
 
Copyright © 2012 Macmillan Publishers Limited 
 
This version available http://nora.nerc.ac.uk/19573 /  
 
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
This document is the author’s final manuscript version of the journal 
article following the peer review process. Some differences between 
this and the publisher’s version may remain. You are advised to 
consult the publisher’s version if you wish to cite from this article. 
 
www.nature.com/  

   
 
 
Article (refereed) - postprint 
 
 
 
Taylor, Christopher M.; de Jeu, Richard A. M.; Guichard, Francoise; Harris, 
Phil P.; Dorigo, Wouter A.. 2012 Afternoon rain more likely over drier soils. 
Nature, 489. 423-426. 10.1038/nature11377 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contact CEH NORA team at  
noraceh@ceh.ac.uk 

 
 

The NERC and CEH  trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 



Afternoon rain more likely over drier soils 

Christopher M. Taylora, Richard A. M. de Jeub, Françoise Guichardc, Phil P. Harrisa, Wouter A. Dorigod 

 

a
 Centre for Ecology and Hydrology, Wallingford, U.K. 

b
 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 

c
 CNRM (CNRS and Météo-France), Toulouse, France 

d
 Vienna University of Technology, Vienna, Austria 

 

This paper should be cited as… 

Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo (2012), Afternoon rain more 

likely over drier soils, Nature, 489(7416), 423-426 (10.1038/nature11377) 

 

 



Land surface properties influence the partition of radiative energy between latent and sensible heat 

fluxes during daytime. A climatically important process during dry periods is the impact of soil water 

deficit on limiting evapotranspiration, leading to increased surface heating of the lower 

atmosphere1-2. Soil moisture can influence the development of convective storms through 

modification of low level atmospheric temperature and humidity1,3, which in turn feeds back on soil 

moisture. There is considerable uncertainty in how soil moisture affects convective storms across 

the world, due to both a lack of observational evidence and uncertainty in large-scale models4. Here 

we present the first global-scale observational analysis of the coupling between soil moisture and 

precipitation. This shows that across all six continents studied, afternoon rain falls preferentially over 

soils which are relatively dry compared to the surrounding area. The signal emerges most clearly in 

the observations over semi-arid regions, where surface fluxes are sensitive to soil moisture and 

convective events are frequent. We find no evidence in our analysis of a positive feedback i.e. 

preference for rain over wetter soils, at the 50-100 km scale studied. In contrast, our analysis of six 

state-of-the-art global weather and climate models demonstrates the dominance of a positive 

feedback of soil moisture on simulated precipitation. These results suggest a fundamental weakness 

in the sensitivity of convection to the land surface in large-scale models, which may contribute to 

excessive simulated droughts. 

Soil moisture influences precipitation on a range of time and space scales5. In drought-affected 

continental regions, weak evapo-transpiration leads to reduced atmospheric moisture content over 

a period of days, potentially suppressing subsequent precipitation6. When soil moisture anomalies 

are extensive, surface-induced perturbations to the atmospheric heat budget may modify synoptic 

scale circulations2, in turn affecting moisture advection from the oceans7. On smaller scales, the 

development of convective clouds and precipitation can be influenced by local surface fluxes over 

the course of the day1,3. Theoretical considerations8-9 suggest that, in an undisturbed atmosphere, 

the likelihood and sign of a surface feedback will be determined by the atmospheric profiles of 

temperature and humidity. Thus one might expect regional variations in the strength and sign of 



convective sensitivity to soil moisture10-11. Mesoscale soil moisture variability can also influence the 

feedback via the development of daytime circulations12, which provide additional convergence to 

trigger convection13-14. 

There have been a number of studies examining the impact of the land surface on observed rainfall 

in different regions of the world. Analyses in Illinois 15 and West Africa 16 have indicated positive 

correlations between antecedent soil moisture and precipitation consistent with a positive soil 

moisture feedback. A recent study17 based on observationally-constrained reanalysis data showed an 

inreasing frequency of convective rainfall when evapotranspiration was higher across much of North 

America. On the other hand, examination of satellite cloud data tend to indicate locally enhanced 

afternoon precipitation frequency over surfaces with increased sensible heat fluxes, via mesoscale 

circulations due either to soil moisture18 or vegetation cover19-20. 

At the regional scale, climate models tend to agree where feedbacks occur, these being constrained 

largely by where soil moisture limits evapotranspiration in the presence of convective activity4. The 

spread in simulated feedback strength is large however, highlighting both the uncertainty in surface 

flux sensitivity to soil moisture and the response of the Planetary Boundary Layer (PBL) and 

convection to surface fluxes21-22. Indeed, the feedback sign can change depending on model spatial 

resolution, with a strong influence of the convective parameterisation likely to be responsible 23. 

This study addresses the lack of observations to evaluate feedbacks in large-scale models. We focus 

on the least well-understood aspect of soil moisture-precipitation feedbacks, namely the response of 

daytime moist convection to soil moisture anomalies. Global observational datasets of both surface 

soil moisture24-25 and precipitation26 have become available in the last decade at a resolution of 

0.25° 0.25° on daily and 3-hourly time steps respectively.  We use these to analyse the location of 

afternoon rain events relative to the underlying antecedent soil moisture. In particular we examine 

whether rain is more likely over soils that are wetter or drier than the surrounding area. The same 

methodology is then applied to six global models used in reanalyses or climate projections. 



We focus on the development of precipitation events during the afternoon, when the sensitivity of 

convection to land conditions is expected to be maximised. An event is defined at a 0.25° 0.25° pixel 

location (Lmax) with a maximum in precipitation, centred within a box of 1.25° 1.25° (see Methods 

and Supplementary Fig. S3). Each Lmax is paired with one or more pixels within the box where 

afternoon rainfall is a minimum (Lmin). We compute the difference in pre-rain event soil moisture, 

∆Se, between Lmax and Lmin having first subtracted a climatological mean soil moisture from both 

locations. We quantify the strength of the soil moisture signal on precipitation using a sample of 

events and assess how unexpected the observed sample mean value of ∆Se is relative to a control 

sample, ∆Sc, from the same location pairs on non-event days.  More precisely, we examine the 

difference in ∆S between the event and control samples, e = mean(∆Se)  mean(∆Sc), as a percentile 

of typical  values (see Methods).  Mountainous and coastal areas are excluded because of their 

effects on mesoscale precipitation, and we are unable to analyse the observations in tropical forest 

regions due to the limitations of soil moisture retrievals beneath dense vegetation. 

The map in Figure 1 indicates regions of the world where afternoon precipitation is observed more 

frequently than expected over wet (blue) or dry (red) soils, based on analysis of e at a scale of 5°. 

Globally, 28.9% of the grid cells analysed take percentile values P<10, as compared to an expected 

frequency (assuming no feedback) of 10%, and just 3.4% with percentiles P>90. Clusters of low 

percentiles are found in semi-arid and arid regions, most notably North Africa, but also in Eastern 

Australia, Central Asia and Southern Africa. These clusters indicate a clear preference for afternoon 

rain over drier soils in those regions, consistent with a previous study over the Western Sahel18. This 

signal is also evident when computing e from all events across the world (Figure 1 insets). Further 

analysis (Supplementary Information and Tables S3 and S4) demonstrates that this signal is 

statistically significant at the 99% level over all continents and in all climate zones, with the 

exception of tropical forests, where accurate soil moisture retrievals are unavailable. We repeated 

the analysis having first degraded the spatial resolution from 0.25° to 1.0° . This produced only 



about one tenth of the number of events compared to the 0.25° data, but a statistically robust 

preference for rain over drier soil was still found across the tropics, and in particular over parts of 

North Africa and Australia (Supplementary Fig. S10, Tables S3 and S4).  

Using two alternative precipitation datasets, we found the same global preference for rain over drier 

soil and similar regions contributing to that signal (Supplementary Fig. S8, Table S3 and S4). Though 

all of the satellite-derived datasets are subject to errors at the event scale, analysing the data over 

many events should yield more accurate estimates of e. Furthermore, our approach exploits an 

aspect of rainfall which is relatively well-captured by satellite, i.e. its spatial structure. Additional 

analysis (Supplementary Information Fig. S4) indicates a strong degree of mutual consistency in the 

spatial variability of soil moisture and rainfall in our independent datasets, providing further 

evidence to support our methodology. 

We now consider whether the observed preference for rain over drier soil is consistent with land 

surface feedback. For a soil moisture feedback on precipitation, soil water deficit must limit 

evapotranspiration. This regime is found only in certain seasons and regions of the world4 where 

water stress coincides with convective activity. Low percentiles in Figure 1 occur in areas that are 

relatively dry, and originate from seasons with convective storms (Supplementary Fig. S9). Using 

data from across the globe, the sensitivity of e to the areal mean (1.25°x1.25°) soil moisture is 

explored in Figure 2a. The most negative values (rain over drier soil) are found for the driest mean 

conditions, and the signal loses significance at the 95% level above 0.20 m3m-3. This behaviour is 

consistent with soil moisture feedback as the sensitivity of sensible and latent heat fluxes to soil 

moisture increases as mean soil moisture decreases. Also, the use of surface soil moisture as a proxy 

for surface flux variability should be most effective for dry and sparsely-vegetated surfaces. 

A land feedback requires a strong diurnal sensitivity in the observed signal. We repeated our 

analysis, this time detecting the onset of precipitation at varying lag times after a soil moisture 

observation at 0130LT.  Values of e (Figure 2b) illustrate a pronounced diurnal cycle, still evident 36 



hours after the observation. The most negative values occur during daytime, in particular between 

12 and 15LT. On the other hand, between 2100 and 0300LT the opposite signal emerges, that is 

events are more likely to be defined over wetter soils. The early afternoon minimum is consistent 

with a negative soil moisture feedback on convective initiation, when the impact of surface 

properties on the PBL, convective instability, and mesoscale flows are maximised. Mechanisms to 

explain the reverse signal in the hours around midnight may be more subtle. The impact of thermals 

and daytime surface-induced flows are likely to be relatively short-lived after dusk. On the other 

hand, nocturnal humidity anomalies may persist for longer, depending on the spatial scale of the 

surface features and wind conditions. From detailed examination of individual events, it appears 

that overnight, there is an increasing influence of pre-existing, fast-moving convective systems in our 

sample, particularly in the Sahel. Distinct mechanisms will be involved in the surface interaction with 

organised convective systems which may favour a positive feedback16.  

Finally, we repeat our analysis using 3-hourly diagnostics from six global models, ranging in 

horizontal resolution from 0.5 to 2.0°. Results (Figure 3) indicate a strong preference for rain over 

wet soils for large parts of the world, in contrast to observations. Only one model (Figure 3e) 

produces more than the expected 10% of grid cells with P<10, largely due to contributions at mid-

latitudes. The cross-model signal favouring precipitation over wet soil, particularly across the tropics 

(Table S3), demonstrates a fundamental failing in the ability of convective parameterisations to 

represent land feedbacks on daytime precipitation. It is likely to be linked to the oft-reported phase 

lag in the diurnal cycle of precipitation; i.e. simulated rainfall tends to start several hours too early27, 

and possibly amplified by a lack of boundary-layer clouds in some models.  This weakness has been 

related to the crude criteria employed to trigger deep convection in large-scale models28. The onset 

of convective precipitation is overly sensitive to the daytime increase of moist convective instability, 

which is typically faster over wetter soils3, favouring a positive feedback. Early initiation limits the 

effect of other daytime processes on triggering convection in the models. Indeed, our observational 

analysis points to the importance of dry boundary-layer dynamics for this phenomenon over land. 



The observed preference for afternoon rain over locally drier soil on scales of 50 – 100 km is 

consistent with a number of regional studies based on remotely sensed data18-20. Our failure to find 

areas of positive feedback may indicate the importance of surface-induced mesoscale flows in 

triggering convection18, though the coarse spatial resolution of our datasets prevents us from 

drawing firm conclusions on this issue. Equally,mixing processes in the growth stage of convective 

clouds prior to precipitation23,29 may play an important role. Neither of these processes are captured 

in existing one-dimensional analyses8. Furthermore, our results raise questions about the ability of 

models reliant on convective parameterisations to adequately represent them. Whilst the coarser 

resolution models analysed here (HadGEM2, CNRM-CM5 and INMCM4) cannot  resolve mesoscale 

soil moisture structures, nor their potential impacts on convective triggering 18, all the models have a 

strong tendency to rain over wetter soils for which we find no observational support.  Our study 

does not however imply that the soil moisture feedback is negative at different time and space 

scales than those analysed here. The multi-day accumulation of moisture in the lower atmosphere 

from a freely-transpiring land surface may provide more favourable initial (dawn) conditions for 

daytime convection than the equivalent accumulation over a drought-affected region. Equally, the 

large-scale dynamical response to soil moisture may dominate in some regions. However, the 

erroneous sensitivity of convection schemes demonstrated here is likely to contribute to a tendency 

for large-scale models to “lock-in” dry conditions, extending droughts unrealistically, and potentially 

exaggerating the role of soil moisture feedbacks within the climate system30. 

  

Methods Summary 

Surface soil moisture retrievals are used between 60°S and 60°N from the Advanced Microwave 

Scanning Radiometer for EOS (AMSR-E; June 2002 to October 2011)24, and the MetOP Advanced 

Scatterometer (ASCAT; 2007-11)25. They have typically one overpass per pixel per day at either 0130 

or 1330 (AMSR-E) local time (LT), and 0930 or 2130LT (ASCAT). Additional soil moisture quality 



control procedures are described in Supplementary Information. The CMORPH26 3-hourly 

precipitation dataset is based on data from a combination of satellites.  

Locations of afternoon events Lmax, are defined within a box of 5x5 pixels by the maximum 

accumulated precipitation (1200-2100LT) which exceeds 3mm. Pixels with more than 1mm rain in 

the preceding hours are excluded, and an additional filter applied to remove cases close to active 

precipitation when using 1330LT soil moisture data. These steps ensure that the soil moisture 

measurement precedes the rainfall. Locations where topographic height variability exceeds 300m 

are excluded, along with regions containing water bodies or strong climatological soil moisture 

gradients. 

The control sample ∆Sc is constructed from daily soil moisture differences between locations Lmax 

and Lmin using data for the same calendar month but from non-event years. This quantifies typical 

(non-event) soil moisture differences between the locations. Each value in samples ∆Se and ∆Sc has 

an individual climatological mean ∆S subtracted that is calculated from ∆S values in the same 

calendar month in non-event years. For the models, soil moisture and rainfall accumulations are 

available every 3 hours (UTC). Because of the lower spatial resolution (0.5-2.0°), the event box is 

reduced to 3×3 pixels and the time slot between 0600 and 0859LT  adopted to calculate ∆S. 

Convective rain is accumulated in the subsequent 9 hours, several hours in the day earlier to account 

for diurnal phase bias in model precipitation.  

For further details see the Supplementary Information. 
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Figure 1: Preference for afternoon precipitation over soil moisture anomalies.  Percentiles of the 

observed variable e = mean(∆Se)  mean(∆Sc) for each 5°×5° box under a null assumption that no 

feedback exists.  Null sampling distributions of  values were estimated for each box by resampling 

without replacement from the combined set of event and non-event ∆S values.  Low (high) 

percentiles indicate where rainfall maxima occur over locally dry (wet) soil more frequently than 

expected.  Grey denotes 5°×5° cells containing fewer than 25 events. The map is based on a merging 

of two separate analyses using either ASCAT or AMSR-E soil moisture. For each 5°×5° cell, the 

relative quality of the two datasets is tested independently to determine which product is used 

(Supplementary Information Figs. S5 and S6). Insets: frequency histograms F(∆Sc) of soil moisture 

difference in the global control sample (purple; %), and the difference F(∆Se) F(∆Sc) between the 

histograms of the global event and global control samples (orange shading; %). The units of ∆S are 

m3m-3 for AMSR-E and fractional saturation for ASCAT, and total number of events (ne) noted. 



 

 



Figure 2: Sensitivities to mean soil moisture and time of day. The bars denote the anomalous pre-

storm soil moisture difference e averaged over every event globally, as a function of (a)pre-event 

soil moisture averaged over 1.25° 1.25° , and (b) time of first precipitation (at least 1mm over 3 

hours) following a soil moisture measurement at 0130LT on day 1. A negative value of e indicates a 

preference for precipitation over drier soil, and the error bars mark the 90% confidence limits. The 

number of events used is indicated by the triangles. 

 



Figure 3: Simulated preference for afternoon precipitation over soil moisture anomalies. As for 

Figure 1 but using diagnostics from integrations by four climate models (a-d) and two atmospheric 

reanalysis models (e,f). Red (blue) shading indicates convective precipitation more likely over wetter 

(drier) soils. (a) HadGEM2, (b) CNRM-CM5, (c) MRI-AGCM3-2H, (d) INMCM4, (e) MERRA and (f) ERA-

Interim. Maps of the number of events in each model are provided in Fig S11. Inset: as for Figure 1; 

∆S in units of m3m-3. Further details on the models in Supplementary Information. 
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Observational Datasets 

We use two different satellite soil moisture datasets, one derived from the Advanced Microwave 

Scanning Radiometer Earth Observing system (AMSR-E) on the Aqua satellite and another one from 

the Advanced Scatterometer (ASCAT) onboard the MetOp-A satellite. The AMSR-E soil moisture data 

set was derived from the Land Parameter Retrieval Model [Owe et al., 2008].  This model was 

developed by VU University Amsterdam in collaboration with NASA and uses a radiative transfer 

model to convert the observed brightness temperatures into volumetric soil moisture values. The 

ASCAT soil moisture product was developed by Vienna University of Technology and is based on a 

change detection algorithm [Wagner et al., 1999]. This product describes soil moisture in degrees of 

saturation. For both products, errors commonly remain below 4 volumetric percent (See Figure S2), 

although the ASCAT product is known to have difficulties over desert areas and both products 

become less accurate over dense vegetation [Dorigo et al., 2010; Parinussa et al., 2011].  

The aim of the study was to examine the impact of spatial variability in soil moisture on spatial 

variability in afternoon rainfall. The approach was to build up statistics on the location of 

precipitation maxima relative to the underlying antecedent soil moisture. We defined the spatial 

extent of our analysis based on the need to minimise the impact of large-scale atmospheric 

variability on precipitation, and thus isolate the role of contrasting soil moisture conditions. This 

implies using as small a length scale as possible, depending on the resolution of the datasets. Whilst 

the AMSR-E soil moisture product is gridded at 0.25°, the footprint of the sensor is closer to 50km 

(~0.5° near the equator). Thus we chose a box size of 5x5 pixels, the minimum size for AMSR-E to 

properly resolve soil moisture contrasts between the centre of the box and its edge. Note that the 

same box size was employed for ASCAT, which has a higher nominal resolution of 25 km. 

We employ 3 different precipitation datasets which use a combination of satellite data and, in some 

cases, surface raingauge data, to estimate precipitation at a resolution of 0.25° every 3 hours. Our 

primary precipitation dataset is the Climate Prediction Center Morphing Method (CMORPH) [Joyce 

et al., 2004] which takes data from overpasses of satellites with passive microwave sensors onboard 

as a starting point, and are available from December 2002. These relatively high quality precipitation 

estimates are typically only available several times per day. The CMORPH product combines these 

estimates with thermal-infra-red data from geostationary satellite data, which are available on sub-

hourly time scales over much of the world. The merging is done by using motion-vectors derived 

from geostationary data to propagate the microwave rainfall estimates.  This provides a physical 



basis for interpolating infrequent microwave estimates, though short-lived events may not be 

detected by CMORPH.  

To test the sensitivity of our results to precipitation datasets we use 2 alternative sources. The first is 

the TRMM3B42 product from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite 

Precipitation Analysis [Huffman et al., 2007]. This methodology uses the passive microwave data 

(mentioned above) when available for the 3-hourly estimates, and incorporating data from the 

active radar on the TRMM satellite. Infra-red data, calibrated at the monthly time scale with 

microwave overpasses, are used to fill in the gaps. Finally, the estimates are scaled to match 

monthly rain gauge observations, where they exist. At the time of analysis, TRMM3B42 data were 

available up to the end of June 2011. The third dataset we used, Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [Sorooshian et al., 2000] 

again takes the same input satellite datasets but uses a neural network approach to estimate 

precipitation. Note that unlike CMORPH and PERSIANN, the TRMM3B42 data are only available 

between 50°S and 50°N. The 3-hourly precipitation data were adjusted to local time based on linear 

interpolation according to longitude. 

These precipitation datasets have been used for a wide variety of purposes, for example the 

examination of temporal variability of rainfall [Ruane and Roads, 2007]. The datasets are known to 

each have large uncertainities [Tian and Peters-Lidard, 2010], which tend to increase at higher 

latitudes, over complex terrain, coastlines and water bodies [Tian and Peters-Lidard, 2007]. 

However, in a study comparing the products with gauge-based analyses over the United States [Tian 

et al., 2009], the contribution to total errors from false detection of events was relatively small, 

particular for CMORPH and TRMM3B42. This suggests that when we define a precipitation event 

(based on an afternoon accumulation exceeding 3mm), the probability that it really is raining is high, 

particularly having first excluded complex terrain, snow-covered surfaces and water bodies. 

Model datasets 

We used results from two meteorological reanalyses and four climate simulations (Table S1); all of 

them cover approximately the same period as the satellite observational products. ERA-Interim [Dee 

et al., 2011] and MERRA [Rienecker et al., 2011]  are two recent reanalyses whose spatial resolution 

is finer than 1°. Their differences are mostly related to distinct assimilation procedures and sets of 

physical parametrizations. For ERA-Interim, we used both the 0000 UTC and 1200 UTC forecasts and 

excluded data in the first 9 hours of the forecast to minimize spin-up and drift issues. For MERRA, 

such considerations were not relevant as a correction term based on the analysis is continuously 

added to the forecast. 

The climate simulations that we use were prepared by different research centres in the context of 

the Coupled Model Intercomparison Project Phase 5 (CMIP5; http://cmip-pcmdi.llnl.gov/cmip5/). 

We used outputs from AMIP-type simulations as they are forced by realistic oceanic boundary 

conditions for the contemporary period. Only climate models with a spatial grid finer than 2° x 2°, 

and with 3-hourly soil moisture and precipitation (convective and total) diagnostics available were 

analysed. Four models satisfied these criteria, listed in Table S1. When defining an event for the 

models, we used a much more restrictive threshold of 0.1 mm for the maximum total precipitation 

(convective and large-scale) allowed during the pre-event period, i.e.  the 3 hour time slot between 

0600 and 0859LT.  

http://cmip-pcmdi.llnl.gov/cmip5/


Model and 

modelling centre 

Type of 

simulation 

Spatial resolution 

zonal x 

meridional (°) 

Period Thickness of layer 

of soil moisture 

diagnosed [mm] 

ERA-Interim, 

ECMWF 

Reanalysis 0.703 x 0.703 2002-10 70 

MERRA, NASA Reanalysis 0.667 x 0.5 2002-10 20 

HadGEM2-A, Met 

Office Hadley 

Centre 

AMIP  1.875 x 1.25 1998-2009 100 

CNRM-CM5,  

CNRM-CERFACS 

AMIP  1.406 x 1.389 1999-2008 10 

Inmcm4, Institute 

of Numerical 

Mathematics 

AMIP  2.0 x 1.5 1989-2008 100 

MRI-AGCM3-2H, 

MRI 

AMIP  0.56 x 0.56 1999-2008 100 

Table S1 Details of models used in analysis. 

 

Additional quality control of soil moisture data 

To limit the impact of noise in the soil moisture datasets, we applied a series of quality control tests. 

Firstly, we only used data for calendar months where at least 40 observations (20 for ASCAT) from a 

particular overpass (either am or pm) were available in the entire 9½ years (5 years for ASCAT) of the 

dataset. Those pixels containing more than 5% water were excluded. These were defined using the 

water body classification in the 1km GLC2000 dataset 

http://bioval.jrc.ec.europa.eu/products/glc2000/products.php. In addition, values of soil moisture 

exceeding 0.5 m3m-3 were excluded from the AMSR-E dataset, which is known to be less accurate 

over wet soils [Champagne et al., 2010]. Even when such high values are realistic, though rare, their 

removal should have little influence on this study, focussing as it does on the impact of soil water 

deficit on rainfall via evaporation. Retrievals from ASCAT and AMSR-E in regions of tropical forest 

and complex terrain were removed. With ASCAT, we imposed a maximum threshold in the 

associated error flag of 15%, and for AMSR-E we used a similar threshold, and also incorporated a 

vegetation density product [Liu et al., 2011] to screen the data. A maximum vegetation optical depth 

threshold of 0.8 was used to mask the soil moisture values with high uncertainties [Parinussa et al., 

2011]. 

We developed a method to remove pixels of questionable quality from the soil moisture datasets, 

based on their consistency with the precipitation datasets. For each month of the year and each 

overpass (am or pm), we correlated the change in soil moisture between consecutive observations 

http://bioval.jrc.ec.europa.eu/products/glc2000/products.php


with precipitation in the intervening period. In the case of the AMSR-E data, we first excluded cases 

where rainfall was present at overpass time from the Goddard Profiling Algorithm [GPROF; 

Kummerow et al., 2001]. Only pixels with a positive linear correlation (p<0.25) were retained. This 

process removed previously unflagged pixels in months with frozen ground, wetlands and strong 

radio-frequency interference (RFI). 

We wished to exclude regions where rainfall variability could arise from fixed features, notably 

topography. To this end, we removed pixels where the range of topographic height within a box of 

size 1.25° exceeded a threshold of 300m. We used the ETOPO1 [Amante and Eakins, 2009] 

topography dataset at 1 arc-minute (0.017°) resolution for this purpose. The same mask was used 

for the coarser resolution model outputs. We also excluded areas with strong climatological soil 

moisture gradients (greater than 0.1m3m-3 per 0.25° for AMSR-E, or a saturation index greater than 

0.2 per 0.25° for ASCAT) which could potentially influence the climatological rainfall field. The spatial 

analysis presented in Figures 1 and 3 was performed using all the events within a 5° box. This spatial 

scale was chosen as providing a compromise between maximising sample size, and retaining 

adequate spatial resolution of the output.  

The January and July soil moisture climatologies for the daytime overpasses from AMSR-E and ASCAT 

are presented in Figure S1 (a-d). The Pearson regression coefficients determined from the 

correlation analysis described above are also presented (e-h) alongside the final masks used to 

identify precipitation events (i-l). Note that similar results were obtained with nocturnal overpasses. 

 

Figure S1 Characteristics and filtering of soil moisture data (overleaf). Mean soil moisture (a-d), 

Pearson correlation coefficient (r; e-h) of soil moisture with precipitation, and pixel mask (i-l) are 

shown for January and July and for both AMSR-E soil moisture [m3 m-3] and ASCAT soil moisture 

index [ ] daytime overpasses. The means and correlation coefficients are only plotted where 

significance exceeds 75% according to a Student t-test. The pixel mask (i-l) indicates where pixels 

have been excluded for the month in question due to poor correlation with rainfall, topographic 

variability, water bodies or climatological soil moisture gradients. Only pixels shaded red are used in 

the subsequent analysis. 

  



 

 

 

          

 

 

 

 

Figure S1 



Soil Moisture Errors  

Soil moisture errors exhibit strong spatial variability, mainly resulting from vegetation density and 

surface characteristics. For AMSR-E, in the regions of the world where a strong signal of rain on drier 

soil emerges at the 5° scale (e.g. the Sahel and Sahara, Central Australia, Mongolia; Figure S5a), 

random errors in soil moisture are relatively low, generally below 3% volumetric soil moisture. 

Similarly when using ASCAT data, regions with a strong signal on precipitation (Sudan, parts of 

western and southern Africa, central Asia; Fig S5b) exhibit relatively low errors, typically below 12% 

saturation. Note that these errors are representative of the annual cycle, whereas in the current 

study, we exclude months of the year containing poorer quality soil moisture data. Thus errors in soil 

moisture data used in our analysis will be lower than those depicted in Figure S2. 

 

Figure S2 Geographical distribution of soil moisture errors. Mean random errors over the period 

2007-2008, expressed as standard deviation of the absolute random deviations, based on Dorigo et 

al, [2010]. (a) AMSR-E [% volumetric soil moisture], (b) ASCAT [% saturation].   

 

 



Example rain event 

An example of the event detection method in action is provided in Figure S3, with explanation 

provided in the caption. It was chosen as it illustrates several aspects of the event detection 

technique in a single image. Note that there are often events with more than one Lmin, when zero 

afternoon precipitation is detected over multiple pixels close to Lmax , although none are shown in 

Figure S3. In such cases the mean soil moisture conditions across all Lmin pixels are used. Also note 

that overlapping of event boxes on any day is not permitted, so we were able to interpret each 

event as effectively independent. The overall results were not affected in tests where events were 

excluded when they occurred within 3° of another event on the same day. Whilst not an issue in the 

image presented in Figure S3, events were excluded where less than 50% of the pixels within the 

surrounding 1.25°x1.25° box did not contain valid soil moisture data from the relevent overpass. 

Figure S3 Detection of afternoon rain events on 28 June 2006 in West Africa. Black contours denote 

total precipitation (every 3mm, starting at 3mm) between 1200 and 2100 LT from CMORPH. Shading 

indicates soil moisture from AMSR-E [m3 m-3] detected from an overpass at 1330LT with missing 

pixels shown in yellow. Non-zero GPROF precipitation estimates at 0.25° resolution from the same 

overpass are shown by the red contour (0.1 mm hr-1). Pixels containing topographic heights ranging 

by 300m or more are enclosed by the purple contour. In this image there are 4 events detected, 

which are then centred within 5x5 pixel boxes (dashed squares). The location of precipitation 

maxima (Lmax) and minima (Lmin) are shown by triangles and circles respectively. There are 5 other 

precipitation maxima in the image which are not defined as events, each denoted by a letter. 

Maximum “A” was excluded because of late morning precipitation which exceeded the threshold of 

1 mm. No event was defined at “B” because its box overlapped another box enclosing a more 

intense precipitation maximum. The boxes surrounding maxima “C” and “D” both contain pixels 

where topographic variability exceeds the threshold of 300m whilst the boxes centred on maxima 

“D” and “E” include non-zero instantaneous precipitation rates from GPROF at the time of the soil 

moisture retrieval from the AQUA satellite. 

 

The precipitation datasets are provided in terms of total 3-hourly accumulations with no partition 

between stratiform and convective events. Our focus is on convective precipitation, and by focusing 



on afternoon events without significant morning accumulations (within a region of 1.25°x1.25°), we 

aim to suppress the number of large-scale stratiform events sampled. Similarly we make no attempt 

to filter the events by season. However, the combination of our precipitation event detection and 

soil moisture quality control produces only a small number of events at mid-latitudes during the cold 

season (Figure S10). 

Mean temporal evolution of soil moisture and precipitation about an event 

To verify the mutual consistency of the rainfall and soil moisture datasets in our methodology, we 

computed composite time sequences around each of the 73623 rain events using CMORPH and 

AMSR-E data. Figure S4 illustrates the 3-hourly data which define an afternoon rain event (12-21 

hours) at Lmax and Lmin, calculating ∆Se from observations at 1330LT. By definition, precipitation is 

much higher during the afternoon over Lmax compared to Lmin. However, the subsequent evolution of 

soil moisture at the 2 locations is based on entirely independent observations. These show that soil 

moisture rises sharply at Lmax but not Lmin. The positive soil moisture anomaly created by the rain 

event is seen to decay in subsequent days, as expected. The composite also shows that for Lmax, 

mean soil moisture has not risen relative to previous measurements, indicating that the values used 

to compute ∆Se precede the rain itself. Similar results are obtained for events defined using the 

0130LT soil moisture data. The composite sequences indicate that the soil moisture and 

precipitation datasets are fit for purpose, and that ∆Se is a measure of pre-event conditions, 

uncontaminated by the event itself. Note also that whilst the definition of an event requires a 

minimum of only 3 mm precipitation between 12 and 21LT, on average, the total 12-hour 

accumulation at Lmax exceeds 22mm. In a test with a doubled afternoon precipitation threshold (6 

mm) qualitatively similar results to Figure 1 were produced, though based on fewer events.   

Figure S4 Evolution of soil moisture and precipitation in the days either side of an event. 

Composite mean soil moisture (expressed as anomalies [m3m-3] from the pixel climatological mean; 

dashed lines) and precipitation [mm; bars] based on 34,946 events using soil moisture observations 

at 1330LT (blue box) to compute ∆Se. The events are defined by precipitation at Lmax exceeding 3mm 

between 12 and 21LT with less than 1 mm in the preceding 6 hours. Conditions at Lmax are depicted 

in black, whilst those at Lmin are shown in red. 

 



Merging of results from AMSR-E and ASCAT 

The 2 soil moisture datasets have different strengths and weaknesses [Dorigo et al., 2010]. Broadly 

speaking, the passive microwave dataset performs best in sparsely-vegetated and desert areas, but 

can be sensitive to RFI in some regions, most notably the US. For intermediate vegetation cover, the 

ASCAT product is more reliable, though this too cannot provide information over dense forest cover. 

In Figure 1 we merged results from the 2 independent percentile maps, shown in Fig. S5.  

 

 

Figure S5 Preference for afternoon precipitation over soil moisture anomalies based on two soil 

moisture datasets. As for Figure 1 except that the percentile maps are based on single soil moisture 

datasets only (a) AMSR-E (b) ASCAT.  

The merging for Figure 1 was based on a comparison of the Pearson correlation coeficients for the 

two datasets (e.g. Figure S1(e-h)) based on high frequency changes in soil moisture and 

precipitation. The comparison is depicted at the 5° scale in Figure S6. Blue areas indicate that the 

ASCAT data explains more of the variance in the precipitation than AMSR-E, and such areas 

predominate globally. As expected, AMSR-E outperforms ASCAT across semi-arid and arid zones. The 

overall pattern is remarkably consistent with a previous comparison of the 2 products based on an 

alternative methodology [Dorigo et al., 2010]. The difference in quality between the datasets is 

consistent with the broad differences in locations of low percentiles in Figure S5. This implies that a 



high quality soil moisture dataset is necessary to detect a signal in e. For example across the US, 

where RFI compromises the quality of AMSR-E data, Figure S5a indicates no pixels with a percentile 

value below 10. The ASCAT data are unaffected by RFI and eight such pixels are evident in the US 

based on that dataset (Figure S5b). On the other hand over the Saharan, Australian, and Arabian 

deserts, AMSR-E outperforms ASCAT, and many more, low percentile pixels are found in these 

deserts in Figure S5a compared to Figure S5b. 

We have used all available soil moisture data for the analysis in Figures 1 and S5. For AMSR-E, this 

means that for some of the events, soil moisture data is retrieved close in time to the event itself. 

We have used the GPROF dataset to flag out all rainfall maxima where non-zero rain is present at the 

time of the soil moisture retrieval (e.g. Figure S3). To further verify that our results are not sensitive 

to the use of daytime soil moisture data, we repeated the analysis using only 0130LT (AMSR-E) and 

2130LT (ASCAT). This reduced the number of events substantially, but the results (not shown) 

indicate the same preference for events to occur over locally drier soil. This is consistent with the 

data presented in Figure 2b which show a similar diurnal signal on the second day after the the soil 

moisture measurement as the first. 

 

 

Figure S6 Map at the 5° scale comparing the annual sum of positive Pearson correlation 

coefficients between high frequency soil moisture fluctuations and precipitation using ASCAT and 

AMSR-E data. Monthly positive regressions not significant at the 75% level have been removed. Blue 

(gold) areas indicate where that ASCAT (AMSR-E) is superior to AMSR-E (ASCAT). This binary field 

determines whether percentiles from Figure S5a (AMSR-E) or S5b (ASCAT) were plotted in Figure 1. 

Note that the level of screening for dense vegetation between the two products differs, with a high 

threshold adopted for ASCAT. This mismatch results in larger apparent correlations in AMSR-E over 

tropical forests compared to (zero) correlation for the missing ASCAT data. This difference is evident 

in Figures S1 (i) and (k). In fact neither dataset provides accurate soil moisture retrievals beneath 

dense vegetation. 



Comparison of results using different precipitation datasets 

We repeated the correlation analysis between a single soil moisture dataset (AMSR-E) and the 3 

alternative precipitation datasets. The differences in the annual means of all positive correlation 

coefficients are shown in Figure S7 and provide an indication of the quality of the precipitation 

datasets in different regions. Based on the correlations with high frequency soil moisture 

fluctuations, it appears that the CMORPH product (and to a lesser extent TRMM3B42), performs 

better across much of the mid-latitudes than PERSIANN. On the other hand, PERSIANN performs 

better by this criterion than TRMM3B42 over the humid tropics of South America and Africa. Similar 

results are obtained using ASCAT rather than AMSR-E.  

(a) (b)  

(c)  

Figure S7 Differences in precipitation products in terms of their annual sum of positive Pearson 

correlation coefficients between high frequency soil moisture fluctuations and precipitation.  (a) 

CMORPH-PERSIANN, (b) CMORPH-TRMM, and (c) TRMM-PERSIANN. The soil moisture data were 

taken from ascending (1330LT) overpasses of AMSR-E.   

We repeated our comparison of pre-event soil moisture differences ∆Se (Figure 1 main text), but 

using the 2 alternative precipitation datasets. The results (Figure S8) illustrate key features in 

common with the CMORPH analysis. Globally, precipitation is favoured over dry soils in all 3 

datasets, with Africa and Australia providing the strongest signals. The percentage of non-grey 5x5° 

cells (i.e. with at least 25 events) with percentiles less than 10 is 31.8% for TRMM3B42 and 22.2% for 

PERSIANN. The percentage of cells with percentiles exceeding 90 is 2.9% for TRMM3B42 and 9.3% 

for PERSIANN. Further analysis of the sensitivity of the results to precipitation dataset is provided in 

Tables S3 and S4. 

 



Figure S8 Preference for afternoon precipitation over soil moisture anomalies based on alternative 

precipitation datasets. As for Figure 1 in the main text but using (a) TRMM3B42 and (b) PERSIANN 

precipitation data instead of CMORPH.   

(a)  

(b)  

Differences between Figure 1 and Figure S8 occur because each precipitation dataset, though using 

many common inputs, produce different numbers and locations of events, with different 

precipitation accumulations. Some summary statistics of the similarities between the 3 sets of 

events are provided in Table S2. The CMORPH and TRMM3B42 event datasets are more similar than 

either is to the PERSIANN dataset in terms of the number of events with the same location of the 

rainfall maximum Lmax. However, only 1.3% of the events within the CMORPH and TRMM3B42 

datasets have exactly the same location(s) of the rainfall minimum Lmin as well as Lmax. It is possible 

that the relatively weak signal emerging from the PERSIANN dataset in Figure S8 is due to 

weaknesses in the precipitation product, as quantified by the generally lower temporal correlations 

of that dataset with soil moisture fluctuations (Figure S7). Independent evidence to support this 

comes from the composite event analysis (as shown in Figure S4 for CMORPH) using events defined 

by PERSIANN. In this case (not shown), the difference in soil moisture between Lmax and Lmin at t=25.5 

hours (that is 0130LT on the day following the event) is only 0.028 m3m-3, as compared to 0.038 

m3m-3 using CMORPH (Figure S4). 



Table S2 Statistics of defined rain events in common between AMSR-E analysis using 3 alternative 

rainfall products. The comparison is only performed for events between 1st January 2003 and 4th 

October 2011 and between 50°S and 50°N.  

Dataset TRMM3B42 PERSIANN 

 Number 

of 

events 

Number of 

events 

with 

common 

Lmax 

Number of 

events 

with 

common 

Lmax and 

Lmin 

Number of 

common 

events 

within 5x5 

box 

excluding 

those with 

common Lmax 

Number 

of 

events 

Number 

of events 

with 

common 

Lmax 

Number of 

events 

with 

common 

Lmax and 

Lmin 

Number of 

common 

events 

within 5x5 

box 

excluding 

those with 

common Lmax 

CMORPH 64510 10077 

(15.6%) 

821 

(1.3%) 

15957 

(24.7%) 

64510 2020 

(3.1%) 

273 

(0.4%) 

13360 

(20.7%) 

PERSIANN 52055 2230 

(4.3%) 

174 

(0.3%) 

15610 

(30.0%) 

- - - - 

 

Seasonality of soil moisture feedback signal 

The global analysis shown in Figures 1 and S5 is illustrated by season (rather than the full annual 

cycle) in Figure S9. As expected, the seasonal cycle of the signal tends to be linked to the seasonality 

of convective rainfall and soil moisture. When the surface is relatively dry and convective events are 

frequent, a preference for rain over drier soils tends to emerge.  



Figure S9 Seasonality of preference for afternoon precipitation over soil moisture anomalies. As 

for Figure S5 but based on data from (a,b) March-May, (c,d) June-August, (e,f) September-October 

and (g,h) December-February. The analysis was performed with CMORPH precipitation and either 

AMSR-E (left-hand column) or ASCAT (right-hand column). Note that compared to Figure S5, a 

reduced threshold number of events of 15 is adopted here. 

 

 

 



Sensitivity of results to spatial scale of input datasets 

The impact of the spatial scale of the soil moisture and precipitation datasets on the analysis was 

assessed using either AMSR-E (Figure S10a) or ASCAT (Figure S10b) soil moisture in combination with 

CMORPH data. Soil moisture and precipitation datasets were degraded from 0.25 to 1.0° before 

processing. In addition, the size of the event-centred box was modified; rather than employ a box of 

5x5 0.25° pixels, we used a box of 3x3 1.0° pixels, for better consistency with the analysis of the 

models in Figure 3. The precipitation thresholds used in the definition of an event were halved i.e. 

precipitation at Lmax had to exceed 1.5mm and precipitation during the morning had to be less than 

0.5mm. This analysis led to a substantial reduction in the total number of events; from 73,623 to 

6,077 for AMSR-E, and from 29,729 to 3,411 for ASCAT. As a consequence,  there is a fall in the 

number of 5x5° grid cells with at least 25 events from 295 to 78 for AMSR-E and from 220 to 53 for 

ASCAT. Nevertheless, the global preference for precipitation over dry soils remains (see histograms, 

and Tables S3 and S4), based on the relatively large number of events identified over North Africa 

and Australia. 

(a)  

(b)  

Figure S10 Preference for afternoon precipitation over soil moisture anomalies using coarse 

resolution data. As for Figure S5 except that the analysis was based on datasets with resolution of 

1.0°. 



Geographical distribution of events 

There are large geographical differences in the number of defined events in each of the preceding 

analyses.  These are presented in Figure S10. Areas of strong topographic variability are excluded 

from all the analyses (e.g. across the western US and Tibet). On the other hand, the criteria used to 

define precipitation events ensure that certain models in some regions (notably, INMCM4 and to a 

lesser extent, ERA-Interim) provide insufficient data to perform our statistical analysis. We adopted a 

minimum threshold of 25 events. Using a higher threshold reduces the number of 5° grid boxes 

available for analysis, but tends to increase the fraction of those grid boxes with extreme 

percentiles. 

 

Figure S11 Number of afternoon rain events. Number of events for each 5x5° grid box used in 

calculations of percentiles in Figures 1 (observations; a and b) and 3 (models; c-h).  Cells containing 

no events are shown in white.  

Analysis of results by climatic region and continent 

The calculation of percentiles of the observed variable e = mean(∆Se)  mean(∆Sc) under a null 

assumption that no feedback exists was repeated, but this time creating samples based on all events 



within either climatic zones (Table S3) or continents (Table S4). This provided much larger sample 

sizes than were available for the calculation every 5° (see Figure S11). The results are presented for 

the different combinations of observed soil moisture and precipitation datasets at 0.25°, for the 

analysis using observations at 1° based on CMORPH data, and for the 6 atmospheric models. The 

climate zones were taken from the Köppen-Geiger classes, as computed by Kottek et al. [2006], and 

merged into 6 classes, depicted in Figure S12. 

Table S3 Results of analysis (percentiles) by climatic zone. Extreme percentiles are shaded dark red 

(≤1), pale red (≤5), pale blue (≥95) and dark blue (≥99), and number of events in parentheses. 

 Observations Models 
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Moist 

tropics 

89.5 

(587) 

19.8 

(196) 

93.5 

(911) 

18.1 

(304) 

27.2 

(777) 

18.1 

(255) 

- - >99 

(7852) 

>99 

(2045

7) 

>99 

(2857

8) 

>99 

(1154

) 

>99 

(3514

) 

>99 

(2546

2) 

Savanna 1.13 

(1293

7) 

<0.01 

(6666

) 

<0.1 

(1769

8) 

<0.1 

(8243

) 

<0.1 

(1249

6) 

1.1 

(6248

) 

0.03 

(632) 

1.61 

(451) 

>99 

(1202

1) 

>99 

(2377

7) 

>99 

(2642

2) 

>99 

(3256

) 

>99 

(9612

) 

>99 

(3359

5) 

Semi-arid <0.1 

(2345

3) 

<0.1 

(7880

) 

<0.1 

(3366

8) 

<0.1 

(8302

) 

1.1 

(1953

9) 

0.3 

(5773

) 

0.39 

(1872

) 

0.3 

(821) 

>99 

(3438) 

>99 

(9517) 

>99 

(8284) 

>99 

(643) 

86 

(4467

) 

>99 

(9761) 

Arid <0.1 

(1881

0) 

<0.1 

(3752

) 

<0.1 

(2345

0) 

<0.1 

(2926

) 

<0.1 

(1395

2) 

<0.1 

(2216

) 

<0.01 

(2613

) 

0.67 

(620) 

>99 

(907) 

<1 

(6931) 

84 

(2957) 

>99 

(186) 

97 

(2401

) 

>99 

(2496) 

Temperate 58.1 

(6224) 

0.12 

(4721

) 

13.1 

(7917) 

<0.1 

(4858

) 

50.5 

(5565) 

54.5 

(3844

) 

38.69 

(474) 

10.02 

(455) 

>99 

(1844) 

>99 

(7151) 

>99 

(7174) 

>99 

(376) 

1 

(4811

) 

>99 

(6092) 

Continent

al 

9.5 

(1161

2) 

<0.01 

(6514

) 

78.4 

(5009) 

<0.1 

(1774

) 

64.3 

(9617) 

49.0 

(4304

) 

32.79 

(485) 

34.17 

(485) 

45 

(2981) 

61 

(5949) 

>99 

(1037

7) 

>99 

(206) 

<1 

(3692

) 

>99 

(5963) 

 

The preference for rain over drier soil is a robust feature of all combinations of observational 

datasets in the savanna, semi-arid and arid zones (Table S3). The signal is generally weaker at mid-

latitudes than over the tropics. At a resolution of 0.25° over mid-latitudes (Temperate and 

Continental zones), a signal for rain over drier soil only emerges above the noise when using ASCAT 

soil moisture data, in combination with either CMORPH or TRMM precipitation. The clearer mid-

latitude signal using ASCAT rather than AMSR-E is consistent with both a better soil moisture 

sensitivity in the former over regions with intermediate vegetation, and the deleterious effects of RFI 

on the latter in certain regions. Furthermore, the lack of mid-latitude signal in Table S3 using 

PERSIANN precipitation is consistent with lower soil moisture correlations with antecedent 

precipitation at mid-latitudes for PERSIANN (Figure S7). The absence of a mid-latitude signal using 

data at 1° may be indicative of small sample sizes, in combination with an inherently weaker extra-

tropical signal. The weaker signal in turn could be due to generally wetter soils (Figure 2a) and/or a 

higher contribution of frontal events, where rainfall is likely to be less sensitive to land surface 



fluxes. On the other hand, the weakening of the mid-latitude signal in going from 0.25° to 1.0° data 

may indicate an important impact on convection of soil moisture variability on scales of 50 km or 

less.When analysing the data by climatic zone, the contrast between models and observations in the 

tropics is stark. All the models favour rain over wetter soil in the savanna regions whilst all 

combinations of observations indicate the opposite behaviour. 

Figure S12 Merged Köppen-Geiger classes. Purple: Moist tropics (classes Af and Am), pale blue: 

savanna (As and Aw), yellow: semi-arid (BS), red: arid (BW), green: temperate (C), dark blue: 

continental (D). 

 

Table S4 Results of analysis (percentiles) by continent. Extreme percentiles are shaded dark red 

(≤1), pale red (≤5), pale blue (≥95) and dark blue (≥99), and number of events in parentheses. 
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South 

America 

86.88 

(4909) 

0.26 

(2956) 

26.7 

(7263) 

<0.1 

(3953) 

 43.0 

(5304) 

52.1 

(2980

) 

3.74 

(349) 

0.32 

(222) 

>99 

(8304) 

>99 

(2520

0) 
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5) 
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) 
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(2612
0) 

North 

America 

64.14 
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0.24 
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0.1 
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97.2 
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) 
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) 
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Table S4 indicates that a preference for rain over drier soil is found in all continents, depending on 

the combination of observational datasets. The relative merits of the precipitation and soil moisture 

datasets discussed above provide some explanation of which combinations exhibit clearer signals. Of 

the models, only the MERRA dataset depicts a preference for rain over drier soil at the continental 

scale, and then only for Europe and North America. 

Data Sources 

The observational datasets used in this analysis are publically available and can be downloaded from 

the following: 

AMSR-E soil moisture (version 2): 

ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/WAOB/LPRM_AMSRE_SOILM2.002/ 

ASCAT soil moisture: 

CMORPH 3-hourly precipitation:  ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/3-

hourly_025deg/  

TRMM3B42 3-hourly precipitation: 

http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B42_readme.s

html  

PERSIANN 3-hourly precipitation:  http://chrs.web.uci.edu/persiann/data.html  

GPROF instantaneous precipitation (version 4): 

ftp://rain.atmos.colostate.edu/RAINMAP/data/amsre/  

In addition we provide processed quality flags used for filtering soil moisture data for each month in 

the year (e.g. Figs S1(i)-(l)) as supplemental data. 
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