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1 Error function erf x and complementary er-

ror function erfc x

(Gauss) error function is

erf x =
2√
π

∫ x

0
e−t2 dt (1)

and has properties

erf (−∞) = −1, erf (+∞) = 1

erf (−x) = −erf (x), erf (x∗) = [erf (x)]∗

where the asterisk denotes complex conjugation. Complementary error
function is defined as

erfc x =
2√
π

∫

∞

x
e−t2 dt = 1 − erf x (2)

Note also that
2√
π

∫ x

−∞

e−t2 dt = 1 + erf x

Another useful formula:

∫ x

0
e−

t
2

2σ2 dt =

√

π

2
σ erf

[

x√
2σ

]

Some Russian authors (e.g., Mikhailovskiy , 1975; Bogdanov et al., 1976) call
erf x a Cramp function.
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2 Faddeeva function w(x)

Faddeeva (or Fadeeva) function w(x) (Fadeeva and Terent’ev , 1954; Poppe
and Wijers , 1990) does not have a name in Abramowitz and Stegun (1965,
ch. 7). It is also called complex error function (or probability integral) (Weide-
man, 1994; Baumjohann and Treumann, 1997, p. 310) or plasma dispersion
function (Weideman, 1994). To avoid confusion, we will reserve the last
name for Z(x), see below. Some Russian authors (e.g., Mikhailovskiy , 1975;
Bogdanov et al., 1976) call it a (complex) Cramp function and denote as
W (x). Faddeeva function is defined as

w(x) = e−x2

(

1 +
2i√
π

∫ x

0
et2 dt

)

= e−x2

[1 + erf (ix)] = e−x2

erfc (−ix) (3)

Integral representations:

w(x) =
i

π

∫

∞

−∞

e−t2 dt

x − t
=

2ix

π

∫

∞

0

e−t2 dt

x2 − t2
(4)

where ℑx > 0. These integral representations can be converted to (3) using

1

x + i∆ − t
= −2i

∫

∞

0
e2i(x+i∆−t)u du (5)

3 Plasma dispersion function Z(x)

Plasma dispersion function Z(x) (Fried and Conte, 1961) is also called
Fried-Conte function (Baumjohann and Treumann, 1997, p. 268). In the
book by Mikhailovskiy (1975), notation is ZMikh(x) ≡ xZ(x), which may be
a source of confusion. Plasma dispersion function is defined as:

Z(x) =
1√
π

∫ +∞

−∞

e−t2

t − x
dt (6)

for ℑx > 0, and its analytic continuation to the rest of the complex x plane
(i.e, to ℑx ≤ 0).

Note that Z(x) is just a scaled w(x), i.e.

Z(x) ≡ i
√

πw(x)
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We see that

Z(x) = 2ie−x2

∫ ix

−∞

e−t2 dt = i
√

πe−x2

[1 + erf (ix)] = i
√

πe−x2

erfc (−ix) (7)

One can define Z̄ which is given by the same equation (6), but for ℑx < 0,
and its analytic continuation to ℑx ≥ 0. It is related to Z(x) as

Z̄(x) = Z∗(x∗) = Z(x) − 2i
√

πe−x2

= −Z(−x)

4 (Jackson) function G(x)

Another function useful in plasma physics was introduced by Jackson (1960)
and does not (yet) have a name (to my knowledge):

G(x) = 1 + i
√

πxw(x) = 1 + xZ(x) = −Z ′(x)/2 (8)

Integral representation:

G(x) =
1√
π

∫

∞

−∞

te−t2 dt

t − x
(9)

where again ℑx > 0.

5 Other definitions

5.1 Dawson integral

Dawson integral F (x) (Abramowitz and Stegun, 1965, eq. 7.1.17), also
denoted as S(x) by Stix (1962, p. 178) and as daw x by Weideman (1994),
is defined as:

F (z) = e−z2

∫ z

0
et2 dt = (−Z(x) + i

√
πe−x2

)/2 = xY (x)

(see also the definition of Y (x) below).

5.2 Fresnel functions

Fresnel functions (Abramowitz and Stegun, 1965, ch. 7) C(x), S(x) are defined
by

C(x) + iS(x) =
∫ x

0
eπit2/2 dt
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5.3 (Sitenko) function ϕ(x)

Another function (Sitenko, 1982, p. 24) is ϕ(x), defined only for real argu-
ments:

ϕ(x) = 2xe−x2

∫ x

0
et2 dt (10)

so that
G(x) = 1 − ϕ(x) + i

√
πxe−x2

(11)

5.4 Function Y (x) of Fried and Conte (1961)

Fried and Conte (1961) introduce

Y (x) =
e−x2

x

∫ x

0
et2 dt (12)

so that for real argument

Z(x) = i
√

πe−x2 − 2xY (x) (13)

6 Asymptotic formulas

6.1 For |x| ≪ 1 (series expansion)

See Abramowitz and Stegun (1965, 7.1.8):

w(x) =
∞
∑

n=0

(ix)n

Γ
(

n
2

+ 1
) (14)

The even terms give e−x2

. To collect odd terms, note that for n ≥ 0:

Γ
(

n +
3

2

)

=

√
π

2

(2n + 1)!!

2n
(15)

Γ
(

n +
1

2

)

=
√

π
(2n − 1)!!

2n
(16)

where we define (2n + 1)!! = 1 · 3 · 5 · · · (2n + 1) and (−1)!! = 1. We have

w(x) = e−x2

+
2ix√

π

∞
∑

n=0

(−2x2)n

(2n + 1)!!
(17)

Z(x) = i
√

πe−x2 − 2x
∞
∑

n=0

(−2x2)n

(2n + 1)!!
(18)
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The first few terms are

w(x) ≈ e−x2

+
2ix√

π

(

1 − 2x2

3
+

4x4

15
− . . .

)

(19)

Z(x) ≈ i
√

πe−x2 − 2x

(

1 − 2x2

3
+

4x4

15
− . . .

)

(20)

The Jackson function (8) also has a nice expansion

G(x) =
√

π
∞
∑

n=0

(ix)n

Γ
(

n+1
2

) (21)

= i
√

πxe−x2

+
∞
∑

n=0

(−2x2)n

(2n − 1)!!
(22)

≈ 1 + i
√

πx − 2x2 + . . . (23)

6.2 For |x| ≫ 1

These formulas are valid for −π/4 < arg x < 5π/4 (Abramowitz and Stegun,
1965, 7.1.23), i.e., around positive imaginary axis:

w(x) =
i√
πx

∞
∑

m=0

(2m − 1)!!

(2x2)m

≈ i√
πx

(

1 +
1

2x2
+

3

4x4
+ . . .

)

+ e−x2

(24)

Z(x) = −1

x

∞
∑

m=0

(2m − 1)!!

(2x2)m

≈ −1

x

(

1 +
1

2x2
+

3

4x4
+ . . .

)

+ i
√

πe−x2

(25)

G(x) = −
∞
∑

m=1

(2m − 1)!!

(2x2)m

≈ − 1

2x2
− 3

4x4
− . . . + i

√
πxe−x2

(26)

7 Gordeyev’s integral

Gordeyev’s integral Gν(ω, λ) (Gordeyev , 1952) is defined as

Gν(ω, λ) = ω
∫

∞

0
exp

[

iωt − λ(1 − cos t) − νt2

2

]

dt, ℜν > 0 (27)
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and is calculated in terms of the plasma dispersion function Z (Paris , 1998):

Gν(ω, λ) =
−iω√

2ν
e−λ

∞
∑

n=−∞

In(λ)Z

(

ω − n√
2ν

)

(28)

8 Plasma permittivity

The dielectric permittivity of hot (Maxwellian) plasma is (Jackson, 1960)

ǫ(ω,k) = 1 +
∑

s

∆ǫs = 1 +
∑

s

1

k2λ2
s

G(xs) (29)

The summation is over charged species. For each species, we have introduced
the Debye length

λ =

√

ǫ0T

Nq2
=

v

Π

where v =
√

T/m is the thermal velocity and Π =
√

Nq2/(mǫ0) is the plasma
frequency; and

x =
ω − (k · u)√

2kv

where u is the species drift velocity.
For warm components, x ≫ 1, we have

∆ǫ = − Π2

[ω − (k · u)]2

(

1 +
3k2v2

[ω − (k · u)]2

)

The dispersion relation for plasma oscillations is obtained by equating
ǫ = 0. For example, for warm electron plasma at rest,

ǫ = 1 − Π2

ω2

(

1 +
3k2v2

ω2

)

and we have the dispersion relation (for ω ≈ Π):

ω2 = Π2 + 3k2v2 = Π2 + k2〈v2〉
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9 Ion acoustic waves

Assume that for electrons, ω ≪ kv but for ions still ω ≫ kV (we’ll see later
that in means Ti ≪ Te). For x ≪ 1, we use G(x) ≈ 1 + i

√
πx:

ǫ = 1 +
Π2

e

k2v2

(

1 + i
√

π
ω√
2kv

)

− Π2
i

ω2

(

1 +
3k2V 2

ω2

)

(30)

where v and V are thermal velocities of electrons and ions, respectively. From
ǫ = 0 we have

1 +
3k2V 2

ω2
=

ω2

k2v2
s

(

1 + k2λ2
e + i

√

π

2

ω

Πekλe

)

where vs = λeΠi =
√

ZTe/M . If we neglect V and imaginary part, then we
get

ω =
kvs

√

1 + k2λ2
e

(31)

For long wavelengths, it reduces to the usual relation ω = kvs. If we substi-
tute this into the imaginary part, we get

ω ≈ kvs
√

1 + i
√

πZm
2M

(32)

The attenuation coefficient for the ion-acoustic waves is small:

γ = −ℑω = kvs

√

πZm

8M
≪ ℜω

Neglecting V is equivalent to kV ≪ ω, i.e., V ≪ vs or Ti ≪ Te. Other-
wise, the ion-acoustic waves do not exist.

10 Fourier transform of Z(x)

In the plasma dielectric permittivity expression, the argument of G(x) =
−Z ′(x) is x = [ω − (k · u)]/[

√
2kv]. Thus, the plasma dispersion function is

usually applied in the frequency domain. The argument is dimensionless, but
is proportional to ω. Let us consider an inverse Fourier transform of F̃ (ω) =
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Z(ω/[
√

2Ω]), where Ω is a parameter which has the same dimensionality as
ω. (In the plasma dielectric permittivity expression, we have Ω ≡ kv.)

Quick reminder of the time-frequency and space-wavevector Fourier trans-
forms:

X̃(ω,k) =
∫∫

X(t, r)eiωt−ik·r dt d3r

X(t, r) =
∫∫

X̃(ω,k)e−iωt+ik·r dω

2π

d3k

(2π)3

where integrals are from −∞ to +∞.
Using expression (6), we have

F̃ (ω) = Z

(

ω√
2Ω

)

=
2π√
π

∫ +∞

−∞

e−
ω
′2

2Ω2

ω′ − ω − i∆

dω′

2π

where the condition that ℑω > 0 is implemented by adding a small imaginary
part to ω, i.e., ω → ω + i∆. We notice that the above expression is a
convolution which simply gives a product in the t-domain:

F̃ (ω) =
∫ +∞

−∞

F̃1(ω
′)F̃2(ω − ω′)

dω′

2π
=⇒ F (t) = F1(t)F2(t)

where

F̃1(ω) = 2π
1√
2πΩ

e−
ω
2

2Ω2 =⇒ F1(t) = e−
Ω

2
t
2

2

and

F̃2(ω) =
√

2iΩ
i

ω + i∆
=⇒ F2(t) =

√
2iΩH(t)

where H(t) is the Heaviside (step) function, defined to be H(t) = 0 for t < 0
and H(t) = 1 for t > 0. (The value at t = 0 is not important, but most often
is assumed to be 1/2.) The last inverse Fourier trasform is accomplished by
using the usual technique of integrating over a closed contour in the plane
of complex ω around the pole at −i∆ and taking a residue. Note that the
Fourier transform between F2(t) and F̃2(ω) illuminates the physical sense of
the trick used in equation (5).

Thus,

F̃ (ω) = Z

(

ω√
2Ω

)

=⇒ F (t) =
√

2iΩH(t)e−
Ω

2
t
2

2
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The derivative G(x) = −Z ′(x)/2 is found by using d/dω → it:

F̃G(ω) = G

(

ω√
2Ω

)

= − Ω√
2

d

dω
F̃ (ω) =⇒ FG(t) = Ω2tH(t)e−

Ω
2

t
2

2

The shift by ∆ω = (k · u) is accomplished using the property

F̃ (ω − ∆ω) =⇒ e−i∆ωtF (t)

Finally, we have the dielectric permittivity in time-wavevector domain:

ǫ(t,k) = δ(t) +
∑

s

∆ǫs(t,k) = δ(t) + tH(t)
∑

s

Π2
se

−
k
2

v
2
st

2

2
−i(k·us)t (33)

where the delta function is obtained from transforming “1”. The same an-
swer may be obtained from the first principles by calculating the polarization
created by a delta-function electric field in the time-space domain and con-
verting r → k. But this is a completely different topic.
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