The Noise Protocol Framework

Trevor Perrin (noise@trevp.net)

Revision 34, 2018-07-11, official /unstable

Contents
1. Introduction

2. Overview
2.1. Terminology
2.2. Overview of handshake state machine

3. Message format

4. Crypto functions
4.1. DH functions
4.2. Cipher functions
4.3. Hash functions

5. Processing rules
5.1. The CipherState object
5.2. The SymmetricState object
5.3. The HandshakeState object

6. Prologue

7. Handshake patterns
7.1. Handshake pattern basics
7.2. Aliceand Bob
7.3. Handshake pattern validity
7.4. One-way handshake patterns
7.5. Interactive handshake patterns (fundamental)
7.6. Interactive handshake patterns (deferred)
7.7. Payload security properties oL
7.8. Identity hiding o

8. Protocol names and modifiers
8.1. Handshake pattern name section
8.2. Cryptographic algorithm name sections

w W

S

0 -3~

10
10
12

14

9. Pre-shared symmetric keys
9.1. Cryptographic functions
9.2. Handshake tokens L.
9.3. Validity ruleo
9.4. Pattern modifiers Lo

10. Compound protocols
10.1. Rationale for compound protocols
10.2. The fallback modifier
10.3. Zero-RTT and Noise protocols
10.4. Noise Pipes
10.5. Handshake indistinguishability

11. Advanced features
11.1. Dummy keys L
11.2. Channel binding L oo
11.3. Rekey o o
11.4. Out-of-order transport messages
11.5. Half-duplex protocols

12. DH functions, cipher functions, and hash functions
12.1. The 25519 DH functions
12.2. The 448 DH functions
12.3. The ChaChaPoly cipher functions
12.4. The AESGCM cipher functions
12.5. The SHA256 hash function
12.6. The SHA512 hash function
12.7. The BLAKE2s hash function
12.8. The BLAKE2b hash function

13. Application responsibilities
14. Security considerations

15. Rationales
15.1. Ciphers and encryption
15.2. Hash functions and hashing
15.3. Other

16. IPR
17. Acknowledgements

18. Appendices
18.1. Deferred patterns L oo
18.2. Security properties for deferred patterns
18.3. Pattern derivation rules L.

32
32
32
33
33

37
37
37
38
38
39

40
40
40
40
41
41

42
42
42
43
43
43
43
43
43

44

45

47
47
48
49

50

51

18.4. Changelog 63

19. References 64

1. Introduction

Noise is a framework for crypto protocols based on Diffie-Hellman key agreement.
Noise can describe protocols that consist of a single message as well as interactive
protocols.

2. Overview

2.1. Terminology

A Noise protocol begins with two parties exchanging handshake messages.
During this handshake phase the parties exchange DH public keys and perform
a sequence of DH operations, hashing the DH results into a shared secret key.
After the handshake phase each party can use this shared key to send encrypted
transport messages.

The Noise framework supports handshakes where each party has a long-term
static key pair and/or an ephemeral key pair. A Noise handshake is de-
scribed by a simple language. This language consists of tokens which are
arranged into message patterns. Message patterns are arranged into hand-
shake patterns.

A message pattern is a sequence of tokens that specifies the DH public keys
that comprise a handshake message, and the DH operations that are performed
when sending or receiving that message. A handshake pattern specifies the
sequential exchange of messages that comprise a handshake.

A handshake pattern can be instantiated by DH functions, cipher functions,
and hash functions to give a concrete Noise protocol.

2.2. Overview of handshake state machine

The core of Noise is a set of variables maintained by each party during a hand-
shake, and rules for sending and receiving handshake messages by sequentially
processing the tokens from a message pattern.

Each party maintains the following variables:

e s, e: The local party’s static and ephemeral key pairs (which may be
empty).

e rs, re: The remote party’s static and ephemeral public keys (which may
be empty).

e h: A handshake hash value that hashes all the handshake data that’s
been sent and received.

e ck: A chaining key that hashes all previous DH outputs. Once the
handshake completes, the chaining key will be used to derive the encryption
keys for transport messages.

e k, n: An encryption key k (which may be empty) and a counter-based
nonce n. Whenever a new DH output causes a new ck to be calculated,
a new k is also calculated. The key k and nonce n are used to encrypt
static public keys and handshake payloads. Encryption with k uses some
AEAD cipher mode (in the sense of Rogaway [1]) and uses the current h
value as associated data which is covered by the AEAD authentication.
Encryption of static public keys and payloads provides some confidentiality
and key confirmation during the handshake phase.

A handshake message consists of some DH public keys followed by a payload.
The payload may contain certificates or other data chosen by the application.
To send a handshake message, the sender specifies the payload and sequentially
processes each token from a message pattern. The possible tokens are:

e "e": The sender generates a new ephemeral key pair and stores it in the
e variable, writes the ephemeral public key as cleartext into the message
buffer, and hashes the public key along with the old h to derive a new h.

e "s": The sender writes its static public key from the s variable into the
message buffer, encrypting it if k is non-empty, and hashes the output
along with the old h to derive a new h.

e "ee", "se", "es", "ss": A DH is performed between the initiator’s key
pair (whether static or ephemeral is determined by the first letter) and the
responder’s key pair (whether static or ephemeral is determined by the
second letter). The result is hashed along with the old ck to derive a new
ck and k, and n is set to zero.

After processing the final token in a handshake message, the sender then writes
the payload into the message buffer, encrypting it if k is non-empty, and hashes
the output along with the old h to derive a new h.

As a simple example, an unauthenticated DH handshake is described by the
handshake pattern:

-> e
<- e, ee

The initiator sends the first message, which is simply an ephemeral public
key. The responder sends back its own ephemeral public key. Then a DH is
performed and the output is hashed into a shared secret key.

Note that a cleartext payload is sent in the first message, after the cleartext
ephemeral public key, and an encrypted payload is sent in the response message,
after the cleartext ephemeral public key. The application may send whatever
payloads it wants.

The responder can send its static public key (under encryption) and authenticate
itself via a slightly different pattern:

-> e
<- e, ee, s, es

In this case, the final ck and k values are a hash of both DH results. Since the es
token indicates a DH between the initiator’s ephemeral key and the responder’s
static key, successful decryption by the initiator of the second message’s payload
serves to authenticate the responder to the initiator.

Note that the second message’s payload may contain a zero-length plaintext,
but the payload ciphertext will still contain authentication data (such as an
authentication tag or “synthetic IV”), since encryption is with an AEAD mode.
The second message’s payload can also be used to deliver certificates for the
responder’s static public key.

The initiator can send its static public key (under encryption), and authenticate

itself, using a handshake pattern with one additional message:

-> e
<- e, ee, 8, es
-> s, se

The following sections flesh out the details, and add some complications. However,
the core of Noise is this simple system of variables, tokens, and processing rules,
which allow concise expression of a range of protocols.

3. Message format

All Noise messages are less than or equal to 65535 bytes in length. Restricting
message size has several advantages:

Simpler testing, since it’s easy to test the maximum sizes.

Reduces the likelihood of errors in memory handling, or integer overflow.

e Enables support for streaming decryption and random-access decryption
of large data streams.

Enables higher-level protocols that encapsulate Noise messages to use an
efficient standard length field of 16 bits.

All Noise messages can be processed without parsing, since there are no type
or length fields. Of course, Noise messages might be encapsulated within a

higher-level protocol that contains type and length information. Noise messages
might encapsulate payloads that require parsing of some sort, but payloads are
handled by the application, not by Noise.

A Noise transport message is simply an AEAD ciphertext that is less than or
equal to 65535 bytes in length, and that consists of an encrypted payload plus 16
bytes of authentication data. The details depend on the AEAD cipher function,
e.g. AES256-GCM, or ChaCha20-Poly1305, but typically the authentication data
is either a 16-byte authentication tag appended to the ciphertext, or a 16-byte
synthetic IV prepended to the ciphertext.

A Noise handshake message is also less than or equal to 65535 bytes. It begins
with a sequence of one or more DH public keys, as determined by its message
pattern. Following the public keys will be a single payload which can be used to
convey certificates or other handshake data, but can also contain a zero-length
plaintext.

Static public keys and payloads will be in cleartext if they are sent in a handshake
prior to a DH operation, and will be AEAD ciphertexts if they occur after a DH
operation. (If Noise is being used with pre-shared symmetric keys, this rule is
different; see Section 9). Like transport messages, AEAD ciphertexts will expand
each encrypted field (whether static public key or payload) by 16 bytes.

For an example, consider the handshake pattern:

-> e
<- e, ee, s, es
-> s, se

The first message consists of a cleartext public key ("e") followed by a cleartext
payload (remember that a payload is implicit at the end of each message pattern).
The second message consists of a cleartext public key ("e") followed by an
encrypted public key ("s") followed by an encrypted payload. The third message
consists of an encrypted public key ("s") followed by an encrypted payload.

Assuming each payload contains a zero-length plaintext, and DH public keys are
56 bytes, the message sizes will be:

1. 56 bytes (one cleartext public key and a cleartext payload)
2. 144 bytes (two public keys, the second encrypted, and encrypted payload)
3. 88 bytes (one encrypted public key and encrypted payload)

4. Crypto functions

A Noise protocol is instantiated with a concrete set of DH functions, cipher
functions, and hash functions. The signature for these functions is defined
below. Some concrete functions are defined in Section 12.

The following notation will be used in algorithm pseudocode:

e The || operator concatenates byte sequences.
e The byte() function constructs a single byte.

4.1. DH functions

Noise depends on the following DH functions (and an associated constant):

e GENERATE_KEYPAIR(): Generates a new Diffie-Hellman key pair. A DH key
pair consists of public_key and private_key elements. A public_key
represents an encoding of a DH public key into a byte sequence of length
DHLEN. The public_key encoding details are specific to each set of DH
functions.

e DH(key_pair, public_key): Performs a Diffie-Hellman calculation be-
tween the private key in key_pair and the public_key and returns an
output sequence of bytes of length DHLEN. For security, the Gap-DH problem
based on this function must be unsolvable by any practical cryptanalytic
adversary [2].

The public_key either encodes some value which is a generator in a large
prime-order group (which value may have multiple equivalent encodings),
or is an invalid value. Implementations must handle invalid public keys
either by returning some output which is purely a function of the public
key and does not depend on the private key, or by signaling an error to
the caller. The DH function may define more specific rules for handling
invalid values.

e DHLEN = A constant specifying the size in bytes of public keys and DH
outputs. For security reasons, DHLEN must be 32 or greater.

4.2. Cipher functions

Noise depends on the following cipher functions:

e ENCRYPT(k, n, ad, plaintext): Encrypts plaintext using the cipher
key k of 32 bytes and an 8-byte unsigned integer nonce n which must be
unique for the key k. Returns the ciphertext. Encryption must be done
with an “AEAD” encryption mode with the associated data ad (using the
terminology from [1]) and returns a ciphertext that is the same size as the

plaintext plus 16 bytes for authentication data. The entire ciphertext must
be indistinguishable from random if the key is secret (note that this is an
additional requirement that isn’t necessarily met by all AEAD schemes).

e DECRYPT(k, n, ad, ciphertext): Decrypts ciphertext using a cipher
key k of 32 bytes, an 8-byte unsigned integer nonce n, and associated data
ad. Returns the plaintext, unless authentication fails, in which case an
error is signaled to the caller.

e REKEY(k): Returns a new 32-byte cipher key as a pseudorandom function
of k. If this function is not specifically defined for some set of cipher
functions, then it defaults to returning the first 32 bytes from ENCRYPT (k,
maxnonce, zerolen, zeros), where maxnonce equals 2641, zerolen is
a zero-length byte sequence, and zeros is a sequence of 32 bytes filled with
ZEros.

4.3. Hash functions

Noise depends on the following hash function (and associated constants):

e HASH(data): Hashes some arbitrary-length data with a collision-resistant
cryptographic hash function and returns an output of HASHLEN bytes.

e HASHLEN = A constant specifying the size in bytes of the hash output.
Must be 32 or 64.

e BLOCKLEN = A constant specifying the size in bytes that the hash function
uses internally to divide its input for iterative processing. This is needed
to use the hash function with HMAC (BLOCKLEN is B in [3]).

Noise defines additional functions based on the above HASH() function:

e HMAC-HASH(key, data): Applies HMAC from [3] using the HASH() function.
This function is only called as part of HKDF (), below.

e HKDF(chaining_key, input_key_material, num_outputs): Takes a
chaining_key byte sequence of length HASHLEN, and an input_key_material
byte sequence with length either zero bytes, 32 bytes, or DHLEN bytes.
Returns a pair or triple of byte sequences each of length HASHLEN,
depending on whether num_outputs is two or three:

Sets temp_key = HMAC-HASH(chaining key, input_key_material).
— Sets outputl = HMAC-HASH(temp_key, byte(0x01)).

— Sets output2 = HMAC-HASH(temp_key, outputl || byte(0x02)).
If num_outputs == 2 then returns the pair (outputl, output2).

— Sets output3 = HMAC-HASH(temp_key, output2 || byte(0x03)).
Returns the triple (outputl, output2, output3).

Note that temp_key, outputl, output2, and output3 are all HASHLEN bytes in
length. Also note that the HKDF() function is simply HKDF from [4] with the
chaining_key as HKDF salt, and zero-length HKDF info.

5. Processing rules

To precisely define the processing rules we adopt an object-oriented terminology,
and present three “objects” which encapsulate state variables and contain func-
tions which implement processing logic. These three objects are presented as a
hierarchy: each higher-layer object includes one instance of the object beneath
it. From lowest-layer to highest, the objects are:

e A CipherState object contains k and n variables, which it uses to encrypt
and decrypt ciphertexts. During the handshake phase each party has a
single CipherState, but during the transport phase each party has two
CipherState objects: one for sending, and one for receiving.

e A SymmetricState object contains a CipherState plus ck and h vari-
ables. It is so-named because it encapsulates all the “symmetric crypto”
used by Noise. During the handshake phase each party has a single
SymmetricState, which can be deleted once the handshake is finished.

e A HandshakeState object contains a SymmetricState plus DH variables
(s, e, rs, re) and a variable representing the handshake pattern. Dur-
ing the handshake phase each party has a single HandshakeState, which
can be deleted once the handshake is finished.

To execute a Noise protocol you Initialize() a HandshakeState. During
initialization you specify the handshake pattern, any local key pairs, and any
public keys for the remote party you have knowledge of. After Initialize () you
call WriteMessage() and ReadMessage() on the HandshakeState to process
each handshake message. If any error is signaled by the DECRYPT() or DH()
functions then the handshake has failed and the HandshakeState is deleted.

Processing the final handshake message returns two CipherState objects, the
first for encrypting transport messages from initiator to responder, and the second
for messages in the other direction. At that point the HandshakeState should
be deleted except for the hash value h, which may be used for post-handshake
channel binding (see Section 11.2).

Transport messages are then encrypted and decrypted by calling EncryptWithAd ()
and DecryptWithAd () on the relevant CipherState with zero-length associated
data. If DecryptWithAd() signals an error due to DECRYPT() failure, then
the input message is discarded. The application may choose to delete the
CipherState and terminate the session on such an error, or may continue to
attempt communications. If EncryptWithAd() or DecryptWithAd () signal an

error due to nonce exhaustion, then the application must delete the CipherState
and terminate the session.

The below sections describe these objects in detail.

5.1. The CipherState object

A CipherState can encrypt and decrypt data based on its k and n variables:

e k: A cipher key of 32 bytes (which may be empty). Empty is a special value
which indicates k has not yet been initialized.

e n: An 8-byte (64-bit) unsigned integer nonce.

A CipherState responds to the following functions. The ++ post-increment
operator applied to n means “use the current n value, then increment it”. The
maximum n value (264-1) is reserved for other use. If incrementing n results in
264.1, then any further EncryptWithAd() or DecryptWithAd() calls will signal
an error to the caller.

e InitializeKey(key): Sets k = key. Setsn = 0.
e HasKey(): Returns true if k is non-empty, false otherwise.

e SetNonce(nonce): Sets n = nonce. This function is used for handling
out-of-order transport messages, as described in Section 11.4.

e EncryptWithAd(ad, plaintext): If k is non-empty returns ENCRYPT (k,
n++, ad, plaintext). Otherwise returns plaintext.

e DecryptWithAd(ad, ciphertext): If k is non-empty returns DECRYPT (k,
n++, ad, ciphertext). Otherwise returns ciphertext. If an authenti-
cation failure occurs in DECRYPT() then n is not incremented and an error
is signaled to the caller.

e Rekey(): Sets k = REKEY (k).

5.2. The SymmetricState object

A SymmetricState object contains a CipherState plus the following variables:

e ck: A chaining key of HASHLEN bytes.
e h: A hash output of HASHLEN bytes.

A SymmetricState responds to the following functions:

e InitializeSymmetric(protocol_name): Takes an arbitrary-length
protocol_name byte sequence (see Section 8). Executes the following
steps:

10

— If protocol_name is less than or equal to HASHLEN bytes in length,
sets h equal to protocol_name with zero bytes appended to make
HASHLEN bytes. Otherwise sets h = HASH(protocol_name).

— Sets ck = h.
— Calls InitializeKey (empty).
MixKey (input_key_material): Executes the following steps:

— Sets ck, temp_k = HKDF(ck, input_key_material, 2).
— If HASHLEN is 64, then truncates temp_k to 32 bytes.
— Calls InitializeKey(temp_k).

MixHash(data): Sets h = HASH(h || data).

MixKeyAndHash (input_key_material): This function is used for handling
pre-shared symmetric keys, as described in Section 9. It executes the
following steps:

— Sets ck, temp_h, temp_k = HKDF(ck, input_key_material, 3).
Calls MixHash (temp_h).

— If HASHLEN is 64, then truncates temp_k to 32 bytes.

— Calls InitializeKey (temp_k).

GetHandshakeHash(): Returns h. This function should only be called at
the end of a handshake, i.e. after the Split() function has been called.
This function is used for channel binding, as described in Section 11.2

EncryptAndHash(plaintext): Sets ciphertext = EncryptWithAd(h,
plaintext), calls MixHash(ciphertext), and returns ciphertext. Note
that if k is empty, the EncryptWithAd () call will set ciphertext equal
to plaintext.

DecryptAndHash(ciphertext): Sets plaintext = DecryptWithAd(h,
ciphertext), calls MixHash(ciphertext), and returns plaintext. Note
that if k is empty, the DecryptWithAd () call will set plaintext equal to
ciphertext.

Split(): Returns a pair of CipherState objects for encrypting transport
messages. Executes the following steps, where zerolen is a zero-length
byte sequence:

Sets temp_k1, temp_k2 = HKDF(ck, zerolen, 2).

— If HASHLEN is 64, then truncates temp_k1 and temp_k2 to 32 bytes.
Creates two new CipherState objects c1 and c2.

— Calls c1.InitializeKey (temp_k1) and c2.InitializeKey(temp_k2).
— Returns the pair (c1, c2).

11

5.3.

The HandshakeState object

A HandshakeState object contains a SymmetricState plus the following vari-
ables, any of which may be empty. Empty is a special value which indicates the
variable has not yet been initialized.

s: The local static key pair

e: The local ephemeral key pair

rs: The remote party’s static public key

re: The remote party’s ephemeral public key

A HandshakeState also has variables to track its role, and the remaining portion
of the handshake pattern:

initiator: A boolean indicating the initiator or responder role.

message_patterns: A sequence of message patterns. Each message pat-
tern is a sequence of tokens from the set ("e", "s", "ee", "es", "se",
"ss"). (An additional "psk" token is introduced in Section 9, but we defer
its explanation until then.)

A HandshakeState responds to the following functions:

Initialize(handshake_pattern, initiator, prologue, s, e, rs,
re): Takes a valid handshake_pattern (see Section 7) and an initiator
boolean specifying this party’s role as either initiator or responder.

Takes a prologue byte sequence which may be zero-length, or which may
contain context information that both parties want to confirm is identical
(see Section 6).

Takes a set of DH key pairs (s, e) and public keys (rs, re) for initializing
local variables, any of which may be empty. Public keys are only passed
in if the handshake_pattern uses pre-messages (see Section 7). The
ephemeral values (e, re) are typically left empty, since they are created
and exchanged during the handshake; but there are exceptions (see Section
10).

Performs the following steps:

— Derives a protocol_name byte sequence by combining the names for
the handshake pattern and crypto functions, as specified in Section 8.
Calls InitializeSymmetric(protocol_name).

— Calls MixHash(prologue).

— Sets the initiator, s, e, rs, and re variables to the corresponding
arguments.

— Calls MixHash () once for each public key listed in the pre-messages
from handshake_pattern, with the specified public key as input (see
Section 7 for an explanation of pre-messages). If both initiator and

12

responder have pre-messages, the initiator’s public keys are hashed
first. If multiple public keys are listed in either party’s pre-message,
the public keys are hashed in the order that they are listed.

— Sets message_patterns to the message patterns from handshake_pattern.

e WriteMessage(payload, message_buffer): Takes a payload byte se-
quence which may be zero-length, and a message_buffer to write the out-
put into. Performs the following steps, aborting if any EncryptAndHash ()
call returns an error:

— Fetches and deletes the next message pattern from message_patterns,
then sequentially processes each token from the message pattern:

x For "e": Sets e (which must be empty) to GENERATE_KEYPAIRQ).
Appends e.public_key to the buffer. Calls MixHash(e.public_key).

x For "s": Appends EncryptAndHash(s.public_key) to the
buffer.

* For "ee": Calls MixKey (DH(e, re)).

* For "es": Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s,
re)) if responder.

x For "se": Calls MixKey(DH(s, re)) if initiator, MixKey (DH(e,
rs)) if responder.

* For "ss": Calls MixKey (DH(s, rs)).
— Appends EncryptAndHash (payload) to the buffer.

— If there are no more message patterns returns two new CipherState
objects by calling Split ().

13

e ReadMessage(message, payload_buffer): Takes a byte sequence con-
taining a Noise handshake message, and a payload_buffer to write the
message’s plaintext payload into. Performs the following steps, aborting if
any DecryptAndHash() call returns an error:

— Fetches and deletes the next message pattern from message_patterns,
then sequentially processes each token from the message pattern:

x For "e": Sets re (which must be empty) to the next DHLEN bytes
from the message. Calls MixHash(re.public_key).

x For "s": Sets temp to the next DHLEN + 16 bytes of the message
if HasKey () == True, or to the next DHLEN bytes otherwise. Sets
rs (which must be empty) to DecryptAndHash (temp).

* For "ee": Calls MixKey (DH(e, re)).

* For "es": Calls MixKey(DH(e, rs)) if initiator, MixKey (DH(s,
re)) if responder.

* For "se": Calls MixKey(DH(s, re)) if initiator, MixKey (DH(e,
rs)) if responder.

* For "ss": Calls MixKey(DH(s, rs)).

— Calls DecryptAndHash() on the remaining bytes of the message and
stores the output into payload_buffer.

— If there are no more message patterns returns two new CipherState
objects by calling Split().

6. Prologue

Noise protocols have a prologue input which allows arbitrary data to be hashed
into the h variable. If both parties do not provide identical prologue data, the
handshake will fail due to a decryption error. This is useful when the parties
engaged in negotiation prior to the handshake and want to ensure they share
identical views of that negotiation.

For example, suppose Bob communicates to Alice a list of Noise protocols that
he is willing to support. Alice will then choose and execute a single protocol.
To ensure that a “man-in-the-middle” did not edit Bob’s list to remove options,
Alice and Bob could include the list as prologue data.

Note that while the parties confirm their prologues are identical, they don’t
mix prologue data into encryption keys. If an input contains secret data that’s
intended to strengthen the encryption, a PSK handshake should be used instead
(see Section 9).

14

7. Handshake patterns

7.1. Handshake pattern basics

A message pattern is some sequence of tokens from the set ("e", "s",
"ee", "es", "se", "ss", "psk"). The handling of these tokens within
WriteMessage () and ReadMessage() has been described previously, except for
the "psk" token, which will be described in Section 9. Future specifications
might introduce other tokens.

A pre-message pattern is one of the following sequences of tokens:

Ilell

IISII
n e , s n
empty

A handshake pattern consists of:

e A pre-message pattern for the initiator, representing information about
the initiator’s public keys that is known to the responder.

e A pre-message pattern for the responder, representing information about
the responder’s public keys that is known to the initiator.

e A sequence of message patterns for the actual handshake messages.

The pre-messages represent an exchange of public keys that was somehow
performed prior to the handshake, so these public keys must be inputs to
Initialize() for the “recipient” of the pre-message.

The first actual handshake message is sent from the initiator to the responder.
The next message is sent from the responder, the next from the initiator, and so
on in alternating fashion.

The following handshake pattern describes an unauthenticated DH handshake
consisting of two message patterns:

NN:
-> e
<- e, ee

In the following handshake pattern both the initiator and responder possess
static key pairs, and the handshake pattern comprises three message patterns:

XX:
-> e
<- e, ee, 8, es
-> s, se

15

The handshake pattern names are NN and XX. This naming convention will be
explained in Section 7.5.

Non-empty pre-messages are shown as pre-message patterns prior to the delimiter
"...". If both parties have a pre-message, the initiator’s is listed first, and
hashed first. During Initialize (), MixHash() is called on any pre-message
public keys, as described in Section 5.3.

The following handshake pattern describes a handshake where the initiator has
pre-knowledge of the responder’s static public key and uses it for “zero-RTT”
encryption:

NK:
<-'s
-> e, es
<- e, ee

In the following handshake pattern both parties have pre-knowledge of the other’s
static public key. The initiator’s pre-message is listed first:

KK:

16

7.2. Alice and Bob

In all handshake patterns shown previously, the initiator is the party on the left
(sending with right-pointing arrows) and the responder is the party on the right.

However, multiple Noise protocols might be used within a compound protocol
where the responder in one Noise protocol becomes the initiator for a later
Noise protocol. As a convenience for terminology and notation in this case, we
introduce the notion of Alice and Bob roles which are different from initiator
and responder roles. Alice will be viewed as the party on the left (sending
messages with right arrows), and Bob will be the party on the right.

Handshake patterns written in canonical form (i.e. Alice-initiated form)
assume the initiator is Alice (the left-most party). All processing rules and
discussion so far have assumed canonical-form handshake patterns.

However, handshake patterns can be written in Bob-initiated form by reversing
the arrows and the DH tokens (e.g. replacing "es" with "se", and vice versa).
This doesn’t change the handshake pattern, it simply makes it easier to view
Alice-initiated and Bob-initiated handshakes side-by-side.

Below are the handshake patterns from the previous section in Bob-initiated
form:

NN:

<- e

-> e, ee
XX:

<- e

-> e, ee, 8, se

<- s, es
NK:

-> s

<- e, se

-> e, ee
KK:

<_

->

<- e, se, ss
-> e, ee, es

For an example of Bob-initiated notation, see Section 10.2.

17

7.3. Handshake pattern validity

Handshake patterns must be valid in the following senses:

1. Parties can only perform DH between private keys and public keys they
possess.

2. Parties must not send their static public key or ephemeral public key more
than once per handshake (i.e. including the pre-messages, there must be
no more than one occurrence of "e", and one occurrence of "s", in the
messages sent by any party).

3. Parties must not perform a DH calculation more than once per handshake
(i.e. there must be no more than one occurrence of "ee", "es", "se", or
"ss" per handshake).

4. After performing a DH between a remote public key (either static or
ephemeral) and the local static key, the local party must not call ENCRYPT ()
unless it has also performed a DH between its local ephemeral key and
the remote public key. In particular, this means that (using canonical
notation):

After an "se" token, the initiator must not send a handshake payload or
transport payload unless there has also been an "ee" token.

After an "ss" token, the initiator must not send a handshake payload or
transport payload unless there has also been an "es" token.

After an "es" token, the responder must not send a handshake payload or
transport payload unless there has also been an "ee" token.

After an "ss" token, the responder must not send a handshake payload or
transport payload unless there has also been an "se" token.

Patterns failing the first check are obviously nonsense.

The second and third checks outlaw redundant transmission of values, and
redundant computation, to simplify implementation and testing.

The fourth check accomplishes two purposes:

e First, it is necessary because Noise relies on DH outputs involving ephemeral
keys to randomize the shared secret keys. Patterns failing this check could
result in catastrophic key reuse, because the victim might send a message
encrypted with a key that doesn’t include a contribution from their local
ephemeral key (or where the contribution from their local ephemeral was
nullified by an invalid ephemeral from the other party).

e Second, this check guarantees that ephemeral keys are used to provide
important security properties such as forward-secrecy and key-compromise
impersonation resistance.

18

Users are recommended to only use the handshake patterns listed below, or other
patterns that have been vetted by experts to satisfy the above checks.

7.4. One-way handshake patterns

The following handshake patterns represent “one-way” handshakes supporting a
one-way stream of data from a sender to a recipient. These patterns could be
used to encrypt files, database records, or other non-interactive data streams.

Following a one-way handshake the sender can send a stream of transport
messages, encrypting them using the first CipherState returned by Split().
The second CipherState from Split() is discarded - the recipient must not
send any messages using it (as this would violate the rules in Section 7.3).

One-way patterns are named with a single character, which indicates the status
of the sender’s static key:

e N = No static key for sender
e K = Static key for sender Known to recipient
e X = Static key for sender Xmitted (“transmitted”) to recipient

-> e, es, ss

-> e, es, s, Ss

N is a conventional DH-based public-key encryption. The other patterns add
sender authentication, where the sender’s public key is either known to the
recipient beforehand (K) or transmitted under encryption (X).

19

7.5. Interactive handshake patterns (fundamental)

The following handshake patterns represent interactive protocols. These 12
patterns are called the fundamental interactive handshake patterns.

The fundamental interactive patterns are named with two characters, which
indicate the status of the initiator and responder’s static keys:

The first character refers to the initiator’s static key:

N = No static key for initiator

K = Static key for initiator Known to responder

X = Static key for initiator Xmitted (“transmitted”) to responder

I = Static key for initiator Immediately transmitted to responder, despite
reduced or absent identity hiding

The second character refers to the responder’s static key:

e N = No static key for responder
e X = Static key for responder Known to initiator
e X = Static key for responder Xmitted (“transmitted”) to initiator

20

€,

e,

€,

ee

es
ee

ee,

ee
se

es
ee
se

ee,
se

S,

es

es

<- e, ee, se

KK:
-> s
<-'s8
-> e, es, ss
<- e, ee, se

-> e
<- e, ee, se, s,

-> e, s
<- e, ee, se

es

es

21

The XX pattern is the most generically useful, since it supports mutual authenti-
cation and transmission of static public keys.

All fundamental patterns allow some encryption of handshake payloads:

e Patterns where the initiator has pre-knowledge of the responder’s static
public key (i.e. patterns ending in K) allow zero-RTT encryption, meaning
the initiator can encrypt the first handshake payload.

e All fundamental patterns allow half-RTT encryption of the first response
payload, but the encryption only targets an initiator static public key in
patterns starting with K or I.

The security properties for handshake payloads are usually weaker than the final
security properties achieved by transport payloads, so these early encryptions
must be used with caution.

In some patterns the security properties of transport payloads can also vary. In
particular: patterns starting with X or I have the caveat that the responder is
only guaranteed “weak” forward secrecy for the transport messages it sends until
it receives a transport message from the initiator. After receiving a transport
message from the initiator, the responder becomes assured of “strong” forward
secrecy.

More analysis of these payload security properties is in Section 7.7.

7.6. Interactive handshake patterns (deferred)

The fundamental handshake patterns in the previous section perform DH opera-
tions for authentication ("es" and "se") as early as possible.

An additional set of handshake patterns can be described which defer these
authentication DHs to the next message. To name these deferred handshake
patterns, the numeral “1” is used after the first and/or second character in
a fundamental pattern name to indicate that the initiator and/or responder’s
authentication DH is deferred to the next message.

Deferred patterns might be useful for several reasons:

e The initiator might have prior knowledge of the responder’s static public
key, but not wish to send any 0-RTT encrypted data.

e In some cases, deferring authentication can improve the identity-hiding
properties of the handshake (see Section 7.8).

e Future extensions to Noise might be capable of replacing DH operations
with signatures or KEM ciphertexts, but would only be able to do so
if the sender is authenticating themselves (signatures) or the sender is
authenticating the recipient (KEM ciphertexts). Thus every fundamental
handshake pattern is only capable of having each authentication DH

22

replaced with a signature or KEM ciphertext, but the deferred variants
make both replacements possible.

Below are two examples showing a fundamental handshake pattern on the left,
and deferred variant(s) on the right. The full set of 23 deferred handshake
patterns are in the Appendix.

NK NK1:
<- s <-'s
-> e, es -> e
<- e, ee <- e, ee, es
XX X1X
-> e -> e
<- e, ee, s, €s <- e, ee, s, es
-> s, se -> s
<- se
XX1:
-> e

<- e, ee, s
-> es, s, se

X1X1:
-> e
<- e, ee, S
-> es, S
<- se

7.7. Payload security properties

The following table lists the security properties for Noise handshake and transport
payloads for all the one-way patterns in Section 7.4 and the fundamental patterns
in Section 7.5. Each payload is assigned a “source” property regarding the degree
of authentication of the sender provided to the recipient, and a “destination”
property regarding the degree of confidentiality provided to the sender.

The source properties are:

0. No authentication. This payload may have been sent by any party,
including an active attacker.

23

. Sender authentication vulnerable to key-compromise imperson-

ation (KCI). The sender authentication is based on a static-static DH
("ss") involving both parties’ static key pairs. If the recipient’s long-term
private key has been compromised, this authentication can be forged. Note
that a future version of Noise might include signatures, which could improve
this security property, but brings other trade-offs.

Sender authentication resistant to key-compromise imperson-
ation (KCI). The sender authentication is based on an ephemeral-static
DH ("es" or "se") between the sender’s static key pair and the recipient’s
ephemeral key pair. Assuming the corresponding private keys are secure,
this authentication cannot be forged.

The destination properties are:

0.
1.

No confidentiality. This payload is sent in cleartext.

Encryption to an ephemeral recipient. This payload has forward
secrecy, since encryption involves an ephemeral-ephemeral DH ("ee").
However, the sender has not authenticated the recipient, so this payload
might be sent to any party, including an active attacker.

Encryption to a known recipient, forward secrecy for sender
compromise only, vulnerable to replay. This payload is encrypted
based only on DHs involving the recipient’s static key pair. If the recipient’s
static private key is compromised, even at a later date, this payload can be
decrypted. This message can also be replayed, since there’s no ephemeral
contribution from the recipient.

Encryption to a known recipient, weak forward secrecy. This
payload is encrypted based on an ephemeral-ephemeral DH and also an
ephemeral-static DH involving the recipient’s static key pair. However,
the binding between the recipient’s alleged ephemeral public key and the
recipient’s static public key hasn’t been verified by the sender, so the
recipient’s alleged ephemeral public key may have been forged by an active
attacker. In this case, the attacker could later compromise the recipient’s
static private key to decrypt the payload. Note that a future version of
Noise might include signatures, which could improve this security property,
but brings other trade-offs.

Encryption to a known recipient, weak forward secrecy if the
sender’s private key has been compromised. This payload is en-
crypted based on an ephemeral-ephemeral DH, and also based on an
ephemeral-static DH involving the recipient’s static key pair. However, the
binding between the recipient’s alleged ephemeral public and the recipient’s
static public key has only been verified based on DHs involving both those
public keys and the sender’s static private key. Thus, if the sender’s static
private key was previously compromised, the recipient’s alleged ephemeral
public key may have been forged by an active attacker. In this case, the

24

attacker could later compromise the intended recipient’s static private key
to decrypt the payload (this is a variant of a “KCI” attack enabling a
“weak forward secrecy” attack). Note that a future version of Noise might
include signatures, which could improve this security property, but brings
other trade-offs.

5. Encryption to a known recipient, strong forward secrecy. This
payload is encrypted based on an ephemeral-ephemeral DH as well as an
ephemeral-static DH with the recipient’s static key pair. Assuming the
ephemeral private keys are secure, and the recipient is not being actively
impersonated by an attacker that has stolen its static private key, this
payload cannot be decrypted.

For one-way handshakes, the below-listed security properties apply to the hand-
shake payload as well as transport payloads.

For interactive handshakes, security properties are listed for each handshake
payload. Transport payloads are listed as arrows without a pattern. Transport
payloads are only listed if they have different security properties than the previous
handshake payload sent from the same party. If two transport payloads are
listed, the security properties for the second only apply if the first was received.

Source Destination

N 0 2
K 1 2
X 1 2
NN

-> e 0 0

<- e, ee 0 1

-> 0 1

25

e, es 0
e, ee 2
0
e 0
e, ee, s, es 2
0
e 0
e, ee 0
s, se 2
0
s
e, es 0
e, ee 2
s, se 2
2
e 0
e, ee, s, es 2
s, se 2
2
s
e 0
e, ee, se 0
2
0

26

oo —» O g o= N g = = O o~ O o= N

g = w o

KK

KX

e, es, SsS
e, ee, se

e, ee, se, s, es

e, s
e, ee, se

e, ee, se

e, s
e, ee, se, s, es

N NN O N NN -

O N OO

N NN -

N NN O

oo N g = w o o o1 w o g o N

o o1 w o

27

7.8. Identity hiding

The following table lists the identity-hiding properties for all the one-way hand-
shake patterns in Section 7.4 and the fundamental handshake patterns in Section
7.5. In addition, we list a few deferred handshake patterns which have different
identity-hiding properties than the corresponding fundamental pattern.

Each pattern is assigned properties describing the confidentiality supplied to
the initiator’s static public key, and to the responder’s static public key. The
underlying assumptions are that ephemeral private keys are secure, and that
parties abort the handshake if they receive a static public key from the other
party which they don’t trust.

This section only considers identity leakage through static public key fields in
handshakes. Of course, the identities of Noise participants might be exposed
through other means, including payload fields, traffic analysis, or metadata such
as IP addresses.

The properties for the relevant public key are:
0. Transmitted in clear.

1. Encrypted with forward secrecy, but can be probed by an anonymous
initiator.

2. Encrypted with forward secrecy, but sent to an anonymous responder.

3. Not transmitted, but a passive attacker can check candidates for the
responder’s private key and determine whether the candidate is correct. An
attacker could also replay a previously-recorded message to a new responder
and determine whether the two responders are the “same” (i.e. are using
the same static key pair) by whether the recipient accepts the message.

4. Encrypted to responder’s static public key, without forward secrecy. If an
attacker learns the responder’s private key they can decrypt the initiator’s
public key.

5. Not transmitted, but a passive attacker can check candidates for the pair
of (responder’s private key, initiator’s public key) and learn whether the
candidate pair is correct.

6. Encrypted but with weak forward secrecy. An active attacker who pretends
to be the initiator without the initiator’s static private key, then later
learns the initiator private key, can then decrypt the responder’s public
key.

7. Not transmitted, but an active attacker who pretends to be the initator
without the initiator’s static private key, then later learns a candidate for
the initiator private key, can then check whether the candidate is correct.

8. Encrypted with forward secrecy to an authenticated party.

28

9. An active attacker who pretends to be the initiator and records a single
protocol run can then check candidates for the responder’s public key.

Initiator Responder
N - 3
K 5 5
X 4 3
NN - -
NK - 3
NK1 - 9
NX - 1
XN 2 -
XK 8 3
XK1 8 9
XX 8 1
KN 7 -
KK 5 5

29

KX

IN

IK

IK1

IX

30

8. Protocol names and modifiers

To produce a Noise protocol name for Initialize() you concatenate the
ASCII string "Noise_" with four underscore-separated name sections which
sequentially name the handshake pattern, the DH functions, the cipher functions,
and then the hash functions. The resulting name must be 255 bytes or less.
Examples:

e Noise_XX_25519_AESGCM_SHA256
e Noise_N_25519_ChaChaPoly_BLAKE2s
e Noise_IK_448_ChaChaPoly_BLAKE2b

Each name section must consist only of alphanumeric characters (i.e. characters
in one of the ranges "A"..."Z", "a"..."z", and "0"..."9"), and the two special
characters "+" and "/".

Additional rules apply to each name section, as specified below.

8.1. Handshake pattern name section

A handshake pattern name section contains a handshake pattern name plus a
sequence of zero or more pattern modifiers.

The handshake pattern name must be an uppercase ASCII string containing
only alphabetic characters or numerals (e.g. "XX1" or "IK").

Pattern modifiers specify arbitrary extensions or modifications to the behavior
specified by the handshake pattern. For example, a modifier could be applied to
a handshake pattern which transforms it into a different pattern according to
some rule. The "pskO" and "fallback" modifiers are examples of this, and will
be defined later in this document.

A pattern modifier is named with a lowercase alphanumeric ASCII string which
must begin with an alphabetic character (not a numeral). The pattern modifier
is appended to the base pattern as described below:

The first modifier added onto a base pattern is simply appended. Thus the
"fallback" modifier, when added to the "XX" pattern, produces "XXfallback".
Additional modifiers are separated with a plus sign. Thus, adding the "psk0"
modifier would result in the name section "XXfallback+psk0", or a full protocol
name such as "Noise_XXfallback+pskO_25519_AESGCM_SHA256".

In some cases the sequential ordering of modifiers will specify different proto-
cols. However, if the order of some modifiers does not matter, then they are
required to be sorted alphabetically (this is an arbitrary convention to ensure
interoperability).

31

8.2. Cryptographic algorithm name sections

The rules for the DH, cipher, and hash name sections are identical. Each name
section must contain one or more algorithm names separated by plus signs.

Each algorithm name must consist solely of alphanumeric characters and the
forward-slash character ("/"). Algorithm names are recommended to be short,
and to use the "/" character only when necessary to avoid ambiguity (e.g.
"SHA3/256" is preferable to "SHA3256").

In most cases there will be a single algorithm name in each name section (i.e. no
plus signs). Multiple algorithm names are only used when called for by the
pattern or a modifier.

None of the patterns or modifiers in this document require multiple algorithm
names in any name section. However, this functionality might be useful in
future extensions. For example, multiple algorithm names might be used in the
DH section to specify “hybrid” post-quantum forward secrecy; or multiple hash
algorithms might be specified for different purposes.

9. Pre-shared symmetric keys

Noise provides a pre-shared symmetric key or PSK mode to support proto-
cols where both parties have a 32-byte shared secret key.

9.1. Cryptographic functions

PSK mode uses the SymmetricState.MixKeyAndHash() function to mix the
PSK into both the encryption keys and the h value.

Note that MixKeyAndHash () uses HKDF (..., 3). The third output from HKDF ()
is used as the k value so that calculation of k may be skipped if k is not used.

9.2. Handshake tokens

In a PSK handshake, a "psk" token is allowed to appear one or more times
in a handshake pattern. This token can only appear in message patterns (not
pre-message patterns). This token is processed by calling MixKeyAndHash (psk),
where psk is a 32-byte secret value provided by the application.

In non-PSK handshakes, the "e" token in a pre-message pattern or message
pattern always results in a call to MixHash(e.public_key). In a PSK handshake,
all of these calls are followed by MixKey(e.public_key). In conjunction with
the validity rule in the next section, this ensures that PSK-based encryption
uses encryption keys that are randomized using ephemeral public keys as nonces.

32

9.3. Validity rule

To prevent catastrophic key reuse, handshake patterns using the "psk" token
must follow an additional validity rule:

e A party may not send any encrypted data after it processes a "psk" token
unless it has previously sent an ephemeral public key (an "e" token), either
before or after the "psk" token.

This rule guarantees that a k derived from a PSK will never be used for encryption
unless it has also been randomized by MixKey (e.public_key) using a self-chosen
ephemeral public key.

9.4. Pattern modifiers

To indicate PSK mode and the placement of the "psk" token, pattern modifiers
are used (see Section 8). The modifier pskO0 places a "psk" token at the beginning
of the first handshake message. The modifiers pskl, psk2, etc., place a "psk"
token at the end of the first, second, etc., handshake message.

Any pattern using one of these modifiers must process tokens according to the
rules in Section 9.2, and must follow the validity rule in Section 9.3.

The table below lists some unmodified one-way patterns on the left, and the
recommended PSK pattern on the right:

N: NpskO:
<-'s <-'s
-> e, es -> psk, e, es
K: KpskO:
-> s -> s
<-'s <-'s
-> e, es, ss -> psk, e, es, ss
X: Xpskl:
<-'s <-'s
-> e, es, s, Ss -> e, es, s, ss, psk

33

Note that the psk1 modifier is recommended for X. This is because X transmits the
initiator’s static public key. Because PSKs are typically pairwise, the responder
likely cannot determine the PSK until it has decrypted the initiator’s static
public key. Thus, psk1 is likely to be more useful here than psko.

Following similar logic, we can define the most likely interactive PSK patterns:

NN: NNpskO:

-> e -> psk, e

<- e, ee <- e, ee
NN: NNpsk2:

-> e -> e

<- e, ee <- e, ee, psk
NK: NKpskO:

<-'s <-'s

-> e, es -> psk, e, es

<- e, ee <- e, ee
NK: NKpsk2:

<-'s <-'s

-> e, es -> e, es

<- e, ee <- e, ee, psk
NX: NXpsk2:

-> e -> e

<- e, ee, s, es <- e, ee, s, es, psk
XN: XNpsk3:

-> e -> e

<- e, ee <- e, ee

-> s, se -> s, se, psk

34

KK:

€,

es
ee
se

ee,
se

ee,

ee,

es,
ee,

es,
ee,

S,

se

se

SSs
se

Ss
se

es

, €s
, ee
, se, psk

, ee, s, es
, se, psk

KNpskO:

->

S

-> psk, e

<_

e, ee, se

KNpsk2:

->

->
<-

S

e
e, ee, se, psk

KKpskO:

35

->
<-

S
S

-> psk, e, es, ss

<_

e, ee, se

e, es, ss
e, ee, se, psk

KX: KXpsk2:

-> s -> s
-> e -> e
<- e, ee, se, s, es <- e, ee, se, s, es, psk
IN: INpskil:
-> e, s -> e, s, psk
<- e, ee, se <- e, ee, se
IN INpsk2
-> e, s -> e, s
<- e, ee, se <- e, ee, se, psk
IK IKpsk1
<-'s <-'s
-> e, es, 8, Ss -> e, es, s, ss, psk
<- e, ee, se <- e, ee, se
IK IKpsk2
<- s <- s
-> e, es, 8, sSs -> e, es, 8, sSs
<- e, ee, se <- e, ee, se, psk
IX IXpsk2
-> e, s -> e, s
<- e, ee, se, s, es <- e, ee, se, s, es, psk

The above list does not exhaust all possible patterns that can be formed with
these modifiers. In particular, any of these PSK modifiers can be safely applied
to any previously named pattern, resulting in patterns like IKpskO, KKpsk1, or
even XXpskO+psk3, which aren’t listed above.

This still doesn’t exhaust all the ways that "psk" tokens could be used outside
of these modifiers (e.g. placement of "psk" tokens in the middle of a message
pattern). Defining additional PSK modifiers is outside the scope of this document.

36

10. Compound protocols

10.1. Rationale for compound protocols

So far we’ve assumed Alice and Bob wish to execute a single Noise protocol
chosen by the initiator (Alice). However, there are a number of reasons why Bob
might wish to switch to a different Noise protocol after receiving Alice’s first
message. For example:

e Alice might have chosen a Noise protocol based on a cipher, DH function,
or handshake pattern which Bob doesn’t support.

e Alice might have sent a “zero-RTT” encrypted initial message based on an
out-of-date version of Bob’s static public key or PSK.

Handling these scenarios requires a compound protocol where Bob switches
from the initial Noise protocol chosen by Alice to a new Noise protocol. In such a
compound protocol the roles of initiator and responder would be reversed - Bob
would become the initiator of the new Noise protocol, and Alice the responder.

Compound protocols introduce significant complexity as Alice needs to advertise
the Noise protocol she is beginning with and the Noise protocol(s) she is capable
of switching to, and both parties have to negotiate a secure transition.

These details are largely out of scope for this document. However, to give an
example of how compound protocols can be constructed, and to provide some
building blocks, the following sections define a fallback modifier and show how
it can be used to create a Noise Pipe compound protocol.

Noise Pipes support the XX pattern, but also allow Alice to cache Bob’s static
public key and attempt an IK handshake with O-RTT encryption.

In case Bob can’t decrypt Alice’s initial IK message, he will switch to the
XXfallback pattern, which essentially allows the parties to complete an XX
handshake as if Alice had sent an XX initial message instead of an IK initial
message.

10.2. The fallback modifier

The fallback modifier converts an Alice-initiated pattern to a Bob-initiated
pattern by converting Alice’s initial message to a pre-message that Bob must
receive through some other means (e.g. via an initial IK message from Alice).
After this conversion, the rest of the handshake pattern is interpreted as a
Bob-initiated handshake pattern.

For example, here is the fallback modifier applied to XX to produce XXfallback:

37

XX:
-> e
<- e, ee, 8, es

-> s, se

XXfallback:
-> e

<- e, ee, s, es
-> s, se

Note that fallback can only be applied to handshake patterns in Alice-initiated
form where Alice’s first message is capable of being interpreted as a pre-message
(i.e. it must be either "e", "s", or "e, s").

10.3. Zero-RTT and Noise protocols

A typical compound protocol for zero-RTT encryption involves three different
Noise protocols:

e A full protocol is used if Alice doesn’t possess stored information about
Bob that would enable zero-RTT encryption, or doesn’t wish to use the
zero-RTT handshake.

e A zero-RTT protocol allows encryption of data in the initial message.

e A switch protocol is triggered by Bob if he can’t decrypt Alice’s first
zero-RTT handshake message.

There must be some way for Bob to distinguish the full versus zero-RTT cases
on receiving the first message. If Alice makes a zero-RTT attempt, there must
be some way for her to distinguish the zero-RTT versus switch cases on receiving
the response.

For example, each handshake message could be preceded by some negotiation
data, such as a type byte (see Section 13). This data is not part of the Noise
message proper, but signals which Noise protocol is being used.

10.4. Noise Pipes

This section defines the Noise Pipe compound protocol. The following hand-
shake patterns satisfy the full, zero-RTT, and switch roles discussed in the
previous section, so can be used to provide a full handshake with a simple
zero-RT'T option:

38

-> e, es, s, Ss
<- e, ee, se

XXfallback:
-> e

<- e, ee, s, es
-> s, se

The XX pattern is used for a full handshake if the parties haven’t communicated
before, after which Alice can cache Bob’s static public key.

The IK pattern is used for a zero-RTT handshake.

The XXfallback pattern is used for a switch handshake if Bob fails to decrypt
an initial IK message (perhaps due to having changed his static key).

10.5. Handshake indistinguishability

Parties might wish to hide from an eavesdropper which type of handshake they
are performing. For example, suppose parties are using Noise Pipes, and want
to hide whether they are performing a full handshake, zero-RTT handshake, or
fallback handshake.

This is fairly easy:

e The first three messages can have their payloads padded with random
bytes to a constant size, regardless of which handshake is executed.

e Bob will attempt to decrypt the first message as an IK message, and will
switch to XXfallback if decryption fails.

e An Alice who sends an IK initial message can use trial decryption to
differentiate between a response using IK or XXfallback.

e An Alice attempting a full handshake will send an ephemeral public key,
then random padding, and will use XXfallback to handle the response.
Note that XX isn’t used, because the server can’t distinguish an XX message
from a failed IK attempt by using trial decryption.

39

This leaves the Noise ephemeral public keys in the clear. Ephemeral public keys
are randomly chosen DH public values, but they will typically have enough struc-
ture that an eavesdropper might suspect the parties are using Noise, even if the
eavesdropper can’t distinguish the different handshakes. To make the ephemerals
indistinguishable from random byte sequences, techniques like Elligator [5] could
be used.

11. Advanced features

11.1. Dummy keys

Consider a protocol where an initiator will authenticate herself if the responder
requests it. This could be viewed as the initiator choosing between patterns like
NX and XX based on some value inside the responder’s first handshake payload.

Noise doesn’t directly support this. Instead, this could be simulated by always
executing XX. The initiator can simulate the NX case by sending a dummy static
public key if authentication is not requested. The value of the dummy public
key doesn’t matter.

This technique is simple, since it allows use of a single handshake pattern. It
also doesn’t reveal which option was chosen from message sizes or computation
time. It could be extended to allow an XX pattern to support any permutation
of authentications (initiator only, responder only, both, or none).

Similarly, dummy PSKs (e.g. a PSK of all zeros) would allow a protocol to
optionally support PSKs.

11.2. Channel binding

Parties might wish to execute a Noise protocol, then perform authentication at
the application layer using signatures, passwords, or something else.

To support this, Noise libraries may call GetHandshakeHash () after the hand-
shake is complete and expose the returned value to the application as a hand-
shake hash which uniquely identifies the Noise session.

Parties can then sign the handshake hash, or hash it along with their password,
to get an authentication token which has a “channel binding” property: the
token can’t be used by the receiving party with a different sesssion.

11.3. Rekey

Parties might wish to periodically update their cipherstate keys using a one-way
function, so that a compromise of cipherstate keys will not decrypt older messages.

40

Periodic rekey might also be used to reduce the volume of data encrypted under
a single cipher key (this is usually not important with good ciphers, though note
the discussion on AESGCM data volumes in Section 14).

To enable this, Noise supports a Rekey () function which may be called on a
CipherState.

It is up to to the application if and when to perform rekey. For example:

e Applications might perform continuous rekey, where they rekey the
relevant cipherstate after every transport message sent or received. This
is simple and gives good protection to older ciphertexts, but might be
difficult for implementations where changing keys is expensive.

e Applications might rekey a cipherstate automatically after it has has been
used to send or receive some number of messages.

e Applications might choose to rekey based on arbitrary criteria, in which
case they signal this to the other party by sending a message.

Applications must make these decisions on their own; there are no pattern
modifiers which specify rekey behavior.

Note that rekey only updates the cipherstate’s k value, it doesn’t reset the
cipherstate’s n value, so applications performing rekey must still perform a new
handshake if sending 254 or more transport messages.

11.4. Out-of-order transport messages

In some use cases, Noise transport messages might be lost or arrive out-of-order
(e.g. when messages are sent over UDP). To handle this, an application protocol
can send the n value used for encrypting each transport message alongside that
message. On receiving such a message the recipient would call the SetNonce ()
function on the receiving CipherState using the received n value.

Recipients doing this must track the received n values for which decryption was
successful and reject any message which repeats such a value, to prevent replay
attacks.

Note that lossy and out-of-order message delivery introduces many other concerns
(including out-of-order handshake messages and denial of service risks) which
are outside the scope of this document.

11.5. Half-duplex protocols
In some application protocols the parties strictly alternate sending messages.

In this case Noise can be used in a half-duplex mode [6] where the first
CipherState returned by Split() is used for encrypting messages in both

41

directions, and the second CipherState returned by Split () is unused. This
allows some small optimizations, since Split() only has to calculate a single
output CipherState, and both parties only need to store a single CipherState
during the transport phase.

This feature must be used with extreme caution. In particular, it would be a
catastrophic security failure if the protocol is not strictly alternating and both
parties encrypt different messages using the same CipherState and nonce value.

12. DH functions, cipher functions, and hash
functions

12.1. The 25519 DH functions

e GENERATE_KEYPAIR(): Returns a new Curve25519 key pair.

e DH(keypair, public_key): Executes the Curve25519 DH function (aka
“X25519” in [7]). Invalid public key values will produce an output of all
Z€ros.

Alternatively, implementations are allowed to detect inputs that produce an
all-zeros output and signal an error instead. This behavior is discouraged
because it adds complexity and implementation variance, and does not
improve security. This behavior is allowed because it might match the
behavior of some software.

e DHLEN = 32

12.2. The 448 DH functions

e GENERATE_KEYPAIR(): Returns a new Curved48 key pair.

e DH(keypair, public_key): Executes the Curve448 DH function (aka
“X448” in [7]). Invalid public key values will produce an output of all zeros.

Alternatively, implementations are allowed to detect inputs that produce an
all-zeros output and signal an error instead. This behavior is discouraged
because it adds complexity and implementation variance, and does not
improve security. This behavior is allowed because it might match the
behavior of some software.

e DHLEN = 56

42

12.3. The ChaChaPoly cipher functions

e ENCRYPT(k, n, ad, plaintext) / DECRYPT(k, n, ad, ciphertext):
AEAD_CHACHA20_POLY1305 from [8]. The 96-bit nonce is formed by
encoding 32 bits of zeros followed by little-endian encoding of n. (Earlier
implementations of ChaCha20 used a 64-bit nonce; with these implemen-
tations it’s compatible to encode n directly into the ChaCha20 nonce
without the 32-bit zero prefix).

12.4. The AESGCM cipher functions

e ENCRYPT(k, n, ad, plaintext) / DECRYPT(k, n, ad, ciphertext):
AES256 with GCM from [9] with a 128-bit tag appended to the ciphertext.
The 96-bit nonce is formed by encoding 32 bits of zeros followed by
big-endian encoding of n.

12.5. The SHA256 hash function
e HASH(input): SHA-256 from [10].

e HASHLEN = 32
e BLOCKLEN = 64

12.6. The SHA512 hash function
e HASH(input): SHA-512 from [10].

e HASHLEN = 64
e BLOCKLEN = 128

12.7. The BLAKE2s hash function
e HASH(input): BLAKE2s from [11] with digest length 32.

e HASHLEN = 32
e BLOCKLEN = 64

12.8. The BLAKE2b hash function
e HASH(input): BLAKE2D from [11] with digest length 64.

e HASHLEN = 64
e BLOCKLEN = 128

43

13.

Application responsibilities

An application built on Noise must consider several issues:

Choosing crypto functions: The 25519 DH functions are recommended
for typical uses, though the 448 DH functions might offer extra security in
case a cryptanalytic attack is developed against elliptic curve cryptography.
The 448 DH functions should be used with a 512-bit hash like SHA512 or
BLAKE2b. The 25519 DH functions may be used with a 256-bit hash like
SHA256 or BLAKEZ2s, though a 512-bit hash might offer extra security in
case a cryptanalytic attack is developed against the smaller hash functions.
AESGCM is hard to implement with high speed and constant time in software.

Extensibility: Applications are recommended to use an extensible data
format for the payloads of all messages (e.g. JSON, Protocol Buffers). This
ensures that fields can be added in the future which are ignored by older
implementations.

Padding: Applications are recommended to use a data format for the
payloads of all encrypted messages that allows padding. This allows
implementations to avoid leaking information about message sizes. Using
an extensible data format, per the previous bullet, may be sufficient.

Session termination: Applications must consider that a sequence of
Noise transport messages could be truncated by an attacker. Applications
should include explicit length fields or termination signals inside of transport
payloads to signal the end of an interactive session, or the end of a one-way
stream of transport messages.

Length fields: Applications must handle any framing or additional length
fields for Noise messages, considering that a Noise message may be up to
65535 bytes in length. If an explicit length field is needed, applications are
recommended to add a 16-bit big-endian length field prior to each message.

Negotiation data: Applications might wish to support the transmission
of some negotiation data prior to the handshake, and/or prior to each
handshake message. Negotiation data could contain things like version
information and identifiers for Noise protocols. For example, a simple
approach would be to send a single-byte type field prior to each Noise
handshake message. More flexible approaches might send extensible struc-
tures such as protobufs. Negotiation data introduces significant complexity
and security risks such as rollback attacks (see next section).

44

14.

Security considerations

This section collects various security considerations:

Authentication: A Noise protocol with static public keys verifies that the
corresponding private keys are possessed by the participant(s), but it’s up to
the application to determine whether the remote party’s static public key is
acceptable. Methods for doing so include certificates which sign the public
key (and which may be passed in handshake payloads), preconfigured lists
of public keys, or “pinning” / “key-continuity” approaches where parties
remember public keys they encounter and check whether the same party
presents the same public key in the future.

Session termination: Preventing attackers from truncating a stream of
transport messages is an application responsibility. See previous section.

Rollback: If parties decide on a Noise protocol based on some previous
negotiation that is not included as prologue, then a rollback attack might be
possible. This is a particular risk with compound protocols, and requires
careful attention if a Noise handshake is preceded by communication
between the parties.

Static key reuse: A static key pair used with Noise should be used with
a single hash algorithm. The key pair should not be used outside of Noise,
nor with multiple hash algorithms. It is acceptable to use the static key
pair with different Noise protocols, provided the same hash algorithm is
used in all of them. (Reusing a Noise static key pair outside of Noise would
require extremely careful analysis to ensure the uses don’t compromise
each other, and security proofs are preserved).

PSK reuse: A PSK used with Noise should be used with a single hash
algorithm. The PSK should not be used outside of Noise, nor with multiple
hash algorithms.

Ephemeral key reuse: Every party in a Noise protocol must send a fresh
ephemeral public key prior to sending any encrypted data. Ephemeral keys
must never be reused. Violating these rules is likely to cause catastrophic
key reuse. This is one rationale behind the patterns in Section 7, and the
validity rules in Section 7.3. It’s also the reason why one-way handshakes
only allow transport messages from the sender, not the recipient.

Misusing public keys as secrets: It might be tempting to use a pattern
with a pre-message public key and assume that a successful handshake
implies the other party’s knowledge of the public key. Unfortunately, this
is not the case, since setting public keys to invalid values might cause
predictable DH output. For example, a Noise_NK_25519 initiator might
send an invalid ephemeral public key to cause a known DH output of all
zeros, despite not knowing the responder’s static public key. If the parties
want to authenticate with a shared secret, it should be used as a PSK.

45

Channel binding: Depending on the DH functions, it might be possible
for a malicious party to engage in multiple sessions that derive the same
shared secret key by setting public keys to invalid values that cause pre-
dictable DH output (as in the previous bullet). It might also be possible
to set public keys to equivalent values that cause the same DH output for
different inputs. This is why a higher-level protocol should use the hand-
shake hash (h) for a unique channel binding, instead of ck, as explained in
Section 11.2.

Incrementing nonces: Reusing a nonce value for n with the same key
k for encryption would be catastrophic. Implementations must carefully
follow the rules for nonces. Nonces are not allowed to wrap back to zero
due to integer overflow, and the maximum nonce value is reserved. This
means parties are not allowed to send more than 264-1 transport messages.

Protocol names: The protocol name used with Initialize() must
uniquely identify the combination of handshake pattern and crypto func-
tions for every key it’s used with (whether ephemeral key pair, static key
pair, or PSK). If the same secret key was reused with the same protocol
name but a different set of cryptographic operations then bad interactions
could occur.

Pre-shared symmetric keys: Pre-shared symmetric keys must be secret
values with 256 bits of entropy.

Data volumes: The AESGCM cipher functions suffer a gradual reduction
in security as the volume of data encrypted under a single key increases.
Due to this, parties should not send more than 2% bytes (roughly 72
petabytes) encrypted by a single key. If sending such large volumes of data
is a possibility then different cipher functions should be chosen.

Hash collisions: If an attacker can find hash collisions on prologue data
or the handshake hash, they may be able to perform “transcript collision”
attacks that trick the parties into having different views of handshake data.
It is important to use Noise with collision-resistant hash functions, and
replace the hash function at any sign of weakness.

Implementation fingerprinting: If this protocol is used in settings with
anonymous parties, care should be taken that implementations behave
identically in all cases. This may require mandating exact behavior for
handling of invalid DH public keys.

46

15. Rationales

This section collects various design rationales.

15.1. Ciphers and encryption

Cipher keys and PSKs are 256 bits because:

e 256 bits is a conservative length for cipher keys when considering cryptan-
alytic safety margins, time/memory tradeoffs, multi-key attacks, rekeying,
and quantum attacks.

e Pre-shared key length is fixed to simplify testing and implementation, and
to deter users from mistakenly using low-entropy passwords as pre-shared
keys.

Nonces are 64 bits because:
e Some ciphers only have 64 bit nonces (e.g. Salsa20).

e 64 bit nonces were used in the initial specification and implementations of
ChaCha20, so Noise nonces can be used with these implementations.

e 64 bits makes it easy for the entire nonce to be treated as an integer and
incremented.

e 96 bits nonces (e.g. in RFC 7539) are a confusing size where it’s unclear if
random nonces are acceptable.

The authentication data in a ciphertext (i.e. the authentication tag or synthetic
IV) is 128 bits because:

e Some algorithms (e.g. GCM) lose more security than an ideal MAC when
truncated.

e Noise may be used in a wide variety of contexts, including where attackers
can receive rapid feedback on whether guesses for authentication data are
correct.

e A single fixed length is simpler than supporting variable-length tags.
Ciphertexts are required to be indistinguishable from random because:

e This makes Noise protocols easier to use with random padding (for length-
hiding), or for censorship-resistant “unfingerprintable” protocols, or with
steganography. However note that ephemeral keys are likely to be distin-
guishable from random unless a technique such as Elligator [5] is used.

Rekey defaults to using encryption with the nonce 264-1 because:

47

e With AESGCM and ChaChaPoly rekey can be computed efficiently (the
“encryption” just needs to apply the cipher, and can skip calculation of the
authentication tag).

Rekey doesn’t reset n to zero because:
e Leaving n unchanged is simple.

e If the cipher has a weakness such that repeated rekeying gives rise to a
cycle of keys, then letting n advance will avoid catastrophic reuse of the
same k and n values.

e Letting n advance puts a bound on the total number of encryptions that
can be performed with a set of derived keys.

The AESGCM data volume limit is 25 bytes because:

e This is 252 AES blocks (each block is 16 bytes). The limit is based on
the risk of birthday collisions being used to rule out plaintext guesses.
The probability an attacker could rule out a random guess on a 2°6 byte
plaintext is less than 1 in 1 million (roughly (252 * 252) / 2128)

Cipher nonces are big-endian for AESGCVM, and little-endian for ChaCha20, because:
e ChaCha20 uses a little-endian block counter internally.
e AES-GCM uses a big-endian block counter internally.

e It makes sense to use consistent endianness in the cipher code.

15.2. Hash functions and hashing

The recommended hash function families are SHA2 and BLAKE2 because:
e SHAZ2 is widely available and is often used alongside AES.
e BLAKE2 is fast and similar to ChaCha20.

Hash output lengths of both 256 bits and 512 bits are supported because:

e 256-bit hashes provide sufficient collision resistance at the 128-bit security
level.

e The 256-bit hashes (SHA-256 and BLAKE2s) require less RAM, and less
computation when processing smaller inputs (due to smaller block size),
than SHA-512 and BLAKE2b.

e SHA-256 and BLAKE2s are faster on 32-bit processors than the larger
hashes, which use 64-bit operations internally.

The MixKey () design uses HKDF because:

e HKDF is well-known and HKDF “chains” are used in similar ways in other
protocols (e.g. Signal, IPsec, TLS 1.3).

48

e HKDF has a published analysis [12].

e HKDF applies multiple layers of hashing between each MixKey() input.
This “extra” hashing might mitigate the impact of hash function weakness.

HMAC is used with all hash functions instead of allowing hashes to use a more
specialized function (e.g. keyed BLAKE2), because:

e HKDF requires the use of HMAC, and some of the HKDF analysis in [12]
depends on the nested structure of HMAC.

e HMAC is widely used with Merkle-Damgard hashes such as SHA2. SHA3
candidates such as Keccak and BLAKE were required to be suitable
with HMAC. Thus, HMAC should be applicable to all widely-used hash

functions.

e HMAC applies nested hashing to process each input. This “extra” hashing
might mitigate the impact of hash function weakness.

e HMAC (and HKDF) are widely-used constructions. If some weakness is
found in a hash function, cryptanalysts will likely analyze that weakness
in the context of HMAC and HKDF.

e Applying HMAC consistently is simple, and avoids having custom designs
with different cryptanalytic properties when using different hash functions.

e HMAC is easy to build on top of a hash function interface. If a more
specialized function (e.g. keyed BLAKE2) can’t be implemented using only
the underlying hash, then it is not guaranteed to be available everywhere
the hash function is available.

MixHash() is used instead of sending all inputs directly through MixKey ()
because:

e MixHash() is more efficient than MixKey ().

e MixHash() produces a non-secret h value that might be useful to higher-
level protocols, e.g. for channel-binding.

The h value hashes handshake ciphertext instead of plaintext because:

e This ensures h is a non-secret value that can be used for channel-binding
or other purposes without leaking secret information.

e This provides stronger guarantees against ciphertext malleability.

15.3. Other

Big-endian length fields are recommended because:

e Length fields are likely to be handled by parsing code where big-endian
“network byte order” is traditional.

49

Some ciphers use big-endian internally (e.g. GCM, SHA?2).

While it’s true that Curve25519, Curve448, and ChaCha20/Poly1305 use
little-endian, these will likely be handled by specialized libraries, so there’s
not a strong argument for aligning with them.

Session termination is left to the application because:

Providing a termination signal in Noise doesn’t help the application much,
since the application still has to use the signal correctly.

For an application with its own termination signal, having a second termi-
nation signal in Noise is likely to be confusing rather than helpful.

Explicit random nonces (like TLS “Random” fields) are not used because:

16.

One-time ephemeral public keys make explicit nonces unnecessary.

Explicit nonces allow reuse of ephemeral public keys. However reusing
ephemerals (with periodic replacement) is more complicated, requires a
secure time source, is less secure in case of ephemeral compromise, and
only provides a small optimization, since key generation can be done for a
fraction of the cost of a DH operation.

Explicit nonces increase message size.

Explicit nonces make it easier to “backdoor” crypto implementations,
e.g. by modifying the RNG so that key recovery data is leaked through
the nonce fields.

IPR

The Noise specification (this document) is hereby placed in the public domain.

50

17. Acknowledgements

Noise is inspired by:

The NaCl and CurveCP protocols from Dan Bernstein et al [13], [14].

The SIGMA and HOMQV protocols from Hugo Krawczyk [15], [16].

The Ntor protocol from Ian Goldberg et al [17].

The analysis of OTR by Mario Di Raimondo et al [18].

The analysis by Caroline Kudla and Kenny Paterson of “Protocol 4” by

Simon Blake-Wilson et al [19], [20].

e Mike Hamburg’s proposals for a sponge-based protocol framework, which
led to STROBE [21], [22].

e The KDF chains used in the Double Ratchet Algorithm [23].

General feedback on the spec and design came from: Moxie Marlinspike, Jason
Donenfeld, Rhys Weatherley, Mike Hamburg, David Wong, Jake McGinty, Tiffany
Bennett, Jonathan Rudenberg, Stephen Touset, Tony Arcieri, Alex Wied, Alexey
Ermishkin, Olaoluwa Osuntokun, Karthik Bhargavan, and Nadim Kobeissi.

Helpful editorial feedback came from: Tom Ritter, Karthik Bhargavan, David
Wong, Klaus Hartke, Dan Burkert, Jake McGinty, Yin Guanhao, Nazar Mokryn-
skyi, Keziah Elis Biermann, Justin Cormack, Katriel Cohn-Gordon, and Nadim
Kobeissi.

Helpful input and feedback on the key derivation design came from: Moxie Mar-
linspike, Hugo Krawczyk, Samuel Neves, Christian Winnerlein, J.P. Aumasson,
and Jason Donenfeld.

The PSK approach was largely motivated and designed by Jason Donenfeld,
based on his experience with PSKs in WireGuard.

The deferred patterns resulted from discussions with Justin Cormack. The
pattern derivation rules in the Appendix are also from Justin Cormack.

The security properties table for deferred patterns was derived by the Noise
Explorer tool, from Nadim Kobeissi.

The rekey design benefited from discussions with Rhys Weatherley, Alexey
Ermishkin, and Olaoluwa Osuntokun.

The BLAKE2 team (in particular J.P. Aumasson, Samuel Neves, and Zooko)
provided helpful discussion on using BLAKE2 with Noise.

Jeremy Clark, Thomas Ristenpart, and Joe Bonneau gave feedback on earlier
versions.

o1

18. Appendices

18.1. Deferred patterns

The following table lists all 23 deferred handshake patterns in the right column,
with their corresponding fundamental handshake pattern in the left column. See
Section 7 for an explanation of fundamental and deferred patterns.

NK NK1:
<- s <-'s
-> e, es -> e
<- e, ee <- e, ee, es
NX NX1
-> e -> e
<- e, ee, 8, es <- e, ee, s
-> es
XN X1N
-> e -> e
<- e, ee <- e, ee
-> s, se -> s
<- se

92

XK: X1K:

-> e, es -> e, es
<- e, ee <- e, ee
-> s, se -> s

<- se

XX: X1X:
-> e -> e
<- e, ee, s, €s <- e, ee,
-> s, se -> s
<- se

<- e, ee,
-> es, s,

<- e, ee,
-> es, S
<- se

93

es

es

S,

se

es

KK:

e,

e,

ee,

es,
ee,

se

SS
Se

o4

e, ee
se

e, ee, se,

sSe

es

KX:
-> s

-> e

<- e, ee, se, s, es

99

e
€,
se

e
€,
es

ee,

ee,

S,

se,

es

S

IK:
<-'s

-> e,
<- e,

es,
ee,

S)
se

Ss

IX:
-> e, s

<- ee, se, es

€,

es,
ee

ee,

ee,

ee,

ee,

ee,
es

s

se, es
es

s, es
se, s
s

96

18.2. Security properties for deferred patterns

The following table lists the the security properties for the Noise handshake and
transport payloads for all the deferred patterns in the previous section. The
security properties are labelled using the notation from Section 7.7.

Source Destination
NK1
<- s
-> e 0
<- e, ee, es 2 1
-> 0
NX1
-> e 0 0
<- e, ee, s 0 1
-> es 0 3
-> 2 1
<- 0 5
X1N
-> e 0 0
<- e, ee 0 1
-> s 0 1
<- se 0 3
-> 2 1
X1K
<-'s8
-> e, es 0 2
<- e, ee 2 1
-> s 0 5
<- se 2 3
-> 2 5
<- 2 5

o7

XK1

O = 0w

O AN AN AN
n
o
[O]
o ©n
O 0 ©n
AU AN
I v | Vv

X1K1

O — 10 M W w

O NOANANAN

O = 1M LWwLw

O NOANANN

O — M W W

O O AN AN N

<- e, ee, s
>

-> es, s, se

<

X1X1

O = N MW LW

O O o ANANAN

98

K1iN

O —H 0

O O NN O

<- e, ee
-> se

-> e

K1K

-> s

<-'s

es

_> e’

N NN

ee, se

<- e,
-> se

KK1

-> s

<-'s

S M W w

O AN AN N

se, es

ee,

K1K1

-> s

<-'s

O = 0w

O AN AN AN

n

o

Q

o

~ Q0
O 0O w
AN LA
I v 1 Vv

99

K1X

O = 0w

O AN AN AN

n

o

n

(]

(V)

~ O
O 0 ©n
AU AN
I v | Vv

SO MM W W

O O AN AN N

K1X1

o

o

ee,

<- e,

™M 0w

N AN N

es

-> se,

O — 0

O O NN O

AN — 10w

O AN AN N

60

e, s
e, ee, se, es

e, s
e, ee, 8, es
se

e, s
e, ee, se, s
es

N NN OO N NN O N NN O N NN O

N NN OO

g0 w wo oo = O oo = O o o1 w o

g o1 w e+~ O

61

18.3. Pattern derivation rules

The following rules were used to derive the one-way, fundamental, and deferred
handshake patterns.

First, populate the pre-message contents as defined by the pattern name.

Next populate the initiator’s first message by applying the first rule from the
below table which matches. Then delete the matching rule and repeat this
process until no more rules can be applied. If this is a one-way pattern, it is now
complete.

Otherwise, populate the responder’s first message in the same way. Once no
more responder rules can be applied, then switch to the initiator’s next message
and repeat this process, switching messages until no more rules can be applied
by either party.

Initiator rules:

1. Send "e".

2. Perform "ee" if "e" has been sent, and received.

3. Perform "se" if "s" has been sent, and "e" received. If initiator authenti-
cation is deferred, skip this rule for the first message in which it applies,
then mark the initiator authentication as non-deferred.

4. Perform "es" if "e" has been sent, and "s" received. If responder authen-
tication is deferred, skip this rule for the first message in which it applies,
then mark the responder authentication as non-deferred.

5. Perform "ss" if "s" has been sent, and received, and "es" has been
performed, and this is the first message, and initiator authentication is not
deferred.

6. Send "s" if this is the first message and initiator is “I” or one-way “X”.

7. Send "s" if this is not the first message and initiator is “X”.

Responder rules:

1. Send "e".

2. Perform "ee" if "e" has been sent, and received.

3. Perform "se" if "e" has been sent, and "s" received. If initiator authenti-
cation is deferred, skip this rule for the first message in which it applies,
then mark the initiator authentication as non-deferred.

4. Perform "es" if "s" has been sent, and "e" received. If responder authen-
tication is deferred, skip this rule for the first message in which it applies,
then mark the responder authentication as non-deferred.

5. Send "s" if responder is “X”.

62

18.4. Change log

Revision 34:

Added official/unstable marking; the unstable only refers to the new
deferred patterns, the rest of this document is considered stable.

Clarified DH() definition so that the identity element is an invalid value
(not a generator), thus may be rejected.

Clarified ciphertext-indistinguishability requirement for AEAD schemes
and added a rationale.

Clarified the order of hashing pre-message public keys.

Rewrote handshake patterns explanation for clarity.

Added new validity rule to disallow repeating the same DH operation.
Clarified the complex validity rule regarding ephemeral keys and key re-use.

Removed parenthesized list of keys from pattern notation, as it was redun-
dant.

Added deferred patterns.

Renamed “Authentication” and “Confidentiality” security properties to
“Source” and “Destination” to avoid confusion.

[SECURITY] Added a new identity-hiding property, and changed
identity-hiding property 3 to discuss an identity equality-check attack.

Replaced “fallback patterns” concept with Bob-initiated pattern notation.

Rewrote section on compound protocols and pipes for clarity, including
clearer distinction between “switch protocol” and “fallback patterns”.

De-emphasized “type byte” suggestion, and added a more general discussion
of negotiation data.

[SECURITY] Added security considerations regarding static key reuse
and PSK reuse.

Added pattern derivation rules to Appendix.

63

19. References

[1] P. Rogaway, “Authenticated-encryption with Associated-data,” in Proceedings
of the 9th ACM Conference on Computer and Communications Security, 2002.
http://web.cs.ucdavis.edu/~rogaway /papers/ad.pdf

[2] Okamoto, Tatsuaki and Pointcheval, David, “The Gap-Problems: A New Class
of Problems for the Security of Cryptographic Schemes,” in Proceedings of the
4th International Workshop on Practice and Theory in Public Key Cryptography:
Public Key Cryptography, 2001. https://www.di.ens.fr/~pointche/Documents/
Papers/2001_pke.pdf

[3] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication.” Internet Engineering Task Force; RFC 2104 (Informational);
IETF, Feb-1997. http://www.ietf.org/rfc/rfc2104.txt

[4] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF).” Internet Engineering Task Force; RFC 5869 (Informa-
tional); IETF, May-2010. http://www.ietf.org/rfc/rfc5869.txt

[5] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator: Elliptic-
curve points indistinguishable from uniform random strings.” Cryptology ePrint
Archive, Report 2013/325, 2013. http://eprint.iacr.org/2013/325

[6] Markku-Juhani O. Saarinen, “Beyond Modes: Building a Secure Record
Protocol from a Cryptographic Sponge Permutation.” Cryptology ePrint Archive,
Report 2013/772, 2013. http://eprint.iacr.org/2013/772

ki

[7] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security.
Internet Engineering Task Force; RFC 7748 (Informational); IETF, Jan-2016.
http://www.ietf.org/rfc/rfc7748.txt

[8] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols.” Internet
Engineering Task Force; RFC 7539 (Informational); IETF, May-2015. http:
//www ietf.org/rfc/rfc7539.txt

[9] M. J. Dworkin, “SP 800-38D. Recommendation for Block Cipher Modes
of Operation: Galois/Counter Mode (GCM) and GMAC,” National Institute
of Standards & Technology, Gaithersburg, MD, United States, 2007. http:
//nvlpubs.nist.gov/nistpubs/Legacy/SP /nistspecialpublication800-38d.pdf

[10] NIST, “FIPS 180-4. Secure Hash Standard (SHS),” National Institute
of Standards & Technology, Gaithersburg, MD, United States, 2012. http:
//esre.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[11] M.-J. Saarinen and J.-P. Aumasson, “The BLAKE2 Cryptographic Hash and
Message Authentication Code (MAC).” Internet Engineering Task Force; RFC
7693 (Informational); IETF, Nov-2015. http://www.ietf.org/rfc/rfc7693.txt

[12] H. Krawczyk, “‘Cryptographic extraction and key derivation: The hkdf
scheme’” Cryptology ePrint Archive, Report 2010/264, 2010. http://eprint.iacr.

64

http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/2001_pkc.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/2001_pkc.pdf
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc5869.txt
http://eprint.iacr.org/2013/325
http://eprint.iacr.org/2013/772
http://www.ietf.org/rfc/rfc7748.txt
http://www.ietf.org/rfc/rfc7539.txt
http://www.ietf.org/rfc/rfc7539.txt
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.ietf.org/rfc/rfc7693.txt
http://eprint.iacr.org/2010/264

org/2010/264

[13] D. J. Bernstein, T. Lange, and P. Schwabe, “NaCl: Networking and Cryp-
tography Library.”. https://nacl.cr.yp.to/

[14] D. J. Bernstein, “CurveCP: Usable security for the Internet.. https://
curvecp.org

[15] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated
Diffie-Hellman and Its Use in the IKE Protocols,” in Advances in Cryptology -
CRYPTO 2003, 2003. http://webee.technion.ac.il/~hugo/sigma.html

[16] S. Halevi and H. Krawczyk, “One-Pass HMQV and Asymmetric Key-
Wrapping.” Cryptology ePrint Archive, Report 2010/638, 2010. http://eprint.
iacr.org/2010/638

[17] I. Goldberg, D. Stebila, and B. Ustaoglu, “Anonymity and One-way Authen-
tication in Key Exchange Protocols,” Design, Codes, and Cryptography, vol. 67,
no. 2, May 2013. http://cacr.uwaterloo.ca/techreports/2011/cacr2011-11.pdf

[18] M. Di Raimondo, R. Gennaro, and H. Krawczyk, “Secure Off-the-record
Messaging,” in Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, 2005. http://www.dmi.unict.it/diraimondo/web/wp-content/
uploads/papers/otr.pdf

[19] C. Kudla and K. G. Paterson, “Modular Security Proofs for Key Agreement
Protocols,” in Advances in Cryptology - ASTACRYPT 2005: 11th International
Conference on the Theory and Application of Cryptology and Information
Security, 2005. http://www.isg.rhul.ac.uk/~kp/ModularProofs.pdf

[20] S. Blake-Wilson, D. Johnson, and A. Menezes, “Key agreement protocols
and their security analysis,” in Crytography and Coding: 6th IMA International
Conference Cirencester, UK, December 17-19, 1997 Proceedings, 1997. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.387

b

[21] M. Hamburg, “Key Exchange and DuplexWrap-like protocols.
Noise@moderncrypto.org Mailing List, 2015. https://moderncrypto.org/
mail-archive /noise/2015/000098.html

[22] Mike Hamburg, “The STROBE protocol framework.” Cryptology ePrint
Archive, Report 2017/003, 2017. http://eprint.iacr.org/2017/003

[23] T. Perrin and M. Marlinspike, “The Double Ratchet Algorithm,” 2016.
https://whispersystems.org/docs/specifications/doubleratchet /

65

http://eprint.iacr.org/2010/264
https://nacl.cr.yp.to/
https://curvecp.org
https://curvecp.org
http://webee.technion.ac.il/~hugo/sigma.html
http://eprint.iacr.org/2010/638
http://eprint.iacr.org/2010/638
http://cacr.uwaterloo.ca/techreports/2011/cacr2011-11.pdf
http://www.dmi.unict.it/diraimondo/web/wp-content/uploads/papers/otr.pdf
http://www.dmi.unict.it/diraimondo/web/wp-content/uploads/papers/otr.pdf
http://www.isg.rhul.ac.uk/~kp/ModularProofs.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.387
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.387
https://moderncrypto.org/mail-archive/noise/2015/000098.html
https://moderncrypto.org/mail-archive/noise/2015/000098.html
http://eprint.iacr.org/2017/003
https://whispersystems.org/docs/specifications/doubleratchet/

	1. Introduction
	2. Overview
	2.1. Terminology
	2.2. Overview of handshake state machine

	3. Message format
	4. Crypto functions
	4.1. DH functions
	4.2. Cipher functions
	4.3. Hash functions

	5. Processing rules
	5.1. The CipherState object
	5.2. The SymmetricState object
	5.3. The HandshakeState object

	6. Prologue
	7. Handshake patterns
	7.1. Handshake pattern basics
	7.2. Alice and Bob
	7.3. Handshake pattern validity
	7.4. One-way handshake patterns
	7.5. Interactive handshake patterns (fundamental)
	7.6. Interactive handshake patterns (deferred)
	7.7. Payload security properties
	7.8. Identity hiding

	8. Protocol names and modifiers
	8.1. Handshake pattern name section
	8.2. Cryptographic algorithm name sections

	9. Pre-shared symmetric keys
	9.1. Cryptographic functions
	9.2. Handshake tokens
	9.3. Validity rule
	9.4. Pattern modifiers

	10. Compound protocols
	10.1. Rationale for compound protocols
	10.2. The fallback modifier
	10.3. Zero-RTT and Noise protocols
	10.4. Noise Pipes
	10.5. Handshake indistinguishability

	11. Advanced features
	11.1. Dummy keys
	11.2. Channel binding
	11.3. Rekey
	11.4. Out-of-order transport messages
	11.5. Half-duplex protocols

	12. DH functions, cipher functions, and hash functions
	12.1. The 25519 DH functions
	12.2. The 448 DH functions
	12.3. The ChaChaPoly cipher functions
	12.4. The AESGCM cipher functions
	12.5. The SHA256 hash function
	12.6. The SHA512 hash function
	12.7. The BLAKE2s hash function
	12.8. The BLAKE2b hash function

	13. Application responsibilities
	14. Security considerations
	15. Rationales
	15.1. Ciphers and encryption
	15.2. Hash functions and hashing
	15.3. Other

	16. IPR
	17. Acknowledgements
	18. Appendices
	18.1. Deferred patterns
	18.2. Security properties for deferred patterns
	18.3. Pattern derivation rules
	18.4. Change log

	19. References

