) holds
the  state-of-the  art  performance (May  2018)  for  the  majority  of  universal  dependency
treebanks. This parser utilizes a deep BiLSTM feature encoder and two biaffine classifiers
for  the  arcs  and the  labels  respectively.  As  input  the  model  uses word  and POS tag
embeddings.  During  test  time  the  model  utilizes  a  state-of-the-art  POS  tagger  also
developed by Dozat et al. (2017) to obtain predictions for POS and XPOS tags. Dozat et
al. showed that a better POS tagger improves the performance of a dependency parser.

2.2.1 Character-level embeddings

For  most  of  the  languages,  especially  those  with  rich  morphology,  adding  a
representation  made  from sequence  of  characters  improves  the  performance  of  POS
tagging and dependency parsing tasks (Dozat et al., 2017). A word is represented as a
sequence of its characters including a special  start and end symbol. For example, the
word dog is represented as the sequence of the following characters: <w>, d, o, g, </w>.
Each  character  is  associated  with  a  trainable  vector  embedding  and  a  sequence  of
character embeddings that represents a word is fed to a unidirectional LSTM. A common
practice in the literature is to use the last hidden state of the LSTM as the character-based
representation of the word. Dozat et al. use a different approach (figure 2.3) that combines
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all the recurrent states produced by the LSTM using an attention mechanism and the final
LSTM’s cell  state as well.  More specifically,  a  linear  attention over the stack H of the
recurrent/hidden states (viewed as columns of H) produced by the LSTM is computed and
concatenated to the final LSTM’s cell state Cn. The produced vector is then projected to
the desired dimension using a linear projection layer. The following formulas are used:

a=softmax (H w(attn))

                  ~
h=HT a

v̂=W (~h⊕C n)+b

2.2.2 Input encoder and head/modifier ReLu layers

The model of Dozat et al. uses as input the concatenation of word and POS tag
embeddings  (figure  2.4)  for  each  word  in  a  sentence.  The  word  embeddings  are
constructed using the element-wise summation of trainable word embeddings, pretrained
word  embeddings and trainable  character-level  word  embeddings (Section  2.2.1).  The
POS tag embeddings are constructed using the element-wise summation of the trainable
POS  (universal)  and  XPOS  (language-specific)  tag  embeddngs.  A sequence  of  input
vectors x1:n is created where xi is the concatenation of the word and POS tag embeddings.

    x i=v i
(word)⊕vi

(tag)
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Figure 2.3: Producing word embeddings from character embeddings in the model of Dozat et al.Figure 2.3: Producing character-level word embeddings in the model of Dozat et al. (2017).



 

The  use  of  pretrained  word  embeddings  is  a  form  of  transfer  learning  that  is
commonly used in order to boost the performance in various NLP tasks. Pretrained word
vectors are usually trained in large corpora like Wikipedia or/and Common Crawl. Dozat et
al.  use  100D word2vec  (Mikolov  et  al.,  2013)  pretrained  (on  Wikipedia  and  Common
Crawl) word embeddings1.

Dozat et al.’s parser utilizes a deep BiLSTM feature encoder (figure 2.5) to learn
non-linear  features  for  dependency  parsing.  More  concretely,  given  an  n-words  input

sentence s with words w1,w2, ..... ,wn  a sequence of input vectors x1 , x2 , ..... , xn  is derived

from the concatenation of the respective words and tags embeddings. The input vectors
are fed to a forward and a backward LSTM of depth three.  Constructing deeper LSTMs is
pretty straightforward since the output of a layer is fed as input to the next layer.  The
produced encodings of the forward and the backward LSTM are concatenated for every

word in the sentence: v1 : n=v
→

1 : n⊕v
←

1: n .

The concatenated encodings are fed through four separate fully connected ReLU
layers  (leaky  ReLu  activation  with  a=0.1),  producing  four  specialized  vector
representations: one for the word as a dependent seeking its head, one for the word as a
head seeking all its dependents another for the word as a dependent deciding on its label
and a fourth for the word as head deciding on the labels of its dependents. The Leaky
ReLu is one of the most commonly used activation functions. Its definition is given by the
formula: f (x)=max (ax , x ) . The formulas below are used for the ReLu layers:

    hi
(arc−head)=LReLu(W 1 v i+b1)

    hi
(arc−dep)=LReLu(W 2 vi+b2)

1 Pretrained  w2v  embeddings  are  provided  by  the  CoNLL  2017  Shared  Task:
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
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Figure 2.4: BiLSTM input vector of Dozat et al.'s parser (2017).Figure 2.4: BiLSTM input vector of Dozat et al.'s parser (2017).



    hi
(rel−head)=LReLu(W 3 v i+b3)

    hi
(rel−dep)=LReLu(W 4 vi+b4)

2.2.3 Biaffine arc/label classifiers

In order to predict an arc from a modifier i to a head j, all arcs from the modifier i to
every possible head should be scored. A biaffine classifier is used based on the following
formula:

    s i
(arc )=H (arc−head)W (arc)hi

(arc−dep)+H (arc−head)bT (arc )

H(arc-head) is the stack of all vectors of the sentence that are produced by the arc-head ReLu
layer.  The biaffine formula produces a score for each possible head j for the modifier i.
Then, the head j with the highest score is predicted for the modifier i forming the edge i→j:

y i
(arc )=argmax j sij

(arc) . Note that both biaffine formula’s terms have an intuitive interpretation.
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The first relates to the probability of word j being the head of word i given the information in
both the vector of the head and the vector of the dependent (modifier). The second term
relates to the probability of word j being the head of word i given only the information in the
head’s vector.

 After predicting the head j for the word i, another biaffine transformation is used to
predict the relation label of the arc. This time the (rel) hidden vectors are used to predict a

label. Given that we have already predicted the head (as y i
(arc ) ), we now consider only the

vector of that particular head (and the vector of the dependent), but we output a score for
each possible label of the edge. The following formula is used:

                                          s i
(rel )=hy i

(arc)
T (rel−head)U (rel)hi

(rel−dep)

                                  +W (rel)(hi
(rel−dep)⊕hy i

( arc)
(rel−head ))+b(rel)

The biaffine formula produces a score for every possible relation label regarding the edge

i→j. The relation with the highest score is then predicted: y i
(rel)=argmax j s ij

(rel) . Again, each

term of the biaffine formula has an intuitive interpretation. The first  term relates to the
probability of observing a label given the information in both the vector of the head and the
vector of the dependent. The second term relates to the probability of observing a label
given each one of the two vectors (for the head and dependent) independently, and the
last bias term relates to the prior probability of observing a label.
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2.2.4 Training details

The  biaffine  classifiers  are  trained  jointly  using  cross-entropy  losses  that  are
summed together during optimization. Note, that in contrast to Kiperwasser et al.’s parser
that uses the gold tree to train the label classifier, Dozat et al.’s. parser uses the predicted
arcs to train the biaffine label classifier. The model uses Adam (Kinigma et al., 2015)  as
optimization algorithm. Adam (Adaptive Moment Estimation) computes adaptive learning
rates for each parameter incorporating exponentially decaying average of past squared
gradients and gradients, similar to momentum.

During training variational dropout (Gal and Grahami, 2016) of 33% is used through
the entire network. Regarding the LSTM’s regularization both input and recurrent units are
dropped.  In  variational  dropout  the  same  dropout  mask  is  used  across  the
sequence/sentence.  Furthermore,  the  (entire)  word  and  tag  embeddings  are  dropped
independently  with  probability  33%.  When  one  is  dropped  the  other  is  scaled  up  to
compensate. When both embeddings are dropped, the entire input vector is replaced with
zeros. This additional dropout prevents the model from heavily relying on either word or
tag embeddings.

The model is trained for up to 30000 steps, where one step/iteration is a single mini-
batch with approximately 5000 tokens. First the model is saved every 100 steps if fewer
than 1000 iterations have passed,  and afterwards is  saved only  if  validation accuracy
increases. When 5000 training steps pass without improving on validation accuracy, the
training terminates. The best saved state of the model is eventually retained.

2.2.5 The POS/XPOS tagger of Dozat et al.

Dozat et  al.  also proposed a POS tagger with similar architecture that achieves
state  of  the  art  (SOTA)  performance  in  the  majority  of  the  universal  dependencies
treebanks.  Greek is  one of  the languages that  they report  SOTA performance in  both
universal  part-of-speech  tags  (POS  tags)  and  language-specific  part-of-speech  tags
(XPOS tags). XPOS tags contain language-specific part-of-speech tags, normally from a
traditional,  more  fine-grained  tagset.  Universal  POS  tagset  is  shared  across  all  the
languages.  In  contrast,  XPOS tagsets are unique for each language and may contain
additional information regarding gender, case etc.

 The  POS/XPOS  tagger  includes  a  BiLSTM  feature  encoder  similar  to  their
dependency parser. The BiLSTM-produced encodings are fed to two different MLPs that
predict POS and XPOS tags respectively. Given an n-words input sentence s with words
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w1,w2, ..... ,wn  each  word  wi  is  associated  with  a  trainable  word  embedding  e(w i),  a

pretrained word embedding p(wi)  and a trainable character-level  word embedding c(w i)
(Section 2.2.1). A sequence of input vectors x1:n is created where xi is the element-wise
summation of the aforementioned embeddings (figure 2.7):

     x i= e (w i)+ p (w i)+c (wi)

The sequence of constructed input vectors x1:n is fed to the BiLSTM encoder. The BiLSTM
is made of a forward and a backward LSTM of depth two. The produced encodings of the
forward and the backward LSTMs are concatenated and every word of the sentence is

represented by a deep context-aware representation:  v1 : n=v
→

1 : n⊕v
←

1: n. Two different MLPs

with one hidden layer, activated using the leaky ReLu function (a=0.1), are used to predict
the POS and XPOS tags scores respectively.

             

                                     scorei
(POS) [ ]=W 2(LRelu(W 1 v i+b1)+b2)

               scorei
( XPOS)[ ]=W 4 (LRelu(W 3 v i+b3)+b4)

The model predicts the POS and XPOS tags with the highest score.

Both POS and XPOS classifiers are trained jointly using cross-entropy losses that
are summed together  during  optimization.  POS and XPOS classifiers  share the  same
BiLSTM and embeddings parameters which enables multitask learning. During training
variational  dropout  of  33% is  applied  throughout  the  whole  network.  On the  recurrent
connections of the LSTMs the dropout is increased to 50%. The figure 2.8 demonstrates
the overall model’s architecture.
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3. Our work

Our systems are implemented in Python using the DyNet2 (Neubig et al.,  2017)
framework. DyNet is a deep learning framework that builds the computational graph on the
fly. In contrast, static graph deep learning frameworks like Tensorflow3 and Theano4 first
define  a  computation  graph,  and  then  examples  are  fed  into  the  graph.  Building  a
computational graph on the fly facilitates the implementation of more complicated network
architectures  and  is  also  very  helpful  for  NLP  tasks  where  sentences  have  different
lengths.  The  source  code  of  our  POS  tagger,  dependency  parser  and  DyNet  re-
implementation  of  Dozat  et  al.’s  parser  can  be  found  on  the  following  repositories
https://bitbucket.org/makyr90/tagger,   https://bitbucket.org/makyr90/simple-parser,
https://bitbucket.org/makyr90/biaffine_parser. 

At the heart of our systems lies our LSTM cell implementation. We use standard
LSTMs with  uncoupled input,  forget  gates  and no forget  bias,  following the  equations
below:

it=sigmoid(W ix x t+W ih ht−1+b i)  (1)

f t=sigmoid(W fx x t+W fh ht−1+bf )  (2)

ot=sigmoid(W ox x t+W oh ht−1+bo)  (3)

~c = tanh(W cx x t+W chh t−1+bc )  (4)

c t =c t−1⊙ f t +~c ⊙ it  (5)

ht = tanh (c t)⊙ o t  (6)

Equations  1-3  compute  the  input,  forget  and  output  gates  respectively.  Equation  4
computes the candidate cell state. Finally, equations 5 and 6 compute the new cell state
and the hidden state respectively. This LSTM version is very efficient since input, forget,
output gates and candidate cell state can be computed in one affine transformation. Then,
sigmoid activation is applied to the gates and tanh activation to the candidate cell state.

2 http://dynet.io/
3 https://www.tensorflow.org/
4 http://deeplearning.net/software/theano/
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3.2 POS/XPOS tagger

Our POS tagger is actually a re-implementation of Dozat et al.’s POS/XPOS tagger
in  the  DyNet  framework.  Although  we  have  tried  different  architectures  and  hyper-
parameter setups we could not surpass the performance of Dozat et al.’s tagger. The fact
that it achieves excellent results, with F1-score of approximately 97.7% for both POS and
XPOS  tags  in  the  Greek  test  treebank  made  it  extremely  difficult  for  us  to  beat  its
performance. Our tagger re-implementation utilizes fasttext pretrained word embeddings
(Bojanowski et al., 2016) instead of the word2vec pretrained word embeddings used by
Dozat et al. 

3.2.1 Input and Model architecture

Similar  to  Dozat  et  al.’s  tagger  our  model  takes  as  input  trainable,  pretrained
(fasttext) and character-level word embeddings. Fasttext embeddings are trained similarly
to word2vec embeddings using the skipgram model. In contrast to the word2vec model
where every word is represented solely by the word itself, fasttext learns representations
for  character  n-grams, and represents words as the sum of  their  n-gram vectors.  The
aforementioned technique is an extension of the skipgram model that takes into account
sub-word information.  For example the word vector “apple” is a sum of the vectors of the
n-grams “<ap”, “app”, ”appl”,  ”apple”, ”apple>”, “ppl”, “pple”, ”pple>”, “ple”, ”ple>”, ”le>”,
assuming the hyper-parameters for the smallest and largest n-grams are set to 3 and 6,
respectively. One advantage of fasttext embeddings is their ability to generate better word
embeddings for rare words. Even if words are rare their character n-grams are still shared
with other words and hence the produced embeddings can still be good.

Given  an  n-words  input  sentence  s  with  words  w1,w2, ..... ,wn  each  word  wi  is

associated with a trainable word embedding e(w i), a pretrained (fasttext) word embedding
f(wi) and a trainable character-level word embedding c(w i) (Section 2.2.1). A sequence of
input vectors x1:n is created where xi is the element-wise summation of the aforementioned
embeddings:

     x i= e (w i)+ f (wi)+ c (wi)  

The  input  vectors  are  fed  to  a  BiLSTM encoder  of  depth  2  and  the  produced
encodings are used by two different MLPs with one hidden layer in order to predict POS
and XPOS tags as described in the Section 2.2.5.  
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3.2.2 Training details

Our  POS tagger is trained for up to 30000 training steps. Each training step is a
mini-batch of approximately 5000 tokens.  The Adam optimizer with initial learning rate =
0.002 and β1 = β2 = 0.9 is used. Like Dozat et al., the initial learning rate is decayed every
5000 training steps using the following equation: 

   new learning rate=0.75∗current learning rate     

The model is saved every 100 training steps during the first 1000 training steps. Then, it is
saved only if the accuracy on the validation data increases. If validation accuracy is not
improved for 5000 consecutive training steps the training process terminates. The best
saved  state  of  the  model  is  eventually  retained.  Variational  dropout  of  33%  is  used
throughout the whole network including the LSTM’s input and recurrent states. For the
LSTM’s recurrent connections the dropout is increased to 50%. 

Trainable word embeddings are defined for words that occur at least twice in the
training dataset. Rare words (that occur only once in the entire train dataset) are replaced
with  a  special  <UNK>  embedding.  Also,  if  a  word  does  not  exist  in  the  external
embeddings matrix its pretrainned embedding vector is set to zeros. A special <ROOT>
embedding  is  also  trained  since  an  artificial  root  word  is  added  to  the  start  of  each
sentence. Trainable word embeddings, bias terms and final linear layers are initialized to
zeros. Character embeddings are initialized using a Gaussian distribution with mean = 0
and variance = 1. All the other parameters, including the LSTM’s and MLP’s hidden layers
weights, are initialized using orthonormal initialization (Saxe et al., 2014).

Frequent word and character embeddings sizes are set to 100D. Fasttext pretrained
embeddings  have  an  original  size  of  300D  and  are  squeezed  to  100D  via  a  linear
projection  layer  (Wx  +  b).  The  weights  of  the  fasttext  embeddings  projection  are
regularized using L2 regularization. The BiLSTM has recurrent states of 200D while the
LSTM of character-level word embeddings has recurrent states of 400D. Finally, the POS
and XPOS MLPs have hidden states of 200D.  
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3.3 Dependency parser

For our dependency parser we investigated various architectures with a focus on
the  Greek  language.  We  have  re-implemented  Dozat  et  al.’s  parser  in  the  DyNet
framework and experimented with various architectures, including a stack of two shallow
Bi-LSTMS instead of one deep BiLSTM, a joint arc-label score function and the addition of
distance/direction embeddings as an extra input to the joint arc-label score function. Our
target was to develop a parser capable to produce state-of-the art performance and as
much simple as possible.

3.3.1 Neural architectures investigation

In our re-implementation of Dozat et al.’s parser we have compared (in the Greek
development treebank)  the performance between a three layers deep BiLSTM encoder
(Dozat et al.)  and a stack of two shallow (depth=1) BiLSTMs. Both UAS and LAS F1-
scores  were  better  using  the  stack  of  two  BiLSTMs.  Another  advantage  of  the
aforementioned modification was that the stacked BiLSTMs encoder requires ~16% less
parameters  and thus it  is  faster  and less memory  intensive during  training.  The main
difference between a stack of n shallow BiLSTMs and a single n-layers deep BiLSTM is
the way that forward and backward LSTM states are concatenated. In a single n-layers
deep BiLSTM the forward and backward LSTM states are concatenated only in the last n th

layer. In contrast, each of the stacked BiLSTMs receives as input the concatenation of the
forward and backward LSTM states of the previous BiLSTM. 

Our next step was to eliminate the biaffine classifiers. We kept only two specialized
representations produced by the BiLSTM encodings, instead of the four in the original
Dozat et al. model. One specialized representation for the word as head seeking all of its
dependents and another for the word as dependent seeking its head. Both arcs and labels
are predicted using the same (two) types of vectors. We have tried both concatenation and
element-wise summation of the head-modifier representations before feeding them to the
MLP score  function.  Both  options  produced  similar  results  in  the  Greek  development
treebank but, the element-wise summation was faster and required less resources. Instead
of biaffine classifiers, we used a single MLP with two hidden layers in order to produce
labeled arc scores (joint arc-label predictions) for the head-modifier pairs. A single cross-
entropy loss of joint arcs-labels was optimized during training. 

Since both the parsers of Dozat et al. and Kiperwasser et al.  do not use anything
like traditional linear features and rely on the BiLSTM encoders exclusively as features, we
decided  to  add  distance/direction  information  as  an  extra  feature  to  our  MLP  score
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function. Distance and direction between the head and the modifier were core features
(McDonald et al., 2005) for the linear graph-based parsers. Distance defines how far a
modifier is from its head in a sentence. We can define the distance as the number of
words that lies between the head and the modifier. Direction declares if a modifier lies
before (right arc) or after (left arc) its head in the sentence. Each head-modifier pair in a
sentence has a distance/direction score. The sentence in the figure 3.1 is annotated with
the distance/direction scores of its head-modifier pairs.

Our parser utilizes distance and direction information regarding the head-modifier
pairs using embeddings for buckets (particular ranges) of distance/direction scores. The
vast majority (~94%) of the head-modifier distance/direction scores in the Greek universal
dependencies train treebank lies in the range of [-10,10]. Thus, we have decided to include
distance/direction  embedding  buckets  in  the  aforementioned  range.  When  a
distance/direction score of a head-modifier pair lies in the range of [-10,10] the embedding
(of the corresponding bucket)  is retrieved from the distance embeddings lookup matrix. If
the distance/direction score does not  lie in  the aforementioned range, the -10 and 10
embeddings (of  the corresponding buckets)  are selected for  the negative and positive
distance/direction scores respectively.

3.3.2 Input encoder and head/modifier ReLu layers

 Similar  to  Dozat  et  al.  parser  our  model  takes  as  input  word  and  POS  tag
embeddings (figure 3.2).  The word embeddings are constructed using the element-wise
summation of trainable embedding vectors, pretrained word vectors (fasttext) and trainable
character-level  word  embeddings  (Section  2.2.1).  The  POS  tag  embeddings  are
constructed  using  the  element-wise  summation  of  the  trainable  POS  and  XPOS
embeddngs. A sequence of input vectors x1:n is created where xi is the concatenation of the
word and POS tag embeddings.
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         x i=[e (w i)+ f (w i)+c (wi)]⊕[e (t i
POS )+e( ti

XPOS)]    

Our parser utilizes a stack of two BiLSTMs as encoder (figure 3.3). Each BiLSTM is
composed  by  a  forward  and  backward  LSTM,  both  of  depth  1.  The  encodings
(concatenated forward and backward states) of the first BiLSTM are fed to the second
BiLSTM  that  produces  the  final  encodings.  More  concretely,  given  an  n-words  input

sentence s with words w 1 , w 2 , ..... , wn  a sequence of input vectors x1 , x2 , ..... , xn  is derived

from the concatenation of the respective words and tags embeddings. The input vectors
are  fed  to  the  forward  and  the  backward LSTM  of  the  first  BiLSTM.  The  produced
encodings of the forward and the backward LSTM are concatenated for every word in the

sentence: v1 : n
1 =v

→

1 : n
1 ⊕v

←

1: n
1 . The produced sequence of encodings v1

1 , v2
1 ,..... , vn

1  is fed to the

forward  and  the  backward  LSTM  of  the  second  BiLSTM.  The  produced  forward  and
backward LSTM states of the second BiLSTM are concatenated again for every word in

the sentence:  v1 : n
2 =v

→

1 : n
2 ⊕v

←

1: n
2 . By contrast, in the original depth-3 BiLSTM of Dozat et al.

the forward and the backward LSTM states are concatenated only in the last (3d) layer.

The BiLSTM-produced encodings are fed through two separate ReLU layers (leaky
ReLu with a=0.1), producing two specialized vector representations:  one for the word as a
head seeking all its dependents and another for the word as a dependent seeking its head.
The following formulas are used to compute the ReLu layers:

    hi
(arc)=LReLu(W 1 v i

2+b1)

    hi
(dep)=LReLu(W 2 vi

2+b2)
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3.3.3 MLP score function

Given a head-modifier pair (j,i), the MLP score function (figure 3.4) takes as input a
vector  Vj,i  that  is  the  concatenation  of  the  element-wise  summation  of  the  head  and
modifier  specialized  representations  and  the  distance/direction  embedding  that
corresponds to that pair ( d ( j , i) ). The formula that is used is:

                             V ( j , i)=(h j
(arc)+h i

(dep))⊕d( j ,i)

The MLP has two hidden layers with leaky ReLu as activation function and produces as
output the scores of  all  the candidate labeled arcs between a head-modifier  pair.  The
formula that is used is:

        scores ( j , i)[ ]=LReLu(W 2(LReLu(W 1V ( j ,i )+b1))+b2)

The produced labeled arc scores of a modifier with all  of its possible heads are
concatenated creating a large flat  vector of  joint  heads/labels scores. The size of that
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vector is equal to the number of possible heads times the number of dependency relation
labels. During training, a single cross-entropy loss over the joint heads/labels scores is
optimized.

3.3.4 Parsing using Edmond’s decoder

During training we validate our parser’s performance on a development dataset. For
this purpose, the highest scoring head is predicted for each modifier in a sentence. The
above method is very efficient but does not guarantee that a valid dependency structure is
produced. When parsing new sentences with our model we want to ensure that correct
dependency  structures  are  produced.  A valid  dependency  structure  is  a  single  rooted
directed maximum spanning tree. Hence, we have implemented a parsing decoder using
the Chu-Liu-Edmonds algorithm. Given a sentence of n words, our decoder takes as input
a (n+1) X (n+1) scores matrix for all the possible head-modifier pairs in the sentence. The
+1 corresponds to the artificial root token that is placed at the start of each sentence. The
scores matrix  is  calculated  using  our  parser’s  predictions.  Each  column of  the  matrix
corresponds to the scores of all the possible heads for the modifier that is indexed in the
column. The scores matrix forms a dense (fully-connected) directed graph.

The first step of Edmond’s decoder is to select the highest-scored head (incoming
arc) for each modifier in order to form an initial dependency graph. Then, using Kosaraju’s
algorithm  for  strongly  connected  components  (SCC)  the  decoder  search  for  possible
cycles in the graph. If there is no cycles we have already found the maximum spanning
tree of the dependency graph. Otherwise, if one or more cycles are found the decoder
recursively contract all the cycles until a solution with no cycles is derived. During cycle
contraction  two or  more  graph’s  vertices  are  contracted into  one cycle.  Incoming and
outcoming arcs are recalculated for the newly contacted vertex and pointers are kept in
order to backtrack the original arcs of the graph.

When the decoder finds the maximum spanning tree of the dependency graph it
proceeds  to  the  check  of  the  single  rooted  property.  If  there  is  no  multiple  roots  the
decoder returns the heads derived from the extracted maximum spanning tree. In case of
multiple roots, the root with the highest score is greedily selected. This is done by setting
all the other outcoming arcs of the root vertex to − inf  in the initial dense directed graph.
Then, using the updated dense directed graph graph as input the decoder re-runs. Since
only one outcoming arc of the root has score different to  − inf  the maximum spanning
tree that will be extracted on the 2nd run mandatory satisfies the single rooted property. The
root of the new MST will be the greedily selected one.

Since  our  parser  produce  scores  for  labeled  arcs,  we  reduce  the  labeled  arcs
parsing problem (directed multi-graph) to unlabeled (directed graph) in order to utilize our
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decoder implementation. This is done by picking the highest labeled score as arc score for
each head-modifier pair.

3.3.5 Training details

Our dependency parser is trained for up to 30000 training steps. Each training step
is a mini-batch of approximately 1500 tokens. The Adam optimizer with initial learning rate
= 0.002 and β1 = β2 = 0.9 is used. Like Dozat et al., the initial learning rate is decayed
every 5000 training steps using the following equation: 

   new learning rate=0.75∗current learning rate     

The model is saved every 100 training steps during the first 5000 training steps. Then, it is
saved  only  if  the  LAS  (Labeled  Attachment  Score)  accuracy  on  the  validation  data
increases. If validation LAS accuracy is not improved for 2500 consecutive training steps
the training process terminates. The best saved state of the model is eventually retained. 

Regular dropout (Srivastava et al., 2014) of 33% is applied throughout the entire
network,  but  variational  dropout  of  33%  and  50%  is  used  for  the  LSTM’s  input  and
recurrent connections respectively. The unidirectional LSTM of character-level embeddings
has 33% variational dropout for both input and recurrent connections. Furthermore, (entire)
word  and  tag  embeddings  are  dropped  independently  with  33%  probability.  If  one  is
dropped the other is scaled to compensate. If both are dropped then the whole input vector
is replaced with zeros.

Trainable word embeddings are defined for words that occur at least twice in the
training dataset. Rare words (that occur only once in the entire train dataset) are replaced
with  a  special  <UNK>  embedding.  Also,  if  a  word  does  not  exist  in  the  external
embeddings matrix its pretrainned embedding vector is set to zeros. A special <ROOT>
embedding  is  also  trained  since  an  artificial  root  word  is  added  to  the  start  of  each
sentence. Trainable word embeddings, POS and XPOS tag embeddings, bias terms and
final  linear layers are initialized to zeros. Character embeddings are initialized using a
Gaussian distribution with mean = 0 and variance = 1. All the other parameters, including
the  LSTM’s  and  MLP’s  hidden  layers  weights,  are  initialized  using  orthonormal
initialization.

Frequent word, character, POS and XPOS tags embeddings sizes are set to 100D.
Distance/direction  embeddings  are  set  to  32D.  Fasttext  pretrained  embeddings  have
original size of 300D and are squeezed to 100D via a linear projection layer (Wx + b).  The
1st BiLSTM has recurrent states of 200D and the 2nd BiLSTM has recurrent states of 400D.
The unidirectional LSTM of character embeddings has recurrent states of 400D. Finally,
the ReLU layers of the specialized head/dependent representations and the hidden state
of the scoring MLP all have size of 400D.
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4. Experiments

In this section we evaluate our systems and compare their performance with the
currently state-of-the art systems of Dozat et al. (2017). In both systems we first use the
baseline sentence splitter and tokenizer provided by the CoNLL 2017 shared task 5. Dozat
et al. use the same sentence splitter and tokenizer for their systems. Thus, we can made a
fair comparison between their systems and ours. The Universal dependencies treebanks
(version 2.1) are used for training, development and testing. Dozat et  al.  also use the
same version (2.1) of universal dependencies for the development and evaluation of their
systems. Universal Dependencies6 (UD) is a project that is developing cross-linguistically
consistent treebank annotation for many languages, with the goal of facilitating multilingual
parser  development,  cross-lingual  learning,  and  parsing  research  from  a  language
typology  perspective.  The  annotation  scheme  is  based  on  an  evolution  of  (universal)
Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal POS tags
(Petrov et  al.,  2012),  and the Interset  interlingua for  morphosyntactic  tagsets (Zeman,
2008).  The  general  philosophy  is  to  provide  a  universal  inventory  of  categories  and
guidelines to  facilitate  consistent  annotation  of  similar  constructions  across  languages,
while allowing language-specific extensions when necessary. Most of the UD languages
have train, development ant test treebanks. 

4.1 CoNLL-U format

Treebanks  are  stored  using  the  CoNLL-U  format  (figure  4.1).  Annotations  are
encoded in plain text files with three types of lines:

1. Word lines containing the  annotation of  a  word/token in  10 fields separated by
single tab characters.

2. Blank lines marking sentence boundaries.

3. Comment lines starting with hash (#).

Sentences consist of one or more word lines, and word lines contain the following fields:

1. ID: Word index, integer starting at 1 for each new sentence.

2. FORM: Word form or punctuation symbol.

3. LEMMA: Lemma or stem of word form.

5 http://universaldependencies.org/conll17/
6 http://universaldependencies.org/
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4. UPOS: Universal part-of-speech tag.

5. XPOS: Language-specific part-of-speech tag, underscore if not available.

6. FEATS: List of morphological features from the universal feature inventory or from a
defined language-specific extension, underscore if not available.

7. HEAD: Head of the current word, which is either a value of ID or zero (0).

8. DEPREL: Universal dependency relation to the HEAD (root iff HEAD = 0). 

9. DEPS: Enhanced dependency graph7 in the form of a list of head-deprel pairs. 

10.  MISC: Any other annotation.

The  following  figure  is  an  example  of  a  CoNLL-U  formatted  text  file  (source:
http://universaldependencies.org)

7 http://universaldependencies.org/u/overview/enhanced-syntax.html
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4.2 POS/XPOS tagger results

The following table compares our re-implementation of Dozat et al.’s POS/XPOS
tagger with the original system. As we can see our re-implementation is slightly inferior to
the original implementation. Such small differences can be attributed to different random
initialization of the model’s parameters. 

Dozat et al. tagger
Our re-

implementation

Language POS XPOS POS XPOS

Greek 97.74 97.76 97.66 97.63

Table 1: Comparison between Dozat et al.’s tagger and our re-implementation.

4.3 Dependency parser results

The table below summarizes the incremental improvement on Greek development
treebank after applying the modifications described in the Section 3.3.1.

Model UAS F1-score LAS F1-score

Dozat et al. re-implementation 89.75 87.81

Dozat et al. re-implementation (stacked
BiLSTMs)

90.13 88.17

Stacked BiLSTMs + joint arc-labels
predictions

90.20 88.54

Stacked BiLSTMs + joint arc-labels
predictions + distance/direction embeddings

90.66* 89.16*

Table 2: Results on the Greek development treebank.

Our final model that includes all the modifications we have described in the Section
3.3.1  has superior  performance compared to  our  Dozat  et  al.  re-implementation.  This
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superiority is statistically significant since both UAS and LAS p-values are equal to 0.001.
The  significance  tests  were  performed  using  a  web  tool8 for  dependency  parsing
evaluation  developed  by  Choi  et  al. (2015),  which  uses  McNemar's  test  to  detect
statistically significant differences.

The following table compares the performance of our parser with the Dozat
et al. parser. To be fair in comparisons we used the predicted POS/XPOS tags from the
Dozat et al. POS tagger as input to our parser. Both parsers make predctions based on
non-gold sentences and tokens. The test dataset is first preprocessed using the baseline
sentence splitter and tokenizer provided by the CoNLL 2017 shared task.

Dozat et al. parser Our parser

Language UAS LAS UAS LAS

Greek 89.73 87.38 90.44 88.32

Bulgarian 92.89 89.81 92.79 89.76

English 84.74 82.23 84.59 82.16

Dutch 85.17 80.48 83.63 79.13

Table 3: Comparison between Dozat et al.’s parser and our parser.

As we observe  our  model  is  superior  compared to  Dozat  et  al.’s  in  the  Greek
language, which is probably due to the fact that we focused mostly on Greek (e.g., model
selection was performed on the Greek development treebank). Furthermore, we achieve
near state-of-the art performance for English and Bulgarian which means that our model
performs really well across other languages as well. Thus, we can claim that the complex
biaffine transformation of Dozat et al.’s parser may not be necessary and a simpler model
that uses a joint arc-labels loss suffices.

8 https://emorynlp.github.io/dependable/evaluate.html
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In order to determine whether our parser is superior compared to Dozat et. al we
performed  significance  tests  using  Choi  et  al  .'s   (2015)  tool  for  dependency  parsing
evaluation. In the following table we report the performance of both parsers using gold
POS/XPOS tags, sentences and tokens. 

Dozat et al. parser Our parser P-values

Language UAS LAS UAS LAS UAS LAS

Greek 90.8 88.87 91.53* 89.69* 0.001 0.001

Bulgarian 94.55 91.19 95.23* 91.89* 0.001 0.001

English 91.17 89.36 91.34 89.49 0.5 0.5

Dutch 89.70* 86.54* 89.19 85.92 0.05 0.02

Table 4: Significance tests between Dozat et al.’s parser and our parser.

We observe that our parser has significantly superior performance on Greek (p-
value = 0.001) and Bulgarian (p-value = 0.001). On English, our parser achieves slightly
superior  performance but  no statistically  significant  difference was detected (p-value =
0.5). Finally, on Dutch Dozat et al.’s parser has significantly superior performance (p-value
= 0.05, 0.02 for UAS and LAS, respectively) compared to our parser.
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5. Conclusions and future work

5.1 Conclusions

The use of bi-directional LSTMs as feature encoders is a very effective method to
produce state-of-the art results for the tasks of POS tagging and dependency parsing.
Actually,  bi-directional  LSTM  networks  have  replaced  the  tedious  task  of  feature-
engineering that requires a lot of expertise. Through bi-directional LSTMs it is possible for
a model to learn complex non-linear future functions that can significantly enhance the
model’s performance.

POS  tag  embeddings  significantly  increase  the  performance  of  a  dependency
parsing model, as also reported by Dozat et al. (2017). Thus, we can claim that POS tags
remain a core future for dependency parsing models.

Including character-level word embeddings increases the performance in both POS
tagging and dependency parsing (Dozat et al.,  2017),  especially for morphological rich
languages.  Also,  aggressive  dropout  helps  to  reduce  overfitting  and  improves
generalization. LSTMs are very powerful models that are prone to overfit and thus dropout,
which is a well-established ensembling technique, helps to improve the generalization in
new unseen data.

In our work we have seen that even simpler dependency parsing models without
complex biaffine classifiers on top of the BiLSTM feature encoder can yield state-of-the art
or near state-of-the art performance. Also, including distance/directions embeddings as  an
extra input to our parser’s MLP score function boosts its performance. Back to the “linear
world”, distance and direction between a head and a modifier were fundamental features
for dependency parsing models. Although LSTMs were shown to be capable of learning
complex features (Karpathy et al., 2015), it seems that by adding distance and direction
information regarding the head-modifier pairs to our parser’s MLP score function improves
its performance.
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5.2 Future work

In this section we describe future work that may improve the performance of our
POS  tagging  and  dependency  parsing  systems.  First,  we  plan  to  include  ELMo
embeddings  (Embeddings from Language  Models)  as  input  to  both  of  our  models  as
described by Peters et al. (2018). ELMo embeddings are produced by deep bi-directional
language models (biLMs) that are trained in large corpora. ELMo word representations are
computed on top of two-layer biLMs with character convolutions, as a linear function of the
internal network states. Peters et al. report that the addition of ELMo representations alone
significantly improves the state of the art performance in various NLP tasks. Thus, the
addition  of  deep  contextualized  word  embeddings  may  improve  the  accuracy  of  our
systems.

Utilizing the FEATS tags that are included in the universal dependencies treebanks
as  an  extra  future  for  our  dependency  parser.  The  FEATS  tags  include  additional
information regarding morphological features such as gender, number, case etc. Adding
FEATS embeddings as input to our parser’s BiLSTM may boost its performance since the
additional  information  regarding  morphological  features  seems  useful  for  the  task  of
dependency parsing. For example, in a correct head-modifier arc of a noun (head) and a
determiner (modifier) the gender of both head and modifier should be matched. For this
purpose we will  also extend and retrain our POS tagging system to be able to predict
FEATS tags as well. 

Extending our model from the arc-factored (1st order) paradigm to higher order non-
projective parsing,  may enhance its performance.  The fact  that  our  model  is  relatively
simple, with a single cross-entropy loss over the joint heads/labels scores, facilitates its
extension to a higher-order parser. Since higher-order non-projective dependency parsing
is NP-hard an approximation algorithm will be utilized (Zhang   et al. 2012  ) for parsing.
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