
Department of Informatics

MSc in Computer Science

MSc thesis

“Exploring deep neural network models of syntax with a
focus on Greek ”

Emmanouil Kyriakakis

EY1604

Supervisors: Ion Androutsopoulos, Ryan McDonald

Athens, June 2018

Acknowledgments

I would like to thank my supervisors Ion Androutsopoulos and Ryan McDonald
for providing me the chance to get involved in a very interesting field of NLP and for their
valuable guidance throughout the development of my thesis. Also, I would like to thank
AUEB’s Natural Language Processing Group for the hardware resources they provided me
during the work of my thesis.

2

Abstract

Part-of-speech tagging (POS tagging) and dependency parsing are fundamental
syntax tasks in the field of Natural Language Processing. POS tagging is the process of
assigning a tag (e.g. noun, verb, etc.) to each word in a sentence. Dependency parsing
aims to automatically analyze the dependency structure of a sentence. This thesis involves
the implementation and evaluation of a POS tagger and a dependency parser, with a focus
on Greek. Both models utilize deep neural network architectures in order to produce state
of the art performance. Our POS tagger produces near state of the art performance in the
Greek language. Our dependency parser produces state of the art performance in the
Greek and near state of the art performance in English and Bulgarian.

3

Περίληψη

Η επισημείωση μερών του λόγου (part-of-speech tagging) και η εξαγωγή
συντακτικών δέντρων εξαρτήσεων (dependency parsing) είναι θεμελιώδεις συντακτικές
διεργασίες του πεδίου της Επεξεργασίας Φυσικής Γλώσσας (ΕΦΓ). Η επισημείωση μερών
του λόγου είναι η διαδικασία ανάθεσης ετικετών (π.χ ρήμα, ουσιαστικό, άρθρο κ.λπ.) σε
κάθε λέξη μίας πρότασης. Η εξαγωγή συντακτικών δέντρων εξαρτήσεων στοχεύει στην
αυτόματη ανάλυση της συντακτικής δομής μιας πρότασης. Στη διάρκεια της συγκεκριμένης
διπλωματικής εργασίας αναπτύξαμε και αξιολογήσαμε ένα μοντέλο επισημείωσης μερών
του λόγου, καθώς και ένα μοντέλο εξαγωγής συντακτικών δέντρων εξαρτήσεων
εστιάζοντας κυρίως στην ελληνική γλώσσα. Και τα δύο μοντέλα χρησιμοποιούν
αρχιτεκτονικές βαθέων νευρωνικών δικτύων (deep learning) που οδηγούν σε διεθνώς
ανταγωνιστικές επιδόσεις.

Η επίδοση του επισημειωτή μερών του λόγου που αναπτύξαμε είναι ελάχιστα
κατώτερη από την καλύτερη επίδοση που αναφέρεται στην βιβλιογραφία για την ελληνική
γλώσσα. Η επίδοση του μοντέλου μας για την εξαγωγή συντακτικών δέντρων εξαρτήσεων
είναι ανώτερη από την καλύτερη επίδοση που αναφέρεται στην βιβλιογραφία για την
ελληνική γλώσσα. Τέλος, το μοντέλο εξαγωγής συντακτικών δέντρων εξαρτήσεων που
αναπτύξαμε επιτυγχάνει ανταγωνιστικά αποτελέσματα σε σύγκριση με το καλύτερο
μοντέλο που αναφέρεται στην βιβλιογραφία για την αγγλική και την βουλγαρική γλώσσα.

4

Table of Contents
1. Introduction..6

1.1 Part-of-Speech tagging..6
1.2 Dependency parsing..7
1.3 Dependency trees..9
1.4 Projectivity..9
1.5 Graph-based parsing...10
1.6 Evaluation metrics...12

2. Related work...13
2.1 The parser of Kiperwasser et al...14

2.1.1 Input encoder..14
2.1.2 MLP score function, parsing and hinge loss objective...16

2.2 The parser of Dozat et al..17
2.2.1 Character-level embeddings...17
2.2.2 Input encoder and head/modifier ReLu layers...18
2.2.3 Biaffine arc/label classifiers...20
2.2.4 Training details...22
2.2.5 The POS/XPOS tagger of Dozat et al..22

3. Our work...25
3.2 POS/XPOS tagger..26

3.2.1 Input and Model architecture...26
3.2.2 Training details...27

3.3 Dependency parser...28
3.3.1 Neural architectures investigation..28
3.3.2 Input encoder and head/modifier ReLu layers...29
3.3.3 MLP score function..32
3.3.4 Parsing using Edmond’s decoder...33
3.3.5 Training details...34

4. Experiments..35
4.1 CoNLL-U format..35
4.2 POS/XPOS tagger results..37
4.3 Dependency parser results...37

5. Conclusions and future work..40
5.1 Conclusions...40
5.2 Future work...41

References..42

5

1. Introduction

In this chapter we describe briefly the Natural Language Processing (NLP) tasks of
part-of-speech (POS) tagging and dependency parsing. The dependency parsing section
draws heavily on terminology and characterizations outlined in the “Dependency parsing”
book (Kubler et al., 2009). POS tagging is a fundamental NLP task that assigns a tag to
each word in a sentence. Dependency parsing is another NLP task that aims to
automatically analyze the dependency structure of a given input sentence. A dependency
structure can be represented as a directed acyclic graph (DAG) where nodes and edges
correspond to words and dependency arcs respectively. We explain also the notion of
projectivity regarding the dependency structures. Finally, we focus on data-driven
dependency parsing approaches. These approaches include transition-based and graph-
based parsing algorithms.

1.1 Part-of-Speech tagging

POS tagging is the process of assigning a tag to each word in a sentence.
Sentence splitting and word tokenization are usually performed before, or as part of the
tagging process. Sentence splitting or sentence boundary disambiguation is an NLP task
that decides where sentences begin and end. Tokenization is the process of breaking up a
sentence into pieces (tokens) like words, punctuation symbols etc.

Tagging is a disambiguation task. Words are ambiguous since they have more than
one part-of-speech tags and the goal is to find the correct tag for each situation. For
example, the word book is a verb in the sentence “book that ticket” but a noun in the
sentence “read the green book”. The problem of POS tagging is to resolve these
ambiguities. A tagging algorithm takes as input a sequence of tokens and produces a
sequence of tags as output. Each token of the sentence is assigned a tag. Common
algorithms that are used for POS tagging include Hidden Markov Models (Eisner 1996),
Conditional Random Fields (Lafferty et al., 2002) and deep neural networks (Goldberg
2017).

POS tags are very useful because they encode a large amount of information
regarding a word and its neighbors. Knowing whether a word is a verb or noun gives us a
lot of information for the neighboring words. For example, nouns are preceded by
determiners and adjectives whereas verbs are usually preceded by nouns. Also, knowing
the POS tag of a word tells us a lot about the syntactic structure around the word. For
instance, nouns are usually parts of noun phrases.

6

The information encoded in POS tags is very useful for other NLP tasks such as
dependency parsing (Dozat et al., 2017), information retrieval (Chowdhury et al., 1993)
and speech synthesis (Ming et al., 2011). The POS tags influence the possible
morphological affixes and so can influence stemming for information retrieval. A POS tag
of a word is important for producing pronunciations in speech synthesis or recognition. For
example, the word content is pronounced differently when it is a noun (CONtent) and
differently when it is an adjective (conTENT).

1.2 Dependency parsing

Dependency representations of syntax are well established in the field of descriptive
linguistics, with many different formalisms such as Word Grammars (Hudson 1984), and
Meaning Text Theory (Mel’čuk 1987). The basic assumption of all dependency grammar
varieties is that syntactic structure consists of words linked by binary, asymmetrical
relations called dependency relations. In every dependency relation there is a word, called
the dependent, and another word on which it depends, called the head. The image below
depicts a dependency structure for a simple English sentence. Dependency relations are
represented by arrows pointing from the head to the dependent. Furthermore, each arrow
has a label, indicating the dependency type.

Dependency parsing has attracted considerable interest from researchers and
developers in the NLP field. One reason for this popularity is the fact that dependency-
based syntactic representations seem to be useful in other applications of language
technology, such as machine translation (Quirk et al., 2006). The task of a dependency
parser is to produce a labeled dependency structure (figure 1.1), where the words of the
sentence (including the artificial word ROOT) are connected by typed dependency
relations (e.g. object, subject etc). Thus, we can define the dependency parsing problem
as that of mapping an input sentence S, consisting of the words w0, w1, …., wn (where w0 is
the ROOT), to its dependency graph G.

7

ROOT Economic news had little effect on financial markets

PRED

SBJATT

PUNCT

OBJ

ATT ATT

PC

ATT

Figure 1.1: Dependency structure for an English sentence. Example from Kubler et al. (2009).

.

Figure 1.1: Dependency structure of an English sentence. Example from Kubler et al. (2009).

The approaches to solve the parsing problem can be divided into two classes, data-
driven and grammar-based respectively. A data-driven approach uses machine learning on
linguistic data in order to parse new sentences. A grammar-based approach relies on a
formal grammar, defining a formal language, in order to decide whether a given input
sentence is in the language defined by the grammar or not. Data-driven methods for
dependency parsing have attracted the most attention in recent years.

 Data-driven or supervised methods presume that the input sentences used for
machine learning have been annotated with their correct dependency structures. In
supervised dependency parsing, there are two different problems that need to be solved
computationally. The first is the learning problem, which is the task of learning a parsing
model from a representative sample of sentences and their dependency structures. The
second is the parsing problem, which is the task of applying the learned model in order to
parse a new sentence. So we can view supervised dependency parsing as two problems,
following the discussion of Kubler et al. (2009):

• Learning: Given a training set S of sentences (annotated with the correct
dependency structures), learn a parsing model M that can be used to parse new
sentences.

• Parsing: Given a parsing model M and a sentence s, derive the optimal
dependency graph G for s according to M.

The two main classes of data-driven methods are graph-based and transition-based
respectively.

Graph-based approaches define a space of candidate dependency graphs for a
sentence. The learning problem is to derive a model for assigning scores to the head-
modifier pairs. The aforementioned model will calculate (n+1)2 arc-scores for a sentence of
length n (+1 for the artificial word ROOT), i.e., the model will score every possible head-
modifier pair in the sentence. The parsing or decoding problem is the task of finding the
highest-scoring dependency graph for the input sentence, given the scores produced by
the learned model. This is often called maximum spanning tree parsing, since the problem
of finding the highest-scoring dependency graph is equivalent to the problem of finding a
maximum spanning tree in a dense graph.

Transition-based approaches is another paradigm that is well studied (Nivre et al.,
2008). Transition-based parsing has configurations and transitions between configurations.
A sequence of configuration-transition pairs defines a tree and the goal is to learn the
correct transitions out of configurations. The idea is that a sequence of valid transitions,
starting in the initial configuration for a given sentence and ending in one of several
terminal configurations, defines a valid dependency tree for an input sentence. There are
many instantiations for transition-based parsing but the most common is the shift-reduce
parsing technique (Shieber et al., 1983).

8

1.3 Dependency trees

 A common assumption is that valid dependency graphs are represented as trees.
Following the discussion of Jurafsky et al. (2017), a dependency tree is a graph G = (V, E),
where V is a set of vertices and E is a set of pairwise connections (arcs) of the vertices in
V. The number of vertices is equal to the number of words in a given sentence plus one
more vertex for the artificial word ROOT. The arcs of the set E capture the head-
dependent and grammatical function relationships between the vertices (words) in the V
set.

A valid dependency tree is a directed acyclic graph (DAG) that satisfies the
following constraints:

1. There is a unique ROOT node with no incoming arcs.

2. Each vertex has exactly one incoming arc.

3. There is a unique path from the ROOT node to each vertex (word) in V.

The aforementioned constraints ensure that each word has a single head word (incoming
arc) but a head word may have multiple dependent words (outgoing arcs). Also, the
dependency structure is connected and there is a unique root node from which there is a
unique directed path to every other vertex in the graph.

1.4 Projectivity

Projectivity is an additional constraint that is derived from the order of the words in a
given sentence. Following the discussion of Jurafsky et al. (2017), an arc from a head to a
dependent is projective if there is a path from the head to every other word that lies
between the head and the dependent in the sentence. If all arcs of a dependency tree are
projective then the dependency tree is projective. However, if a dependency tree has at
least one non-projective arc then the dependency tree is called non-projective. Below we
have drawn two dependency trees of English sentences that are projective (figure 1.2) and
non-projective (figure 1.3) respectively.

9

I prefer the yellow carROOT

root

nsubj

dobj

nmod

det

Figure 1.2: Projective English sentence.Figure 1.2: Projective English sentence.

As we can see in the first (projective) sentence all arcs satisfy the projectivity
constraint. In contrast, the second (non-projective) sentence has an arc from the head
flight to the dependent was that is non-projective since there is no path from the head
flight to the intervening words this and morning. In general, a dependency tree is projective
if it can be drawn with no crossing edges. In our example there is no way to connect flight
to its dependent was without crossing the arc that links morning to its head.

Our concern with projectivity arises mainly because there are computational
limitations regarding the transition-based approaches. Projectivity usually allows for
polynomial run time parsing algorithms.

1.5 Graph-based parsing

Graph-based dependency parsing approaches search through the space of
possible trees of a given sentence to find a tree (or trees) that maximize some score.
Graph-based methods encode the search space as directed graphs and sometimes utilize
methods from graph theory to search the space for optimal solutions. Unlike transition-
based methods that parametrize models over transitions used to construct a tree, graph-
based methods parametrize models over substructures of a dependency tree.

We can define a graph-based method through a model Μ =(λ , Γ , h) where λ is

the model parameters (we learn them during training), Γ is a set of constraints on
permissible structures and h is a parsing algorithm. Γ is simply a set of constraints that
force the model to produce well-structured dependency graphs (spanning trees originated
from a unique root).

A fundamental part of graph-based parsing systems is the notion of the score of a

dependency tree G=(V , E)∈Gs , where Gs is the set of all possible trees for a sentence

s :

score(G)=score(V , E)∈ℝ

10

ROOT Aegean which was already latecanceled our flight this morning

root

nsubj det

dobj

mod

nmod

det case

mod

adv

Figure 1.3: Non-projective English sentence. Example from Jurafsky et al. (2017).Figure 1.3: Non-projective English sentence. Example from Jurafsky et al. (2017).

This score (real value) represents how likely it is that a particular tree is the correct
analysis of the sentence s . The fundamental property of graph-based parsers is that this
score is assumed to factor through the scores of sub-graphs of G :

score(G)=f (Ψ 1, Ψ 2, ... ,Ψ n)∀Ψ i∈Ψ G

The function f is some function over sub-graphs Ψ and ΨG represents the relevant set of
subgraphs of G. Most commonly, the function f is equivalent to a summation over factor
parameters and the score formula can be rewritten as:

score (G)= ∑
Ψ ∈Ψ G

φΨ

The most common graph-based approach is the arc-factored models which use the
smallest and most basic parametrization over single dependency arcs. We can define arc-
factored models for a given dependency tree G=(V ,E) as follows:

1. Ψ G=E

2. φΨ =φ(w i, r , w j)
∈ℝ∀(wi , r , w j)∈E

Thus, arc-factored models assign a real value parameter to every labeled arc in the tree.
So we can rewrite the score formula as follows:

score (G)= ∑
(w i ,r , w j)∈E

φ (wi , r , w j)

With φ(wi , r , w j) we denote the score that the model assigns to the dependency arc

(w i , r , w j) .

To solve the parsing problem we need an algorithm that finds the tree whose arc
scores sum to the maximum value. We can define the parsing (decoding) function as:

h(S , Γ , λ)=argmaxG=(V , E)∈GS
∑

(w i ,r . w j)∈E

φ (w i , r , w j)

The argmax problem is equivalent to find the maximum spanning tree with the additional
constraint that one tree node (root) should have no incoming edges in order to form a valid
dependence tree.

There are two polynomial time algorithms to solve the parsing problem. First,
Eisner’s decoder (Eisner 1996) which is a CKY-like O(n3) dynamic programming algorithm
that is used for projective dependency parsing. Second, in order to parse non-projective
sentences we can use Edmond’s decoder (Chu and Liu, 1965 and Edmonds, 1967) which
finds the maximum spanning tree over all possible spanning trees of a sentence with O(n 3)
complexity. Given a sentence of length n we first select the n-1 highest-scored arcs. If
there is no cycle on the selected arcs we are done. If a cycle is detected we contract it by
merging in a new node all the nodes that it contains. We also recalculate the ingoing and
outgoing arcs for the newly created node and keep pointers to the original arcs. We
recursively repeat the same procedure until we find a solution with no cycles. Then, we

11

can backtrack using the pointers we have stored during cycle(s) contraction and find the
edges of the maximum spanning tree.

Beyond the 1st order arc-factored models where each head-modifier arc is assumed
to be independent other higher-order factorizations have been investigated in the
literature. Though arc-factored models are appealing computationally, they are not justified
linguistically as their underlying arc independence assumption is simply not valid. For the
purpose of this thesis, though, we focus on 1st order arc-factored models that are the most
commonly used.

1.6 Evaluation metrics

In order to evaluate the performance of a dependency parser, we compare the
produced output of the parser on a test treebank with the gold standard annotation found
in the treebank. The two most commonly used evaluation metrics are:

• Unlabeled Attachment Score (UAS): the percentage of words in an input that are
assigned the correct head.

• Labeled Attachment Score (LAS): the percentage of words in an input that are
assigned the correct head and the correct dependency relation.

12

2. Related work

The creation of the tagged Brown Corpus and the Penn treebank (Marcus et al.,
1993) led to a number of advances in POS tagging. The Brill tagger (Brill 1992) was an
early accurate rule based system, that used a form of machine learning (called
“transformation based learning”) to learn its rules. The Ratnaparkhi tagger (Ratnaparkhi
1996) was one of the first linear discriminative models (maximum entropy/logistic
regression) that utilized rich features to predict POS tags. Furthermore, the TnT tagger
(Brants 2000) was a generative HMM model. These taggers were highly used for years,
with the Stanford tagger (Toutanova et al., 2003) probably being close to the state-of-the
art for a decade.

The first statistical models for dependency parsing that were not based on context-
free grammars (CFG) were proposed by Eisner (1996). Eisner developed three different
probabilistic models for dependency parsing and an efficient O(n3) dynamic programming
parsing algorithm. He presented a flexible probabilistic parser that simultaneously
assigned both POS tags and a bare-bones dependency structure. Each word was linked to
a single parent and the head of the sentence was linked to the EOS (end of the sentence).
Crossing links and cycles were not allowed.

Arc-factored discriminative linear models with rich features were proposed by
McDonald et al. (2005a). The proposed arc-factored model had a rich feature set including
word and POS tag information for parent and child nodes, POS tag information of the
surrounding and between parent-child nodes and distance/direction information of parent-
child dependencies. Eisner’s parsing algorithm was used for parsing. The same year,
McDonald et al. (2005b) formalized weighted dependency parsing as searching for
maximum spanning trees (MSTs) in directed graphs. The Chiu-Liu-Edmonds algorithm was
utilized for MST extraction. The proposed MST parsing algorithm was capable of non-
projective dependency parsing in contrast to Eisner’s algorithm that can produce only
projective dependency structures.

In subsequent work McDonald et al. (2006, 2007) investigated several non-
projective parsing algorithms for dependency parsing, providing novel polynomial time
solutions under the assumption that each dependency decision is independent of all the
others (arc-factored models). Furthermore, they also investigated higher-order non-
projective algorithms and found that exact non-projective dependency parsing is
intractable for any model richer than the edge-factored model (1st order), but the
intractability can be circumvented with new approximate parsing algorithms.

Koo et al. (2010) presented algorithms for higher-order projective dependency
parsing. The proposed parsers utilized both sibling-style and grandchild-style interactions
and were efficient since they required O(n4) time. From 2011 until Kiperwasser et al.’s

13

(2016) model most of the field focused on incremental improvements to graph-based
parsing and on multilingual and low-resource parsing.

2.1 The parser of Kiperwasser et al.

To the best of our knowledge Kiperwasser et al. (2016) were the first that utilized
LSTMs as feature extractors for the task of dependency parsing. They presented a
transition-based and a graph-based approach for dependency parsing using bidirectional
LSTMs as feature extractors. The aforementioned architecture was then used by many
other authors as the backbone for the development of their dependency parsing systems.
The reported results of their transition-based and graph-based implementations on English
and Chinese treebanks were almost the same. We have chosen to present their graph-
based approach since graph-based approaches can parse also non-projective sentences
which is very important for highly non-projective languages like Greek.

2.1.1 Input encoder

Traditional first-order graph-based parsers use a core of features that usually take
into account the word and the POS tag of the head and the modifier, as well as POS-tags
of the words around the head and the modifier, POS tags of the words between the head
and the modifier and the distance and direction between the head and the modifier. In the
literature there are such feature sets based on hand-crafted feature functions. But, feature-
engineering is a tedious task that requires a lot of expertise in the domain of the specific
task. Kiperwasser et al.’s model attempts to alleviate parts of the feature function design
problem by moving to neural network models using recurrent inputs, enabling the modeler
to focus on a small set of “core” features and leaving it up to the machine-learning
machinery to come up with good feature combinations. The proposed feature extractors

are based on bidirectional LSTMs that take into account both the past x1: i and the future

x i: n elements regarding the ith element of a sequence (sentence). Long short-term

memory (LSTM) is a specific type of recurrent neural network (RNN) that can learn longer-
term dependencies. For example, given an n-words input sentence s with words

w1,w2, ,wn together with the corresponding POS tags t1 , t2 ,, t n . Each word wi and

POS tag ti are associated with embeddings vectors e(wi) and e(ti) respectively. A sequence
of input vectors x1:n is created where xi is the concatenation of the corresponding word and
POS tag embeddings:

14

x i= e (w i)⊕e (t i)

The embeddings are trained together with the model. This encodes each word and POS
tag in isolation disregarding its context. The word and POS tag embeddings
concatenations are fed into the BiLSTM network (figure 2.1) in order to acquire a deep
context-aware encoding for each word in the sentence.

The BiLSTM network is a stack of a forward and a backward LSTM. The only
difference between the forward and the backward LSTM is the order in which the input
vectors are fed. The forward LSTM consumes sequentially the input vectors. In contrast,
the backward LSTM consumes the same input vectors but in reversed order. At each time
step, the LSTM is fed with one input vector that corresponds to a word in the sentence and
produces a hidden vector for the next time step and an output vector. Also, at each time
step the LSTM’s memory cell is updated. When the entire sentence is consumed from the
LSTMs the output vectors are concatenated in order to get a deep context-aware encoding
for each word in the sentence.

15

<ROOT> ROOT . Punct

.....

.....

.....

.....

.....

Input embeddings

Fwd LSTM

Bwd LSTM

Encodings concatenation

Figure 2.1: The input BiLSTM encoder of Kiperwasser et al. (2016).

The special <ROOT> token is treated as the first word of the sentence.

Figure 2.1: The input BiLSTM encoder of Kiperwasser et al. (2016). The special <ROOT>
token is treated as the first word of the sentence.

2.1.2 MLP score function, parsing and hinge loss objective

Given a sentence of length n there are n2 possible head-modifier pairs. Each
possible head-modifier pair is scored (figure 2.2) via a multilayer perceptron (MLP) with
one hidden layer using the following formula:

 score (h , m)=W 2 tanh(W 1 [v (h)⊕v (m)]+b1)+b2

The input to the MLP is the concatenation of the BiLSTM’s encodings that correspond to
the head and modifier words. Head-modifier relation labels are scored in a similar manner
using the same encodings but a different MLP. The MLP produces a score for every label
in the set of labels (figure 2.2).

Given the produced by the model arc scores for all the possible head-modifier pairs

of a sentence s, the highest-scoring dependency tree y in the space Y(s) of valid

dependency trees of S should be selected during parsing. The parsing process
decomposes the score of a tree to the sum of the score of its head-modifier arcs (h,m)
using the formula:

 parse(s)=argmax y∈Y (s) ∑
(h ,m)∈y

score(h ,m)

The model utilizes Eisner’s decoding algorithm to extract the highest-scoring projective
tree during test time.

During training time a margin-based objective is defined. The goal is to separate the

score of each gold (correct) tree y from the score of the highest-scoring incorrect tree y',

16

MLP

modifier i head j

Edge j --> i score

MLP

Label scores [] for j --> i

modifier i head j

Figure 2.2: Scoring arcs and labels in the system of Kiperwasser et al. (2016).

such that the former score will be higher than the latter and there will be at least a margin

(set to 1) between them. The following hinge loss with respect to a gold tree y is used:

 loss=max(0,1− ∑
(h ,m)∈y

MLP(vh⊕vm)+max y '≠ y ∑
(h, m)∈ y '

MLP (v h⊕vm))

The BiLSTM-produced encodings for the head (vh) and the modifier (vm) are used as input.

A similar margin-based hinge loss is used for the labels. A different scoring function
(MLP) but the same BiLSTM-produced encodings for the head (vh) and the modifier (vm)
are used. The label loss is computed using the gold tree arcs rather than the predicted-
ones. Both arc and label losses are optimized together. This can be seen as an instance of
multitask learning. Training the BiLSTM feature encoder to be also good at predicting arc-
labels significantly improves the parser’s unlabeled accuracy.

2.2 The parser of Dozat et al.

To the best of our knowledge the graph-based parser of Dozat et al. (2017) holds
the state-of-the art performance (May 2018) for the majority of universal dependency
treebanks. This parser utilizes a deep BiLSTM feature encoder and two biaffine classifiers
for the arcs and the labels respectively. As input the model uses word and POS tag
embeddings. During test time the model utilizes a state-of-the-art POS tagger also
developed by Dozat et al. (2017) to obtain predictions for POS and XPOS tags. Dozat et
al. showed that a better POS tagger improves the performance of a dependency parser.

2.2.1 Character-level embeddings

For most of the languages, especially those with rich morphology, adding a
representation made from sequence of characters improves the performance of POS
tagging and dependency parsing tasks (Dozat et al., 2017). A word is represented as a
sequence of its characters including a special start and end symbol. For example, the
word dog is represented as the sequence of the following characters: <w>, d, o, g, </w>.
Each character is associated with a trainable vector embedding and a sequence of
character embeddings that represents a word is fed to a unidirectional LSTM. A common
practice in the literature is to use the last hidden state of the LSTM as the character-based
representation of the word. Dozat et al. use a different approach (figure 2.3) that combines

17

all the recurrent states produced by the LSTM using an attention mechanism and the final
LSTM’s cell state as well. More specifically, a linear attention over the stack H of the
recurrent/hidden states (viewed as columns of H) produced by the LSTM is computed and
concatenated to the final LSTM’s cell state Cn. The produced vector is then projected to
the desired dimension using a linear projection layer. The following formulas are used:

a=softmax (H w(attn))

 ~
h=HT a

v̂=W (~h⊕C n)+b

2.2.2 Input encoder and head/modifier ReLu layers

The model of Dozat et al. uses as input the concatenation of word and POS tag
embeddings (figure 2.4) for each word in a sentence. The word embeddings are
constructed using the element-wise summation of trainable word embeddings, pretrained
word embeddings and trainable character-level word embeddings (Section 2.2.1). The
POS tag embeddings are constructed using the element-wise summation of the trainable
POS (universal) and XPOS (language-specific) tag embeddngs. A sequence of input
vectors x1:n is created where xi is the concatenation of the word and POS tag embeddings.

 x i=v i
(word)⊕vi

(tag)

18

<w> u o n </w>

LSTM

Char embeddings

Attention + last cell state

n i

Figure 2.3: Producing word embeddings from character embeddings in the model of Dozat et al.Figure 2.3: Producing character-level word embeddings in the model of Dozat et al. (2017).

The use of pretrained word embeddings is a form of transfer learning that is
commonly used in order to boost the performance in various NLP tasks. Pretrained word
vectors are usually trained in large corpora like Wikipedia or/and Common Crawl. Dozat et
al. use 100D word2vec (Mikolov et al., 2013) pretrained (on Wikipedia and Common
Crawl) word embeddings1.

Dozat et al.’s parser utilizes a deep BiLSTM feature encoder (figure 2.5) to learn
non-linear features for dependency parsing. More concretely, given an n-words input

sentence s with words w1,w2, ,wn a sequence of input vectors x1 , x2 , , xn is derived

from the concatenation of the respective words and tags embeddings. The input vectors
are fed to a forward and a backward LSTM of depth three. Constructing deeper LSTMs is
pretty straightforward since the output of a layer is fed as input to the next layer. The
produced encodings of the forward and the backward LSTM are concatenated for every

word in the sentence: v1 : n=v
→

1 : n⊕v
←

1: n .

The concatenated encodings are fed through four separate fully connected ReLU
layers (leaky ReLu activation with a=0.1), producing four specialized vector
representations: one for the word as a dependent seeking its head, one for the word as a
head seeking all its dependents another for the word as a dependent deciding on its label
and a fourth for the word as head deciding on the labels of its dependents. The Leaky
ReLu is one of the most commonly used activation functions. Its definition is given by the
formula: f (x)=max (ax , x) . The formulas below are used for the ReLu layers:

 hi
(arc−head)=LReLu(W 1 v i+b1)

 hi
(arc−dep)=LReLu(W 2 vi+b2)

1 Pretrained w2v embeddings are provided by the CoNLL 2017 Shared Task:
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989

19

Word embeddings

Token Pretrained Character

Input word embedding

POS embeddings

POS/XPOS embedding

POS XPOS

Figure 2.4: BiLSTM input vector of Dozat et al.'s parser (2017).Figure 2.4: BiLSTM input vector of Dozat et al.'s parser (2017).

 hi
(rel−head)=LReLu(W 3 v i+b3)

 hi
(rel−dep)=LReLu(W 4 vi+b4)

2.2.3 Biaffine arc/label classifiers

In order to predict an arc from a modifier i to a head j, all arcs from the modifier i to
every possible head should be scored. A biaffine classifier is used based on the following
formula:

 s i
(arc)=H (arc−head)W (arc)hi

(arc−dep)+H (arc−head)bT (arc)

H(arc-head) is the stack of all vectors of the sentence that are produced by the arc-head ReLu
layer. The biaffine formula produces a score for each possible head j for the modifier i.
Then, the head j with the highest score is predicted for the modifier i forming the edge i→j:

y i
(arc)=argmax j sij

(arc) . Note that both biaffine formula’s terms have an intuitive interpretation.

20

<ROOT> ROOT . Punct

.....

.....

.....

.....

.....

Input embeddings

Fwd LSTM

Bwd LSTM

Encodings concatenation

Head & modifier
arc/label ReLu layers

Figure 2.5: The input BiLSTM encoder of Dozat et al.'s parser (2017).Figure 2.5: The input BiLSTM encoder of Dozat et al.'s parser (2017).

The first relates to the probability of word j being the head of word i given the information in
both the vector of the head and the vector of the dependent (modifier). The second term
relates to the probability of word j being the head of word i given only the information in the
head’s vector.

 After predicting the head j for the word i, another biaffine transformation is used to
predict the relation label of the arc. This time the (rel) hidden vectors are used to predict a

label. Given that we have already predicted the head (as y i
(arc)), we now consider only the

vector of that particular head (and the vector of the dependent), but we output a score for
each possible label of the edge. The following formula is used:

 s i
(rel)=hy i

(arc)
T (rel−head)U (rel)hi

(rel−dep)

 +W (rel)(hi
(rel−dep)⊕hy i

(arc)
(rel−head))+b(rel)

The biaffine formula produces a score for every possible relation label regarding the edge

i→j. The relation with the highest score is then predicted: y i
(rel)=argmax j s ij

(rel) . Again, each

term of the biaffine formula has an intuitive interpretation. The first term relates to the
probability of observing a label given the information in both the vector of the head and the
vector of the dependent. The second term relates to the probability of observing a label
given each one of the two vectors (for the head and dependent) independently, and the
last bias term relates to the prior probability of observing a label.

21

arc-dep i arc-head j

Edge j --> i score

Arc biaffine formula

rel-dep i rel-head j

Label scores [] for j -->i
Label

biaffine formula

Figure 2.6: Scoring arcs and labels using biaffine classifiers in the system of Dozat et al. (2017).Figure 2.6: Scoring arcs and labels using biaffine classifiers in the system of Dozat et al. (2017).

2.2.4 Training details

The biaffine classifiers are trained jointly using cross-entropy losses that are
summed together during optimization. Note, that in contrast to Kiperwasser et al.’s parser
that uses the gold tree to train the label classifier, Dozat et al.’s. parser uses the predicted
arcs to train the biaffine label classifier. The model uses Adam (Kinigma et al., 2015) as
optimization algorithm. Adam (Adaptive Moment Estimation) computes adaptive learning
rates for each parameter incorporating exponentially decaying average of past squared
gradients and gradients, similar to momentum.

During training variational dropout (Gal and Grahami, 2016) of 33% is used through
the entire network. Regarding the LSTM’s regularization both input and recurrent units are
dropped. In variational dropout the same dropout mask is used across the
sequence/sentence. Furthermore, the (entire) word and tag embeddings are dropped
independently with probability 33%. When one is dropped the other is scaled up to
compensate. When both embeddings are dropped, the entire input vector is replaced with
zeros. This additional dropout prevents the model from heavily relying on either word or
tag embeddings.

The model is trained for up to 30000 steps, where one step/iteration is a single mini-
batch with approximately 5000 tokens. First the model is saved every 100 steps if fewer
than 1000 iterations have passed, and afterwards is saved only if validation accuracy
increases. When 5000 training steps pass without improving on validation accuracy, the
training terminates. The best saved state of the model is eventually retained.

2.2.5 The POS/XPOS tagger of Dozat et al.

Dozat et al. also proposed a POS tagger with similar architecture that achieves
state of the art (SOTA) performance in the majority of the universal dependencies
treebanks. Greek is one of the languages that they report SOTA performance in both
universal part-of-speech tags (POS tags) and language-specific part-of-speech tags
(XPOS tags). XPOS tags contain language-specific part-of-speech tags, normally from a
traditional, more fine-grained tagset. Universal POS tagset is shared across all the
languages. In contrast, XPOS tagsets are unique for each language and may contain
additional information regarding gender, case etc.

 The POS/XPOS tagger includes a BiLSTM feature encoder similar to their
dependency parser. The BiLSTM-produced encodings are fed to two different MLPs that
predict POS and XPOS tags respectively. Given an n-words input sentence s with words

22

w1,w2, ,wn each word wi is associated with a trainable word embedding e(w i), a

pretrained word embedding p(wi) and a trainable character-level word embedding c(w i)
(Section 2.2.1). A sequence of input vectors x1:n is created where xi is the element-wise
summation of the aforementioned embeddings (figure 2.7):

 x i= e (w i)+ p (w i)+c (wi)

The sequence of constructed input vectors x1:n is fed to the BiLSTM encoder. The BiLSTM
is made of a forward and a backward LSTM of depth two. The produced encodings of the
forward and the backward LSTMs are concatenated and every word of the sentence is

represented by a deep context-aware representation: v1 : n=v
→

1 : n⊕v
←

1: n. Two different MLPs

with one hidden layer, activated using the leaky ReLu function (a=0.1), are used to predict
the POS and XPOS tags scores respectively.

 scorei
(POS) []=W 2(LRelu(W 1 v i+b1)+b2)

 scorei
(XPOS)[]=W 4 (LRelu(W 3 v i+b3)+b4)

The model predicts the POS and XPOS tags with the highest score.

Both POS and XPOS classifiers are trained jointly using cross-entropy losses that
are summed together during optimization. POS and XPOS classifiers share the same
BiLSTM and embeddings parameters which enables multitask learning. During training
variational dropout of 33% is applied throughout the whole network. On the recurrent
connections of the LSTMs the dropout is increased to 50%. The figure 2.8 demonstrates
the overall model’s architecture.

23

Embeddings

Character

Input word embedding

Token Pretrained

Figure 2.7: BiLSTM input vector in the Dozat et al.'s POS/XPOS tagger.Figure 2.7: BiLSTM input vector in the Dozat et al.'s POS/XPOS tagger
(2017).

24

<ROOT> .

.....

.....

.....

.....

.....

POS MLP POS MLP XPOS MLP

ROOT ROOT PUNCT PUNCT

Word embeddings

Fwd LSTM

Bwd LSTM

Encodings concatenation

 XPOS MLP

Figure 2.8: The input BiLSTM encoder of Dozat et al.'s POS/XPOS tagger (2017).

Figure 2.8: The input BiLSTM encoder of Dozat et al.'s POS/XPOS tagger (2017).

3. Our work

Our systems are implemented in Python using the DyNet2 (Neubig et al., 2017)
framework. DyNet is a deep learning framework that builds the computational graph on the
fly. In contrast, static graph deep learning frameworks like Tensorflow3 and Theano4 first
define a computation graph, and then examples are fed into the graph. Building a
computational graph on the fly facilitates the implementation of more complicated network
architectures and is also very helpful for NLP tasks where sentences have different
lengths. The source code of our POS tagger, dependency parser and DyNet re-
implementation of Dozat et al.’s parser can be found on the following repositories
https://bitbucket.org/makyr90/tagger, https://bitbucket.org/makyr90/simple-parser,
https://bitbucket.org/makyr90/biaffine_parser.

At the heart of our systems lies our LSTM cell implementation. We use standard
LSTMs with uncoupled input, forget gates and no forget bias, following the equations
below:

it=sigmoid(W ix x t+W ih ht−1+b i) (1)

f t=sigmoid(W fx x t+W fh ht−1+bf) (2)

ot=sigmoid(W ox x t+W oh ht−1+bo) (3)

~c = tanh(W cx x t+W chh t−1+bc) (4)

c t =c t−1⊙ f t +~c ⊙ it (5)

ht = tanh (c t)⊙ o t (6)

Equations 1-3 compute the input, forget and output gates respectively. Equation 4
computes the candidate cell state. Finally, equations 5 and 6 compute the new cell state
and the hidden state respectively. This LSTM version is very efficient since input, forget,
output gates and candidate cell state can be computed in one affine transformation. Then,
sigmoid activation is applied to the gates and tanh activation to the candidate cell state.

2 http://dynet.io/
3 https://www.tensorflow.org/
4 http://deeplearning.net/software/theano/

25

https://bitbucket.org/makyr90/biaffine_parser
https://bitbucket.org/makyr90/simple-parser
https://bitbucket.org/makyr90/tagger/src

3.2 POS/XPOS tagger

Our POS tagger is actually a re-implementation of Dozat et al.’s POS/XPOS tagger
in the DyNet framework. Although we have tried different architectures and hyper-
parameter setups we could not surpass the performance of Dozat et al.’s tagger. The fact
that it achieves excellent results, with F1-score of approximately 97.7% for both POS and
XPOS tags in the Greek test treebank made it extremely difficult for us to beat its
performance. Our tagger re-implementation utilizes fasttext pretrained word embeddings
(Bojanowski et al., 2016) instead of the word2vec pretrained word embeddings used by
Dozat et al.

3.2.1 Input and Model architecture

Similar to Dozat et al.’s tagger our model takes as input trainable, pretrained
(fasttext) and character-level word embeddings. Fasttext embeddings are trained similarly
to word2vec embeddings using the skipgram model. In contrast to the word2vec model
where every word is represented solely by the word itself, fasttext learns representations
for character n-grams, and represents words as the sum of their n-gram vectors. The
aforementioned technique is an extension of the skipgram model that takes into account
sub-word information. For example the word vector “apple” is a sum of the vectors of the
n-grams “<ap”, “app”, ”appl”, ”apple”, ”apple>”, “ppl”, “pple”, ”pple>”, “ple”, ”ple>”, ”le>”,
assuming the hyper-parameters for the smallest and largest n-grams are set to 3 and 6,
respectively. One advantage of fasttext embeddings is their ability to generate better word
embeddings for rare words. Even if words are rare their character n-grams are still shared
with other words and hence the produced embeddings can still be good.

Given an n-words input sentence s with words w1,w2, ,wn each word wi is

associated with a trainable word embedding e(w i), a pretrained (fasttext) word embedding
f(wi) and a trainable character-level word embedding c(w i) (Section 2.2.1). A sequence of
input vectors x1:n is created where xi is the element-wise summation of the aforementioned
embeddings:

 x i= e (w i)+ f (wi)+ c (wi)

The input vectors are fed to a BiLSTM encoder of depth 2 and the produced
encodings are used by two different MLPs with one hidden layer in order to predict POS
and XPOS tags as described in the Section 2.2.5.

26

3.2.2 Training details

Our POS tagger is trained for up to 30000 training steps. Each training step is a
mini-batch of approximately 5000 tokens. The Adam optimizer with initial learning rate =
0.002 and β1 = β2 = 0.9 is used. Like Dozat et al., the initial learning rate is decayed every
5000 training steps using the following equation:

 new learning rate=0.75∗current learning rate

The model is saved every 100 training steps during the first 1000 training steps. Then, it is
saved only if the accuracy on the validation data increases. If validation accuracy is not
improved for 5000 consecutive training steps the training process terminates. The best
saved state of the model is eventually retained. Variational dropout of 33% is used
throughout the whole network including the LSTM’s input and recurrent states. For the
LSTM’s recurrent connections the dropout is increased to 50%.

Trainable word embeddings are defined for words that occur at least twice in the
training dataset. Rare words (that occur only once in the entire train dataset) are replaced
with a special <UNK> embedding. Also, if a word does not exist in the external
embeddings matrix its pretrainned embedding vector is set to zeros. A special <ROOT>
embedding is also trained since an artificial root word is added to the start of each
sentence. Trainable word embeddings, bias terms and final linear layers are initialized to
zeros. Character embeddings are initialized using a Gaussian distribution with mean = 0
and variance = 1. All the other parameters, including the LSTM’s and MLP’s hidden layers
weights, are initialized using orthonormal initialization (Saxe et al., 2014).

Frequent word and character embeddings sizes are set to 100D. Fasttext pretrained
embeddings have an original size of 300D and are squeezed to 100D via a linear
projection layer (Wx + b). The weights of the fasttext embeddings projection are
regularized using L2 regularization. The BiLSTM has recurrent states of 200D while the
LSTM of character-level word embeddings has recurrent states of 400D. Finally, the POS
and XPOS MLPs have hidden states of 200D.

27

3.3 Dependency parser

For our dependency parser we investigated various architectures with a focus on
the Greek language. We have re-implemented Dozat et al.’s parser in the DyNet
framework and experimented with various architectures, including a stack of two shallow
Bi-LSTMS instead of one deep BiLSTM, a joint arc-label score function and the addition of
distance/direction embeddings as an extra input to the joint arc-label score function. Our
target was to develop a parser capable to produce state-of-the art performance and as
much simple as possible.

3.3.1 Neural architectures investigation

In our re-implementation of Dozat et al.’s parser we have compared (in the Greek
development treebank) the performance between a three layers deep BiLSTM encoder
(Dozat et al.) and a stack of two shallow (depth=1) BiLSTMs. Both UAS and LAS F1-
scores were better using the stack of two BiLSTMs. Another advantage of the
aforementioned modification was that the stacked BiLSTMs encoder requires ~16% less
parameters and thus it is faster and less memory intensive during training. The main
difference between a stack of n shallow BiLSTMs and a single n-layers deep BiLSTM is
the way that forward and backward LSTM states are concatenated. In a single n-layers
deep BiLSTM the forward and backward LSTM states are concatenated only in the last n th

layer. In contrast, each of the stacked BiLSTMs receives as input the concatenation of the
forward and backward LSTM states of the previous BiLSTM.

Our next step was to eliminate the biaffine classifiers. We kept only two specialized
representations produced by the BiLSTM encodings, instead of the four in the original
Dozat et al. model. One specialized representation for the word as head seeking all of its
dependents and another for the word as dependent seeking its head. Both arcs and labels
are predicted using the same (two) types of vectors. We have tried both concatenation and
element-wise summation of the head-modifier representations before feeding them to the
MLP score function. Both options produced similar results in the Greek development
treebank but, the element-wise summation was faster and required less resources. Instead
of biaffine classifiers, we used a single MLP with two hidden layers in order to produce
labeled arc scores (joint arc-label predictions) for the head-modifier pairs. A single cross-
entropy loss of joint arcs-labels was optimized during training.

Since both the parsers of Dozat et al. and Kiperwasser et al. do not use anything
like traditional linear features and rely on the BiLSTM encoders exclusively as features, we
decided to add distance/direction information as an extra feature to our MLP score

28

function. Distance and direction between the head and the modifier were core features
(McDonald et al., 2005) for the linear graph-based parsers. Distance defines how far a
modifier is from its head in a sentence. We can define the distance as the number of
words that lies between the head and the modifier. Direction declares if a modifier lies
before (right arc) or after (left arc) its head in the sentence. Each head-modifier pair in a
sentence has a distance/direction score. The sentence in the figure 3.1 is annotated with
the distance/direction scores of its head-modifier pairs.

Our parser utilizes distance and direction information regarding the head-modifier
pairs using embeddings for buckets (particular ranges) of distance/direction scores. The
vast majority (~94%) of the head-modifier distance/direction scores in the Greek universal
dependencies train treebank lies in the range of [-10,10]. Thus, we have decided to include
distance/direction embedding buckets in the aforementioned range. When a
distance/direction score of a head-modifier pair lies in the range of [-10,10] the embedding
(of the corresponding bucket) is retrieved from the distance embeddings lookup matrix. If
the distance/direction score does not lie in the aforementioned range, the -10 and 10
embeddings (of the corresponding buckets) are selected for the negative and positive
distance/direction scores respectively.

3.3.2 Input encoder and head/modifier ReLu layers

 Similar to Dozat et al. parser our model takes as input word and POS tag
embeddings (figure 3.2). The word embeddings are constructed using the element-wise
summation of trainable embedding vectors, pretrained word vectors (fasttext) and trainable
character-level word embeddings (Section 2.2.1). The POS tag embeddings are
constructed using the element-wise summation of the trainable POS and XPOS
embeddngs. A sequence of input vectors x1:n is created where xi is the concatenation of the
word and POS tag embeddings.

29

I prefer the yellow car

1

-3

1

2

Figure 3.1: Distance/direction scores.
Figure 3.1: Distance/direction scores.

 x i=[e (w i)+ f (w i)+c (wi)]⊕[e (t i
POS)+e(ti

XPOS)]

Our parser utilizes a stack of two BiLSTMs as encoder (figure 3.3). Each BiLSTM is
composed by a forward and backward LSTM, both of depth 1. The encodings
(concatenated forward and backward states) of the first BiLSTM are fed to the second
BiLSTM that produces the final encodings. More concretely, given an n-words input

sentence s with words w 1 , w 2 , , wn a sequence of input vectors x1 , x2 , , xn is derived

from the concatenation of the respective words and tags embeddings. The input vectors
are fed to the forward and the backward LSTM of the first BiLSTM. The produced
encodings of the forward and the backward LSTM are concatenated for every word in the

sentence: v1 : n
1 =v

→

1 : n
1 ⊕v

←

1: n
1 . The produced sequence of encodings v1

1 , v2
1 ,..... , vn

1 is fed to the

forward and the backward LSTM of the second BiLSTM. The produced forward and
backward LSTM states of the second BiLSTM are concatenated again for every word in

the sentence: v1 : n
2 =v

→

1 : n
2 ⊕v

←

1: n
2 . By contrast, in the original depth-3 BiLSTM of Dozat et al.

the forward and the backward LSTM states are concatenated only in the last (3d) layer.

The BiLSTM-produced encodings are fed through two separate ReLU layers (leaky
ReLu with a=0.1), producing two specialized vector representations: one for the word as a
head seeking all its dependents and another for the word as a dependent seeking its head.
The following formulas are used to compute the ReLu layers:

 hi
(arc)=LReLu(W 1 v i

2+b1)

 hi
(dep)=LReLu(W 2 vi

2+b2)

30

Word embeddings

Token Fasttext Character

Input word embedding

POS embeddings

POS/XPOS embedding

POS XPOS

Figure 3.2: BiLSTM input vector of our parser.
Figure 3.2: BiLSTM input vector of our parser

31

<ROOT> ROOT . Punct

.....

.....

.....

.....

.....

.....

.....

.....

Head/mod ReLu layers

Encodings concatenation

2nd bwd LSTM

2nd fwd LSTM

Encodings concatenation

1st bwd LSTM

1st fwd LSTM

Input embeddings

Figure 3.3: The input BiLSTM encoder of our parser.

Figure 3.3: The input BiLSTM encoder of our parser.

3.3.3 MLP score function

Given a head-modifier pair (j,i), the MLP score function (figure 3.4) takes as input a
vector Vj,i that is the concatenation of the element-wise summation of the head and
modifier specialized representations and the distance/direction embedding that
corresponds to that pair (d (j , i)). The formula that is used is:

 V (j , i)=(h j
(arc)+h i

(dep))⊕d(j ,i)

The MLP has two hidden layers with leaky ReLu as activation function and produces as
output the scores of all the candidate labeled arcs between a head-modifier pair. The
formula that is used is:

 scores (j , i)[]=LReLu(W 2(LReLu(W 1V (j ,i)+b1))+b2)

The produced labeled arc scores of a modifier with all of its possible heads are
concatenated creating a large flat vector of joint heads/labels scores. The size of that

32

dep i head j

dist emb j,i

MLP

[s1, s2,, sn]arc j --> i labeled scores

Figure 3.4: Scoring labeled arcs (joint arc-label prediction) in our parser.

Figure 3.4: Scoring labeled arcs (joint arc-label predictions) in our parser.

vector is equal to the number of possible heads times the number of dependency relation
labels. During training, a single cross-entropy loss over the joint heads/labels scores is
optimized.

3.3.4 Parsing using Edmond’s decoder

During training we validate our parser’s performance on a development dataset. For
this purpose, the highest scoring head is predicted for each modifier in a sentence. The
above method is very efficient but does not guarantee that a valid dependency structure is
produced. When parsing new sentences with our model we want to ensure that correct
dependency structures are produced. A valid dependency structure is a single rooted
directed maximum spanning tree. Hence, we have implemented a parsing decoder using
the Chu-Liu-Edmonds algorithm. Given a sentence of n words, our decoder takes as input
a (n+1) X (n+1) scores matrix for all the possible head-modifier pairs in the sentence. The
+1 corresponds to the artificial root token that is placed at the start of each sentence. The
scores matrix is calculated using our parser’s predictions. Each column of the matrix
corresponds to the scores of all the possible heads for the modifier that is indexed in the
column. The scores matrix forms a dense (fully-connected) directed graph.

The first step of Edmond’s decoder is to select the highest-scored head (incoming
arc) for each modifier in order to form an initial dependency graph. Then, using Kosaraju’s
algorithm for strongly connected components (SCC) the decoder search for possible
cycles in the graph. If there is no cycles we have already found the maximum spanning
tree of the dependency graph. Otherwise, if one or more cycles are found the decoder
recursively contract all the cycles until a solution with no cycles is derived. During cycle
contraction two or more graph’s vertices are contracted into one cycle. Incoming and
outcoming arcs are recalculated for the newly contacted vertex and pointers are kept in
order to backtrack the original arcs of the graph.

When the decoder finds the maximum spanning tree of the dependency graph it
proceeds to the check of the single rooted property. If there is no multiple roots the
decoder returns the heads derived from the extracted maximum spanning tree. In case of
multiple roots, the root with the highest score is greedily selected. This is done by setting
all the other outcoming arcs of the root vertex to − inf in the initial dense directed graph.
Then, using the updated dense directed graph graph as input the decoder re-runs. Since
only one outcoming arc of the root has score different to − inf the maximum spanning
tree that will be extracted on the 2nd run mandatory satisfies the single rooted property. The
root of the new MST will be the greedily selected one.

Since our parser produce scores for labeled arcs, we reduce the labeled arcs
parsing problem (directed multi-graph) to unlabeled (directed graph) in order to utilize our

33

decoder implementation. This is done by picking the highest labeled score as arc score for
each head-modifier pair.

3.3.5 Training details

Our dependency parser is trained for up to 30000 training steps. Each training step
is a mini-batch of approximately 1500 tokens. The Adam optimizer with initial learning rate
= 0.002 and β1 = β2 = 0.9 is used. Like Dozat et al., the initial learning rate is decayed
every 5000 training steps using the following equation:

 new learning rate=0.75∗current learning rate

The model is saved every 100 training steps during the first 5000 training steps. Then, it is
saved only if the LAS (Labeled Attachment Score) accuracy on the validation data
increases. If validation LAS accuracy is not improved for 2500 consecutive training steps
the training process terminates. The best saved state of the model is eventually retained.

Regular dropout (Srivastava et al., 2014) of 33% is applied throughout the entire
network, but variational dropout of 33% and 50% is used for the LSTM’s input and
recurrent connections respectively. The unidirectional LSTM of character-level embeddings
has 33% variational dropout for both input and recurrent connections. Furthermore, (entire)
word and tag embeddings are dropped independently with 33% probability. If one is
dropped the other is scaled to compensate. If both are dropped then the whole input vector
is replaced with zeros.

Trainable word embeddings are defined for words that occur at least twice in the
training dataset. Rare words (that occur only once in the entire train dataset) are replaced
with a special <UNK> embedding. Also, if a word does not exist in the external
embeddings matrix its pretrainned embedding vector is set to zeros. A special <ROOT>
embedding is also trained since an artificial root word is added to the start of each
sentence. Trainable word embeddings, POS and XPOS tag embeddings, bias terms and
final linear layers are initialized to zeros. Character embeddings are initialized using a
Gaussian distribution with mean = 0 and variance = 1. All the other parameters, including
the LSTM’s and MLP’s hidden layers weights, are initialized using orthonormal
initialization.

Frequent word, character, POS and XPOS tags embeddings sizes are set to 100D.
Distance/direction embeddings are set to 32D. Fasttext pretrained embeddings have
original size of 300D and are squeezed to 100D via a linear projection layer (Wx + b). The
1st BiLSTM has recurrent states of 200D and the 2nd BiLSTM has recurrent states of 400D.
The unidirectional LSTM of character embeddings has recurrent states of 400D. Finally,
the ReLU layers of the specialized head/dependent representations and the hidden state
of the scoring MLP all have size of 400D.

34

4. Experiments

In this section we evaluate our systems and compare their performance with the
currently state-of-the art systems of Dozat et al. (2017). In both systems we first use the
baseline sentence splitter and tokenizer provided by the CoNLL 2017 shared task 5. Dozat
et al. use the same sentence splitter and tokenizer for their systems. Thus, we can made a
fair comparison between their systems and ours. The Universal dependencies treebanks
(version 2.1) are used for training, development and testing. Dozat et al. also use the
same version (2.1) of universal dependencies for the development and evaluation of their
systems. Universal Dependencies6 (UD) is a project that is developing cross-linguistically
consistent treebank annotation for many languages, with the goal of facilitating multilingual
parser development, cross-lingual learning, and parsing research from a language
typology perspective. The annotation scheme is based on an evolution of (universal)
Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal POS tags
(Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman,
2008). The general philosophy is to provide a universal inventory of categories and
guidelines to facilitate consistent annotation of similar constructions across languages,
while allowing language-specific extensions when necessary. Most of the UD languages
have train, development ant test treebanks.

4.1 CoNLL-U format

Treebanks are stored using the CoNLL-U format (figure 4.1). Annotations are
encoded in plain text files with three types of lines:

1. Word lines containing the annotation of a word/token in 10 fields separated by
single tab characters.

2. Blank lines marking sentence boundaries.

3. Comment lines starting with hash (#).

Sentences consist of one or more word lines, and word lines contain the following fields:

1. ID: Word index, integer starting at 1 for each new sentence.

2. FORM: Word form or punctuation symbol.

3. LEMMA: Lemma or stem of word form.

5 http://universaldependencies.org/conll17/
6 http://universaldependencies.org/

35

4. UPOS: Universal part-of-speech tag.

5. XPOS: Language-specific part-of-speech tag, underscore if not available.

6. FEATS: List of morphological features from the universal feature inventory or from a
defined language-specific extension, underscore if not available.

7. HEAD: Head of the current word, which is either a value of ID or zero (0).

8. DEPREL: Universal dependency relation to the HEAD (root iff HEAD = 0).

9. DEPS: Enhanced dependency graph7 in the form of a list of head-deprel pairs.

10. MISC: Any other annotation.

The following figure is an example of a CoNLL-U formatted text file (source:
http://universaldependencies.org)

7 http://universaldependencies.org/u/overview/enhanced-syntax.html

36

Figure 4.1: Example of a CoNLL-U formatted text file.

http://universaldependencies.org/

4.2 POS/XPOS tagger results

The following table compares our re-implementation of Dozat et al.’s POS/XPOS
tagger with the original system. As we can see our re-implementation is slightly inferior to
the original implementation. Such small differences can be attributed to different random
initialization of the model’s parameters.

Dozat et al. tagger
Our re-

implementation

Language POS XPOS POS XPOS

Greek 97.74 97.76 97.66 97.63

Table 1: Comparison between Dozat et al.’s tagger and our re-implementation.

4.3 Dependency parser results

The table below summarizes the incremental improvement on Greek development
treebank after applying the modifications described in the Section 3.3.1.

Model UAS F1-score LAS F1-score

Dozat et al. re-implementation 89.75 87.81

Dozat et al. re-implementation (stacked
BiLSTMs)

90.13 88.17

Stacked BiLSTMs + joint arc-labels
predictions

90.20 88.54

Stacked BiLSTMs + joint arc-labels
predictions + distance/direction embeddings

90.66* 89.16*

Table 2: Results on the Greek development treebank.

Our final model that includes all the modifications we have described in the Section
3.3.1 has superior performance compared to our Dozat et al. re-implementation. This

37

superiority is statistically significant since both UAS and LAS p-values are equal to 0.001.
The significance tests were performed using a web tool8 for dependency parsing
evaluation developed by Choi et al. (2015), which uses McNemar's test to detect
statistically significant differences.

The following table compares the performance of our parser with the Dozat
et al. parser. To be fair in comparisons we used the predicted POS/XPOS tags from the
Dozat et al. POS tagger as input to our parser. Both parsers make predctions based on
non-gold sentences and tokens. The test dataset is first preprocessed using the baseline
sentence splitter and tokenizer provided by the CoNLL 2017 shared task.

Dozat et al. parser Our parser

Language UAS LAS UAS LAS

Greek 89.73 87.38 90.44 88.32

Bulgarian 92.89 89.81 92.79 89.76

English 84.74 82.23 84.59 82.16

Dutch 85.17 80.48 83.63 79.13

Table 3: Comparison between Dozat et al.’s parser and our parser.

As we observe our model is superior compared to Dozat et al.’s in the Greek
language, which is probably due to the fact that we focused mostly on Greek (e.g., model
selection was performed on the Greek development treebank). Furthermore, we achieve
near state-of-the art performance for English and Bulgarian which means that our model
performs really well across other languages as well. Thus, we can claim that the complex
biaffine transformation of Dozat et al.’s parser may not be necessary and a simpler model
that uses a joint arc-labels loss suffices.

8 https://emorynlp.github.io/dependable/evaluate.html

38

In order to determine whether our parser is superior compared to Dozat et. al we
performed significance tests using Choi et al .'s (2015) tool for dependency parsing
evaluation. In the following table we report the performance of both parsers using gold
POS/XPOS tags, sentences and tokens.

Dozat et al. parser Our parser P-values

Language UAS LAS UAS LAS UAS LAS

Greek 90.8 88.87 91.53* 89.69* 0.001 0.001

Bulgarian 94.55 91.19 95.23* 91.89* 0.001 0.001

English 91.17 89.36 91.34 89.49 0.5 0.5

Dutch 89.70* 86.54* 89.19 85.92 0.05 0.02

Table 4: Significance tests between Dozat et al.’s parser and our parser.

We observe that our parser has significantly superior performance on Greek (p-
value = 0.001) and Bulgarian (p-value = 0.001). On English, our parser achieves slightly
superior performance but no statistically significant difference was detected (p-value =
0.5). Finally, on Dutch Dozat et al.’s parser has significantly superior performance (p-value
= 0.05, 0.02 for UAS and LAS, respectively) compared to our parser.

39

5. Conclusions and future work

5.1 Conclusions

The use of bi-directional LSTMs as feature encoders is a very effective method to
produce state-of-the art results for the tasks of POS tagging and dependency parsing.
Actually, bi-directional LSTM networks have replaced the tedious task of feature-
engineering that requires a lot of expertise. Through bi-directional LSTMs it is possible for
a model to learn complex non-linear future functions that can significantly enhance the
model’s performance.

POS tag embeddings significantly increase the performance of a dependency
parsing model, as also reported by Dozat et al. (2017). Thus, we can claim that POS tags
remain a core future for dependency parsing models.

Including character-level word embeddings increases the performance in both POS
tagging and dependency parsing (Dozat et al., 2017), especially for morphological rich
languages. Also, aggressive dropout helps to reduce overfitting and improves
generalization. LSTMs are very powerful models that are prone to overfit and thus dropout,
which is a well-established ensembling technique, helps to improve the generalization in
new unseen data.

In our work we have seen that even simpler dependency parsing models without
complex biaffine classifiers on top of the BiLSTM feature encoder can yield state-of-the art
or near state-of-the art performance. Also, including distance/directions embeddings as an
extra input to our parser’s MLP score function boosts its performance. Back to the “linear
world”, distance and direction between a head and a modifier were fundamental features
for dependency parsing models. Although LSTMs were shown to be capable of learning
complex features (Karpathy et al., 2015), it seems that by adding distance and direction
information regarding the head-modifier pairs to our parser’s MLP score function improves
its performance.

40

5.2 Future work

In this section we describe future work that may improve the performance of our
POS tagging and dependency parsing systems. First, we plan to include ELMo
embeddings (Embeddings from Language Models) as input to both of our models as
described by Peters et al. (2018). ELMo embeddings are produced by deep bi-directional
language models (biLMs) that are trained in large corpora. ELMo word representations are
computed on top of two-layer biLMs with character convolutions, as a linear function of the
internal network states. Peters et al. report that the addition of ELMo representations alone
significantly improves the state of the art performance in various NLP tasks. Thus, the
addition of deep contextualized word embeddings may improve the accuracy of our
systems.

Utilizing the FEATS tags that are included in the universal dependencies treebanks
as an extra future for our dependency parser. The FEATS tags include additional
information regarding morphological features such as gender, number, case etc. Adding
FEATS embeddings as input to our parser’s BiLSTM may boost its performance since the
additional information regarding morphological features seems useful for the task of
dependency parsing. For example, in a correct head-modifier arc of a noun (head) and a
determiner (modifier) the gender of both head and modifier should be matched. For this
purpose we will also extend and retrain our POS tagging system to be able to predict
FEATS tags as well.

Extending our model from the arc-factored (1st order) paradigm to higher order non-
projective parsing, may enhance its performance. The fact that our model is relatively
simple, with a single cross-entropy loss over the joint heads/labels scores, facilitates its
extension to a higher-order parser. Since higher-order non-projective dependency parsing
is NP-hard an approximation algorithm will be utilized (Zhang et al. 2012) for parsing.

41

References

Sandra Kübler, Ryan McDonald, Joakim Nivre, Dependency Parsing, Morgan & Claypool
Publishers, 2009.

Dan Jurafsky, James H. Martin, Speech and Language Processing (3rd ed. Draft), 2017.

Yoav Goldberg, Neural Network Methods for Natural Language Processing, Morgan &
Claypool Publishers, 2017.

Eliyahu Kiperwasser, Yoav Goldberg, “Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations”. Transactions of the Association for
Computational Linguistics, 4:313-327, 2016.

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, “Efficient Estimation of Word
Representations in Vector Space”. arXiv: 1301.3781, 2013.

Timothy Dozat, Christopher D. Manning, “Deep Biaffine Attention for Neural Dependency
Parsing”. arXiv: 1611.01734, 2016.

Timothy Dozat, Peng Qi, Christopher D. Manning, “Stanford’s Graph-based Neural
Dependency Parser at the CoNLL 2017 Shared Task”. Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies , Vancouver,
Canada, pp. 20-30, 2017.

Danqi Chen, Christopher D. Manning, “A Fast and Accurate Dependency Parser using
Neural Networks”. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, pp. 740-750, 2014.

Yarin Gal, Zoubin Ghahramani, “A Theoretically Grounded Application of Dropout in
Recurrent Neural Networks”. Proceedings of the 30th International Conference on Neural
Information Processing Systems, Barcelona, Spain, pp. 1027-1035, 2016.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al., “Universal Dependencies 2.1”.
LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-
2515, 2017.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin
Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna
Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin, “DyNet: The Dynamic
Neural Network Toolkit”. arXiv: 1701.03980, 2017.

42

http://hdl.handle.net/11234/1-2515
http://hdl.handle.net/11234/1-2515

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov, “Enriching Word Vectors
with Subword Information”. Transactions of the Association for Computational Linguistics,
5(1): 135-146, 2017.

Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global Vectors for
Word Representation”. Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, pp. 1532-1543, 2014.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, Eduard Hovy,
“Stack-Pointer Networks for Dependency Parsing”. arXiv: 1805.01087, 2018.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, Richard Socher, “A Joint Many-
Task Model: Growing a Neural Network for Multiple NLP Tasks”. Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP),
Copenhagen, Denmark, pp. 1923-1933, 2017.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, Luke Zettlemoyer, “Deep contextualized word representations”. Proceedings of
NAACL-HLT 2018, New Orleans, Louisiana, pp. 2227-2237, 2018.

Diederik P. Kingma, Jimmy Ba, “Adam: a Method for Stochastic Optimization”.
International Conference on Learning Representations”, San Diego, 2014.

Andrej Karpathy, Justin Johnson, Li Fei-Fei, “Visualizing and Understanding Recurrent
Networks”, arXiv: 1506.02078, 2015.

Andrew M. Saxe, James L. McClelland, Surya Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks”, arXiv: 1312.6120, 2013.

Sepp Hochreiter, Jürgen Schmidhuber, “Long Short-term Memory”. Neural computation,
9(3): 1735-1780, 1997.

Alex Graves, Santiago Fernández, Jürgen Schmidhuber, “Bidirectional LSTM Networks for
Improved Phoneme Classification and Recognition”. Proceedings of the 15th International
Conference on Artificial Neural Networks: Formal Models and Their Applications-Volume
Part II, Warsaw, Poland, pp. 799-804, 2005.

John Lafferty, Andrew Mccallum, Fernando Pereira, “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data”. Proceedings of the
Eighteenth International Conference on Machine Learning, San Francisco, CA, USA, pp.
282-289, 2001.

Jason Eisner, “Three New Probabilistic Models for Dependency Parsing: An Exploration”.
Proceedings of the 16th International Conference on Computational Linguistics ,
Copenhagen, Denmark, pp: 340-345, 1996.

43

Ming Sun, Jerome R. Bellegarda, “Improved pos tagging for text-to-speech synthesis”.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Prague, Czech Republic, pp. 5384-5387, 2011.

Chris Quirk, Simon Corston-Oliver, “The impact of parse quality on syntactically-informed
statistical machine translation”. Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), Sydney, Australia, pp. 62-69, 2006.

Abdur Chowdhury, Catherine McCabe, “Improving Information Retrieval Systems using
Part of Speech Tagging”. Digital Repository at the University of Maryland (DRUM),
http://hdl.handle.net/1903/5958, 1998.

Joakim Nivre, 2008, “Algorithms for deterministic incremental dependency parsing”.
Computational Linguistics, 34(4), pp. 513-553, 2008.

Stuart M. Shieber, “Sentence disambiguation by a shift-reduce parsing technique”.
Proceedings of the 21st Conference on Association for Computational Linguistics (ACL),
Cambridge, Massachusetts, pp. 113-118, 1983.

Richard Hudson, “Word grammar”, Oxford: Basil Blackwell, 1984.

Igor A. Mel'čuk, “A formal lexicon in the Meaning-Text Theory: (or how to do lexica with
words)”. Computational Linguistics-Special issue of the lexicon archive, 13(3-4), pp. 261-
275, 1987.

Yoeng-Jin Chu, Tseng-Hong Liu, “On shortest arborescence of a directed graph”. Scientia
Sinica, 14(10):1396, 1965.

Jack Edmonds, “Optimum branchings”. Journal of Research of the national Bureau of
Standards. B71(4):233-240, 1967.

Ryan McDonald, Koby Crammer, Fernando Pereira, “Online Large-Margin Training of
Dependency Parsers”. Association for Computational Linguistics (ACL), Stroudsburg, PA,
USA, pp. 91-98, 2005.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. Journal of Machine
Learning Research, 15, pp. 1929-1958, 2014.

Kristina Toutanova, Dan Klein, Christopher Manning, Yoram Singer, “Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network”. Proceedings of HLT-NAACL,
Edmonton, Canada, pp. 252-259, 2003.

Adwait Ratnaparkhi, “A Maximum Entropy Model for Part-Of-Speech Tagging”. Conference
on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, PA, USA,
pp. 133-142, 1996.

44

http://hdl.handle.net/1903/5958

Thorsten Brants, “TnT: A Statistical Part-of-Speech Tagger”. Proceedings of the Sixth
Conference on Applied Natural Language Processing, Seattle, Washington, pp. 224-231,
2000.

Eric Brill, “A simple rule-based part of speech tagger”. Proceedings of the third conference
on Applied natural language processing, Trento, Italy, pp. 152-155, 1992.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, Beatrice Santorini, “Building a large
annotated corpus of English: the penn treebank”. Computational Linguistics-Special issue
on using large corpora: II, 19(2), pp. 313-330, 1993.

Terry Koo, Michael Collins, “Efficient third-order dependency parsers”, Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden,
pp. 1-11, 2010.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, Jan Hajič, “Non-Projective Dependency
Parsing using Spanning Tree Algorithms”. Human Language Technologies and Empirical
Methods in Natural Language Processing (HLT-EMNLP), Vancouver, British Columbia,
Canada, pp. 523-530, 2005.

Ryan McDonald, Giorgio Satta, “On the Complexity of Non-Projective Data-Driven
Dependency Parsing”. Proceedings of the 10th International Conference on Parsing
Technologies, Prague, Czech Republic, pp. 121-132, 2007.

Ryan McDonald, Fernando Pereira, “Online Learning of Approximate Dependency Parsing
Algorithms”. 11th Conference of the European Chapter of the Association for
Computational Linguistics, Trento, Italy, pp. 81-88, 2006.

Hao Zhang, Ryan McDonald, “Generalized Higher-Order Dependency Parsing with Cube
Pruning”. Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), Jeju Island, Korea, pp. 320-331, 2012.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter,
Joakim Nivre, Christopher D. Manning, “Universal Stanford Dependencies: A cross-
linguistic typology”. Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC), Reykjavik, Iceland, 2014.

Marie-Catherine de Marneffe, Bill MacCartney, Christopher D. Manning, “Generating typed
dependency parses from phrase structure parses”. Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC), Genoa, Italy, 2006.

Marie-Catherine de Marneffe, Christopher D. Manning, “The Stanford typed dependencies
representation”. Coling 2008: Proceedings of the Workshop on Cross-Framework and
Cross-Domain Parser Evaluation, Manchester, United Kingdom, pp. 1-8, 2008.

Slav Petrov, Dipanjan Das, Ryan McDonald, “A universal part-of-speech tagset”.
Proceedings of the Eight International Conference on Language Resources and
Evaluation (LREC), Istanbul, Turkey, 2012.

45

Daniel Zeman, “Reusable Tagset Conversion Using Tagset Drivers”. Proceedings of the
Sixth International Conference on Language Resources and Evaluation (LREC),
Marrakech, Morocco, 2008.

Jinho D. Choi, Joel Tetreault, Amanda Stent, “It Depends: Dependency Parser Comparison
Using A Web-based Evaluation Tool”. Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Beijing, China, pp. 387-396,
2015.

46

	1. Introduction
	1.1 Part-of-Speech tagging
	1.2 Dependency parsing
	1.3 Dependency trees
	1.4 Projectivity
	1.5 Graph-based parsing
	1.6 Evaluation metrics

	2. Related work
	2.1 The parser of Kiperwasser et al.
	2.1.1 Input encoder
	2.1.2 MLP score function, parsing and hinge loss objective

	2.2 The parser of Dozat et al.
	2.2.1 Character-level embeddings
	2.2.2 Input encoder and head/modifier ReLu layers
	2.2.3 Biaffine arc/label classifiers
	2.2.4 Training details
	2.2.5 The POS/XPOS tagger of Dozat et al.

	3. Our work
	3.2 POS/XPOS tagger
	3.2.1 Input and Model architecture
	3.2.2 Training details

	3.3 Dependency parser
	3.3.1 Neural architectures investigation
	3.3.2 Input encoder and head/modifier ReLu layers
	3.3.3 MLP score function
	3.3.4 Parsing using Edmond’s decoder
	3.3.5 Training details

	4. Experiments
	4.1 CoNLL-U format
	4.2 POS/XPOS tagger results
	4.3 Dependency parser results

	5. Conclusions and future work
	5.1 Conclusions
	5.2 Future work

	References

