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Chapter 1
Entropic regularization of the /( function

Jonathan M. Borwein and D. Russell Luke

Abstract Many problems of interest where more than one solution is possible seek,
among these, the one that is sparsest. The objective that most directly accounts for
sparsity, the o metric, is usually avoided since this leads to a combinatorial opti-
mization problem. The function ||x||o is often viewed as the limit of the ¢, metrics.
Naturally, there have been some attempts to use this as an objective for p small,
though this is a nonconvex function for p < 1. We propose instead a scaled and
shifted Fermi-Dirac entropy with two parameters, one controlling the smoothness
of the approximation and the other the steepness of the metric. Our proposed metric
is a convex relaxation for which a strong duality theory holds, yielding dual methods
for metrics approaching the desired || - ||o function. Without smoothing, we propose
a dynamically reweighted subdifferential descent method with “exact” line search
that is finitely terminating for constraints that are well-separated. This algorithm is
shown to recapture in a special case certain well-known “greedy” algorithms. Con-
sequently we are able to provide an explicit algorithm whose fixed point, under the
appropriate assumptions, is the sparsest possible solution. The variational perspec-
tive yields general strategies to make the algorithm more robust.

Key words: convex optimization, Fenchel duality, entropy, regularization, sparsity,
signal processing
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2 Jonathan M. Borwein and D. Russell Luke

1.1 Introduction

Let E and Y be Euclidean spaces, and let A : [E — Y be linear. We consider the
problem
minimize o(x) w1)
subject to Ax)=b
where @(x) : E — R is a lower semi-continuous (Isc), symmetric subadditive func-
tion that, in one way or another, counts the nonzero elements of x. This model
has received a great deal of attention recently in applications where the number
of constraints is much smaller than the dimension of the domain. Examples in-
clude the well-known compressed sensing [4], where E = R", Y = R™ (m < n)
and @(x) =Y ; [sign(x;)|.
Another instance of importance is low-rank matrix reconstruction [13, 5]. Here
E =R™" Y = R"™" and ¢(x) = rank(x). The goal in both of these applications
is to find a “sparsest” solution x* to A(x) = b. Both of the optimization problems
associated with these examples are combinatorial and, in general, NP-hard [12]. At
the expense of some generality we will narrow our discussion to the case where
E=R"and Y =R"™.
Before addressing the counting objective directly, we review some elementary
observations about the most common relaxation of this problem, ¢; optimization.

1.1.1 Elementary (| minimization

A natural first step toward solving such problems has been to solve convex relax-
ations instead, @(x) = ||x||; = @) (x). It has been known for some time that ¢; opti-
mization promotes sparsity in underdetermined systems [15, 7]. Later works estab-
lished criteria under which the solution to (1.1) is unique and exactly matches the
true signal x* [8, 9, 6]. Sparsity of the true signal x* and the structure of the matrix
A are key requirements.

A qualitative geometric interpretation of these facts is obtained by considering
the Fenchel dual [1] to problem (1.1) when ¢ = ¢;:

maximize bTy
el ' . (1.2)
subject to (A y)je[—l,l] j=12,....n.

By strong Fenchel duality the optimal values of the primal and dual problems are
equivalent, and a solution of the dual problem yields a solution to the primal. The
dual problem yields valuable geometric insight. Elementary facts from linear pro-
gramming guarantee that the solution includes a vertex of the polyhedron described
by the constraints. The number of active constraints in the dual problem provides a
crude upper bound on the number of nonzero elements of the sparsest solution to
the primal problem. Unless the number of active constraints in the dual problem is
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less than or equal to the number of measurements m, there is no hope of uniquely
recovering x*. Supposing that the solution to (1.2) is indeed unique, a more vexing
question is whether or not the corresponding primal solution is the sparsest solution
to Ax = b. Here, it appears, convex analysis is at a loss to provide an answer.

1.1.2 (o minimization

We gain some insight into this breakdown by considering the dual of the original
sparse optimization problem. For ¢(x) =} [sign(x;)| = @o(x) in (1.1) the equiva-
lence of the primal and dual problems is lost due to the nonconvexity of the objec-
tive. The theory of Fenchel duality still yields weak duality, but this is of limited use
in this instance. The Fenchel dual to (1.1) when @ = ¢y is

maximize by
yeR™ (1.3)
subject to (ATy)j =0 j=12,...,n

If we denote the values of the primal (1.1) and dual problems (1.3) by p and d
respectively, then these values satisfy the weak duality inequality p > d. The pri-
mal problem is a combinatorial optimization problem, and hence NP-hard; the dual
problem, however, is a linear program, which is finitely terminating. Relatively el-
ementary variational analysis provides a lower bound on the sparsity of signals x
that satisfy the measurements. In this instance, however, the lower bound only re-
confirms what we already know. Indeed, if A is full rank, then the only solution to
the dual problem is y = 0. In other words, the minimal sparsity of the solution to
the primal problem is greater than or equal to zero, which is obvious. The loss of
information in passing from primal to dual formulations of nonconvex problems is
a common phenomenon and at the heart of the difficulties in answering some very
basic questions about sparse, and more generally nonconvex, optimization.

Our goal in this paper is two-fold: first to dig deeper into the convex analysis
to see what can indeed be learned about the nonconvex problem from various con-
vex relaxations, and second, to take what has been learned by other means and in-
corporate these advances into convex analysis and algorithms. As we showed with
example (1.3), the dual of the ¢y problem is uninformative but trivial to solve. The
conventional approach is to view £ as a limit of the nonconvex p-metrics. However,
the ¢, problems for 0 < p < 1 are also NP hard and the duals to these optimization
problems suffer the same loss of information that the dual to the ¢y function suffers.
The question that motivates our work is whether one can use convex relaxations ap-
proaching something related to the ¢y function — something in the dual space — that
are still informative with respect to the original ¢y problem, but yield optimization
problems that are solvable in polynomial time. The connection between the non-
convex and the convex that we explore is the Fenchel conjugate of the ¢y function,
which can be written as the limit of convex functions. We then study how well our
proposed convex relaxations work for solving the sparse recovery problem.



4 Jonathan M. Borwein and D. Russell Luke

1.1.3 Notation

Throughout this work we use || - | without any subscript to denote the L?-norm.
When a different norm is meant, a subscript is added explicitly to the norm as with
|- |li. We denote the projection of a point z onto the set C with respect to the L?
norm by Pc(z) where

Pe(z) ={x € C||lx—zl| = inf [|z—y[|}.
yeC

We denote the nonnegative orthant in R” by R”. and the extended reals by R =
R U {+-eo}. It is not uncommon to define the objective ¢ on the extended reals as a
mapping from R” to R. The normal cone mapping of a set C C R" at a point x is
defined by

Ne(x) = {weR" with (z—x)Tw<0 forallzeC} ifxeC
e ifx ¢ C.

We denote by ri(C) the relative interior of C, that is the interior of C relative to its
affine hull. The indicator function of a set C, 1¢ is defined by

() 0 for xeC
x) =
¢ 4o for x¢C.

We use the indicator function to treat constraint sets as functions. For a function
f: R* = R and a point X in the domain of f, the subdifferential of f atXx, denoted
df (%) is defined by

If(x) ={weR"|w (x—%) < f(x) — f(x), forall x € R"} . (1.4)

when ¥ is not in the domain of f we define d f(x) = 0. The Fenchel conjugate of a
mapping f : R" — [—co, +oo], denoted f* : R" — [—c0,+o0], is defined by

) = sup{y"x— f(x)}. (1.5)

xeRn

The conjugate is always convex (as a supremum of affine functions) while f = f**
exactly if f is convex, proper (not everywhere infinite) and lower semi-continuous
(Isc) [1]. Finally, we make frequent reference to boxes in R" centered at the ori-
gin with sides of length 2/; (j = 1,2,...,n); these are denoted by R; = [—I},];] x
[—12,12} X [—In,ln} forI = ([1 ,Dh,... ,In).
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1.2 Entropic regularization of the zero metric

The Fenchel conjugates of the functions @; (x) = [|x||; and @o(x) = ¥ [sign(x;)| are
given respectively by

wf(y)z{iw PEEE 00 = ) 16)
% 0) z{iw 0 @ =), ()

. . . . 1
It is not uncommon to consider the function || | as the limit of (¥; |x;|?) /P as
p — 0. The notation is misleading since || - [|o is not a norm; the fact that

x|lp = lim x;|P
o= Jim X

shows that dy(x,y) := ||x —y||o still produces a metric since ¥ ; |x; —y;| does for
0<p<l.

We propose an alternative strategy based on regularization of the conjugates. For
L € R" and € > 0 define the rectangle Ry = [—Li,Li] x [—La,Lp] X --- X [=Ly, L]
and

Ger(y) =Y Ver,(vj))  (v=0152,--,90) €ERY) (1.8)
=1
where
(LjFy)In(Lj+yj)+(Lj=y)In(L;—y;) _ In(L))
8( Sl me) - 1n(2])> for |y;| <L;
Ver, (Vi) =q e for [y;|=L; (1.9)

oo for |yj|>Lj.

This is a scaled and shifted Fermi-Dirac entropy [3, 1]. The value at the endpoints
yj = £L; follows from defining 0In(0) = 0, which is standard in the literature.
The inclusion of the endpoints (y; = +L;) in the domain of definition of We 1 (v;)
provides a type of continuity in the limiting cases, namely as the closed interval
[—Lj,L;] degenerates to the point [0] and the relaxation parameter € — 0. This en-
tropy is a smooth convex function on the interior of its domain and so elementary
calculus can be used to calculate the Fenchel conjugate,

e (x) = 21 (lan) In (4fof'/€+ 1) —ijj—S) . (1.10)
J=

(Calculate the gradient of the objective in the Fenchel problem (1.5), satisfy first
order conditions for optimality and substitute the optimal solution back into (1.5) to
get (1.10) for the optimal value parameterized by the dual variable.)
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e For € > 0 fixed we have

. 0 y=0 .
1 = d 1 - =0.
LILI(I) e (y) { Lo else an ng%) Per (x)=0

e For L > 0 fixed, in the limit as € — 0 we have

0 ER
lim ez (y) = { YEEL and  lim ¢, (x) = Lix].
£—0 +oo else e—0 %

We write ¢o ., @, 9,0 and ¢ , for the limits. In contrast to the limit of ¢ 1. (y) for
€ > 0 fixed, if y = L in the limiting process we have limy 0 @¢ 1.(L) = €. By ¢¢0(0)
we mean the former limit, so that ¢ (0) = 0. Note that || - ||o and ¢}, have the
same conjugate, but unlike || - [|o the biconjugate of ¢}, is itself, that is ¢*** = ¢*.
Also note that ¢¢ ; and ¢, ; are convex and smooth on the interior of their domains
for all &,L > 0. This is in contrast to metrics of the form (): jlxi—vy;il? ) which are
nonconvex for p < 1.
In order to maintain identification with ¢ in (1.1) we define

Per =0y, and @7 =0; ;= 0cr

where we have used the fact that the biconjugate of ¢ ; is itself. We therefore con-
sider the problem
inf{@g 1(x) | x € R" with Ax = b} (1.11)

as a smooth convex relaxation of the conventional ¢, optimization for 0 < p < 1.
Our numerical approach to solve this problem will be to solve the dual.
Using Fenchel duality, the dual to this problem is the concave optimization prob-
lem
sup{y"b—¢;;(ATy) | y eR"}. (1.12)

where, again, @; ; (x) = ¢¢ (x) is given by (1.8). We reformulate this as a minimiza-
tion problem
minimize o (ATy) —yTb (1.13)
yeRm '

which we will solve with the method described next.

The objective in the dual problem is smooth and convex, so we could in principle
apply any number of efficient unconstrained optimization algorithms. Also, for this
relaxation, the same numerical techniques can be used for all L — 0.

1.3 Algorithms: subgradient descent

The central algorithm we explore in this note is simple (sub)gradient descent on the
dual problem (1.13):
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Algorithm 1.3.1 (subgradient descent) Giveny’ € R” forv=0,1,2... generate
the sequence {y"};_, via
yv+l :yv —l—lvdv

where d¥ € —d (q)g‘ L (ATyY) — bTy") and Ay is an appropriate step length parame-
ter.

For € > 0, ¢, is continuously differentiable on its domain, and the algorithm
amounts to the method of steepest descent.

1.3.1 Nonsmooth Case: € =0

In this section we present and analyze a subgradient descent method with exact line
search and variants thereof suitable for solving the dual problem above for the case
€ =0, that is, we do not smooth the problem.

Using the notation of indicator functions, we have

0 for x € Ry

+oo  otherwise.

Po.(¥) = tr, (x) = {

The specific instance of (1.13) that we address is

min tg, (ATy) —y7b. (1.14)
yeR™

Since the set Ry is a rectangle, nonsmooth calculus yields the following simple
expression for the subdifferential of the dual objective:

9 (1r, (ATY") —b"y") = ANg, (ATY") —b. (1.15)

Here we have used the fact that the subdifferential of the indicator function to the
box Ry, at the point x, denoted dig, (x) is equivalent to the normal cone mapping of
R; at the point x

D1r, () = No, (1) = {{w €R" with (z—x)Tw <0 forallz€ R} ifve R

0 ifx¢Ry.
Remark 1.3.2 It is important to note that we assume that we can perform exact
arithmetic. This assumption is necessary due to the composition of the normal cone
mapping of R; with A”: while we can determine the exact evaluation of the normal
cone for a given ATyY, we cannot guarantee exact evaluation of the matrix-vector
product and, since the normal cone mapping is not Lipschitz continuous on Ry, this
can lead to large computational errors. |
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Problem (1.14) is a linear programming problem. The algorithm we analyze be-
low solves problem a parametric version of problem (1.14) where the parameter L
changes dynamically at each iteration. To see how the parameter might be changed
from one iteration to the next, we look to a trivial extension of the primal problem:

minimize " Lilx;
(x.L)ER" xR L1 Lkl (1.16)
subject to Ax=D>

It is clear that L = 0 and any feasible x is an optimal solution to problem (1.16), and
that the (global) optimal value is 0. However, this is not the only solution. Indeed,
the sparsest solution x* to Ax = b and the weight L* satisfying L = 0 only for
those elements j on the support of x* is also a solution. The algorithm we study
below finds a weight compatible with the sparsest element x*. A more satisfying
reformulation would yield a weight that is in some sense optimal for the sparsest
element x*, but this is beyond the scope of this work.

1.3.2 Dynamically Rescaled Descent with Exact Line Search

There are three unresolved issues in our discussion to this point, namely how to
choose the element of the subdifferential, how to choose the step length and how
to adjust the weights L;. Our strategy is given in Algorithm 1.3.4 below. In the
description of the algorithm we use some geometric notions that we introduce first.
It will be convenient to define the set C by

C={yecR"|ATycR.}.
This set is polyhedral as the domain of a linear mapping with box constraints.

Lemma 1.3.3 (normal cone projection) Letr A be full rank and denote the normal
conetoC={ycR"™ | ATy e R.} aty € C by Nc(¥). Then

Py ()b = AW (1.17)

for
W = argmin {||Aw —b||* | w € Ng, (AT¥)}. (1.18)

Proof. If A is full rank, then all points y € C satisfy the constraint qualification that
A is injective on Ng, (ATy), that is, the only vector w € Ng, (ATy) for which Aw =0
is w = 0. Then by convex or nonsmooth analysis (see e.g., [14, Theorem 6.14]) the
set C is regular and

Nc(y) = ANg, (ATy) = {u=Aw|we NRL(ATy)}.

By the definition of the projection
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_ . 2 —
Py, (y)b = argmin {||u—b|| | ueNC(y)}
hence

Py, ()b = argmin {||ufb||2 | u GANRL(ATy)}
= Aargmin {[|Aw —b||* | w € Ng, (A"y)} = AWw.

|
Algorithm 1.3.4 (Dynamically Rescaled Descent with Exact Line Search)
Initialization: Set v =0, 7 >0, L’ = (||a ]|, az]|,--,||ax||) where a; is the jth
column of A, y° = 0 and the direction d° = b.
Main iteration: ~While ||d¥| > 7 do
e (Exact line search.) Calculate the step length A, > 0 according to
Ay = argmin {1z, (AT (0¥ +Ad")) —b" (¥ +21d")}. (1.19)
A>0
Sety =y¥ +Avd".
e (Subgradient selection and preliminary rescaling.) Define
=4l lajy' =15}, (1.20)
S(Ln]L Y) = (SI(L7J7Y)7SZ(L7J7’}/)u e 7sn(L7J7'}/))
L; forall j
where  s;(L,7,y) =4 /Fi forallj€d (1.21)
L; else,

and

C(L,J,y)={yeR"|ATy € Rg15)} where
RS(L,J,}/) = [_SI(LJaY),Sl(LJ,Vﬂ X X [_Sn(L,J,'}/),Sn(L,J, Y)] (122)

Choose ¥ > 0 small enough that PNC(L be ri(Nc(LV”]]V+17,y/)(y//)) for

V’JV+1J/)(.Y”)
y" =7y'. Compute the direction

ARE =b—Py,

CLV“]]V#»I,},J)

b (1.23)

e (Rescaling.) Let
Ji+15{j|a§'dv+1>0}’ JK+IE{j‘(1;dV+1<O},

and define
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LY —vyaly
Tiny — . . 1
I"*!(y)= argmin {{ LI | je IMABS

jeriugvt ajd’*!
je JV“}} . (1.24)

{ —L}’ — ya/T-y’
]IV+1(,YV+1) C ]IVJrl (0) (125)

a]T»d‘“rl

Choose y'*! € [0,7] to satisfy

Set
v+1L\_/ f = v+1
L}’“{y j forjed (1.26)

\%
Lj else

and yV*! = y¥*1y/ Increment v = v + 1.
End do.

We begin with some observations. The next proposition shows that the direc-
tions chosen by (1.23) with PNC(LV.‘HHW)(),/,)b S "i(Nc(Lv,Jv+177/>(y")) for y' = 7y
are subgradient descent directions that are not only feasible, but orthogonal to the
active constraints. We use orthogonality of the search directions to the active con-
straints to guarantee finite termination of the algorithm.

Proposition 1.3.5 (feasible directions) Let C = {yc R" | ATy € R}, y € C and
define the direction d = b — Py,.(5)b- Then —d €0 (1r,(AT5) — b"¥) and there exists
al >0 suchthaty+Ad € C forall A € [0,A].

Moreover, if Py.(5)b € ri(Nc(3)), then the direction d is orthogonal to the jth
column of A for all j such that ajTy =L;

Proof. The inclusion —d € o (lRL (AT5) — bT)")) follows immediately from (1.15).
The feasibility of this direction follows from Lemma 1.3.3 and the polyhedrality of
C since the polar to the normal cone to C at a point y € C is therefore equivalent to
the tangent cone, which consists only of feasible directions to C at y, defined as a
direction d for which y+ Ad € C for all A > 0 sufficiently small.

Indeed, let a; denote the jth column of the matrix A and recall the definition of
the contingent cone to C aty € C:

Ke(y)={weY]| forall vy+A'w" € C for some w¥ — w, 1Y \,0}.

Since C is convex the contingent cone and the tangent cone are equivalent [2, Corol-
lary 6.3.7] and since C is polyhedral the tangent cone can be written as

Te(y)={we Y| forall vy+AYw e C for some A"\, 0},

that is, the tangent cone consists entirely of feasible directions. Now the tangent and
normal cones to C are convex and polar to each other [14, Corollary 6.30], so, by
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Lemma 1.3.3, what remains to be shown is that b — Py, (5 b lies in the polar to the
normal cone to C. This follows since N¢(y) is nonempty closed and convex. Hence
for all w € N¢(y) and for any b

w! (b— Py.(5b) <0,

that is, b — Py, (5)b is in the polar to the normal cone.
To see the final statement of the proposition, denote by J the set

{j:l,Z,...,n|ajT~y':Lj}.

If the projection lies on the relative interior to N¢(¥), then the projection onto N¢(3)
is equivalent to the projection onto the subspace containing N (7):

Pye(5)b = Pp(y)b

where —
D(5) = {Aw | w € B with w; =0 for j ¢ T}

Thus af (b — Py,(5)b) = a; (b — Py, 5)b) = 0 for j € J as claimed. [ ]

Remark 1.3.6 (detection of orthogonality of feasible directions) The interiority con-
dition Py, (5b € ri(Nc(y)) guaranteeing orthogonality of the directions can eas-
ily be checked. Let w = argmin {||[Aw — b||> | w € Ng, (AT5)}. By Lemma 1.3.3
Py,.(5)b = Aw. Then AW and hence Py, 5b lies in ri(Nc(¥)) if and only if w; # 0 for
all j such that aly = L;. [ ]

Calculation of the direction in (1.23) of Algorithm 1.3.4 is suggested by Lemma
1.3.3 where it is shown that the projection is the mapping of the solution to a least
squares problem over a cone. Also, by Proposition 1.3.5, the direction is the negative
of a subgradient of the objective in (1.14) with the box S(LV,J¥*! ¥/), that is

vl _ T,/ T
—d = _b—’_PNC(LVEJVJrI‘yJ)(y”)b €d (lRS(LV,JV+1~7/) (A Y )_ b Y )

The description as a projection onto the normal cone of a polyhedron is perhaps less
helpful than the explicit formulation of Lemma 1.3.3 for suggesting how this can
be computed, but it provides greater geometrical insight. Moreover, the projection
provides an elegant criterion for maintaining orthogonality of the search directions
with the active constraints.

The exact line search step has an explicit formulation given in the next proposi-
tion.

Proposition 1.3.7 (exact line search) Let y € C and d = b — Pne(5). Define the
index sets B B B B
J+z{j|aJT-d>0}, sz{j|a]T-d<0}.

The exact line search step length A given by (1.19) has the explicit representation
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- Li—adly —Li—adly
lzmin{min{jTCl_j)}}, min{lT‘Z_/))}}>0. (1.27)
jG,]]+ aj jelJ— aj

Proof. Application of nonsmooth calculus provides a generalization to the fact from
optimization of smooth objectives that the exact line search step extends to the tan-
gent of a level set of the objective, from which we can extract (1.27). However, it
is perhaps easiest to see the explicit formulation by direct inspection: the indicator
function 1, is zero at all points in Ry, so the step length is the largest A such that
AT (4 Ad) € Ry, i.e. the largest A such that

al (7+2Ad) <L; forallj€J,.
and
al (§+2d)>—L; forall jeJ_.

Note that by Proposition 1.3.5 it is not possible to have afd >0 and a}y = L; or,

similarly ajrd_ < 0Oand aJTy = —L;, hence the step length is guaranteed to be positive,
and we are done. ]

1.4 Convergence to Sparse Solutions

We show in this section that for sufficiently sparse solutions x* to Ax = b, the steep-
est subgradient descent algorithm with exact line search (Algorithm 1.3.4) recovers
x* exactly. Before we continue, however, we must specify precisely what is meant
by “sufficiently sparse”.

Definition 1.4.1 (mutual coherence) Let a; denote the jth column of A. The mu-
tual coherence of A is defined as

T, .
pA) = max WYl
1<k, j<n, k#j ||a||||a;]|

where 0/0 = 1.

The mutual coherence characterizes the dependence between columns of A. The mu-
tual coherence of unitary matrices, for instance, is zero; for matrices with columns
of zeros, the mutual coherence is 1.

Lemma 1.4.2 (uniqueness of sparse representations [8]) Let A € R™" (m < n)
be full rank. If there exists an element x* such that Ax* = b and

1 1
[ [lo < 3 (1 + u(A)> , (1.28)

then it is unique and sparsest possible (has minimal support).
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In the case of matrices that are not full rank — and thus unitarily equivalent to matri-
ces with columns of zeros — only the trivial equation Ax = 0 has a unique sparsest
possible solution. For unitary matrices (t(A) = 0, we interpret 1/0 = +-oo.

The sparsity condition of Lemma 1.4.2 yields a more direct representation that
will be useful later.

Lemma 1.4.3 (sparsity conditions) Let A € R™*" (m < n) be full rank. For b €
R™\ {0} given and x* a solution to Ax = b, define J = {j | xj # 0} and denote by
J € J an element of x* satisfying

|xj|HaJ||2|x;-\Haj|| forall j=1,2,...,n.

If the solution x* satisfies condition (1.28) then there exists a ¥ > 0 such that, for all
yeB={yeR"||yl|=1} andall y € [0,7]

|ag bl |aj b]

a .
kel llagll = vlagyl  llasll+viajyl

(1.29)

Proof. We use continuity of the terms in (1.29) with respect to ¥ and y to simplify
the operative inequality and prove the statement for the case y = 0.

Reduction to the case y= 0.
For all 7 small enough the function

|ag b|
g(y,y) =max —————
keJ [|ax] —Ylagyl
is a continuous function on the compact domain B x [0, 7]. Likewise, for any ¥ > 0
the function b
ayb
h(y,y) = o
llas|| + vlaj y]
is continuous. By continuity, the existence of ¥ > 0 such that (1.29) holds for all
Y €[0,7] and y € B is then equivalent to

200.0) — mae [E0L bl

— h(y,0). (1.30)
X el < o~ 00

We therefore limit our attention to (1.30).

Reformulation of (1.28).
Starting with (1.28) we have
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o /1
W= < 5 (i +1)
<

B < 2 (1+uA)

N |

* 1 *
7 [las (1|71 (A) 5 Plllasll (14 p(4))

<~
<

—
<

gl llasl131m(A) gl llasll (14 p(A) (1= [J1))- (1.31)

Here we have denoted the cardinality of J by |J|.

Upper and lower bounds.

It remains to show that the left hand side of (1.31) is an upper bound for the left
hand side of (1.30) and, similarly, that the right hand side of (1.31) is a lower bound
for the right hand side of (1.30).

Substituting Ax* for b in (1.30) yields the equivalent statement

* T * T
crXiar a; crXiaya;
‘Z:EJ i “k l| ‘Z:EJ iy l‘ forallk¢J. (1.32)
| llas|l
For the lower bound, we have
| Yy xial a;l . lal a:
eJrity i Z‘lena‘]”_ Z |1||Jl‘
Jas] H
> llasll =Y, I [llaillu(a)
i€\{J}

> [xjlllasll (1= (1J] = 1)u(A)) .

In summary
| Licy¥fa) ail

il (1 (1 = ) (a)) < 0 -
For the upper bound we have
| Licyxiaj ail Z ;| laf ail
lael  — & el
< )l llaillp(A)
i€]
< a7l llagll| 3] (A)
or ;
YicrXia, ai »
LU ) o 3la ) (134

llax |
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Inequality (1.31) together with (1.32), (1.33) and (1.34) yield (1.30). By the conti-
nuity argument at the beginning of the proof, we have thus shown that (1.28) implies
(1.29) as claimed. |

The next lemma provides a sufficient condition for monotonicity of the cardi-
nality of the set of active indices from one iteration of Algorithm 1.3.4. This is an
important feature for the finite termination of Algorithm 1.3.4 proved in Theorem
1.4.5.

Lemma 1.4.4 (step length) Fora given L= (Ly,L,,...,L,) and the corresponding
sets Ry and C = {y € R™ | ATy € Rp.}, let the point § € C satisfy Py, 5b € ri(Nc(y))-
For this point define d = b — Py, (5)b and the index sets J = {j | a}y = L;}

Jo={jlajd>0}, J ={jlajd<0}.

Then (J+UJ-)NJ = 0 and for the step length given by (1.27) the set of active
indices set is increasing, that is, ] CJ = {j | aJT- (F+Ad)=L;}
In the special case that § = 0, then the step length A is given by

_ L:
A =min J_ L. 1.35
j#1 {Ia?d} (139

Proof. By Proposition 1.3.5 and Remark 1.3.6, if Py, ;b € ri(Nc(¥)) then d is or-
thogonal to the columns of A corresponding to the set of active indices J. Thus
(J+UJ-)NJ = 0 as claimed. It follows immediately from (1.27) that J C J' =
{j] a]T~ (7+Ad) = L;} since A is computed from the elements belonging to J; UJ_,
and, again by Proposition 1.3.5, the active constraints corresponding to J remain
unchanged in the direction d.

When y = 0 the step length given by (1.27) simplifies to

~ L:
A= min =0 >0. (1.36)
jelsll- | lajd|
Hence (1.36) is equivalent to (1.35). This completes the proof. |

We are now ready to state and prove the main result of this section, the conver-
gence of Algorithm 1.3.4 for a particular choice of initial weights L(]? = ||aj|| for
Jj=1,2,...,n. Theorem 1.4.5 says that the algorithm finds a point y* and a weight
L* for which 0 € 9 (1g,. (ATy*) — (y*)"b) exactly (tolerance T = 0), as opposed to
finding a point where the chosen subgradient is smaller than some tolerance. Since
the problem is convex, this is sufficient for optimality. Of course, this is only possi-
ble with exact arithmetic.

Theorem 1.4.5 (exact recovery of sufficiently sparse solutions) Ler A € R™*"
(m < n) be full rank and denote the jth column of A by a;. Initialize Algorithm 1.3.4
with initial guess y° and weight L° such that y? =0and L(])- =|\aj||for j=1,2,...,n.
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If an element x* € R" with Ax* = b satisfies (1.28), then, with tolerance T = 0,
Algorithm 1.3.4 converges in finitely many steps to a point y* and a weight L* where,

argmin {||Aw —b||2 | we Ng,. ()} =x",
the unique sparsest solution to Ax = b.

Proof. The proof is by induction and follows a pattern similar to the convergence
proof of the orthogonal matching pursuit algorithm [4, Theorem 6], though the de-
tails are more technical. (Indeed, we show in Section 1.4.1 below that this is no
coincidence.) In order to facilitate the proof, we will in fact prove convergence of a
slightly more general procedure than Algorithm 1.3.4. The difference is in the ini-
tialization. Rather than initializing y° = 0, as any practical method would do, we
will choose an arbitrary y° = 7°y for any fixed vector y with 7° > 0 small enough.
This allows us to establish the pattern for later iterations at the very beginning.

Let C° = {y e R™ | ATy € Ry }. The open unit ball lies in the (relative) interior
of C? since, for any y with ||y|| < 1, we have [(ATy);| < |la;|||ly]| < |la;|| = L(} with
the last inequality strict if a; # 0. (Without loss of generality, we can assume that
A has no zero columns.) Then No(y°) = {0}, so that PNC0<y0)b =0and d* = b is

in fact a direction of (subgradient) descent according to Proposition 1.3.5 for any y°
small enough.

Identifying the active constraints.
Computing the step length, by (1.27) we have

aill — ar —llail|l — (lT
Ao = min{ min w , min w >0. (1.37)
jell. ajb jelo ajb

where, recall, Y’y =%, and
10 ={jld"b>0} and J°={j|alb<0}.

Let jy be the index of a minimum element of the set above. We show that, for any

choice of minimum element (in the case that there is more than one) jj € J* =
{J | x; # 0}. In other words, we show that

laly? + Xoal b| < ||ax|| forall k ¢ J*. (1.38)
By the triangle inequality, (1.38) holds if
laly0| + | Aoal b| < ||a||  for all k ¢ J*. (1.39)

Expanding Ag and rearranging terms in (1.39) yields, for 7 small enough,
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i fjoed
I Y N 0
P L el P " forallkg . (140)
”akH_'yO‘aZﬂ Ao & ifj()GJO
T ) —
|~llajo|=7aT»]

Let J € J* be the index of an element of x* satisfying

|x}H|aJ||2|xjf|||aj|| forall j=1,2,...,n

By definition of Ay,
laj b| - 0
S B = L U
lasl+Plagyl = ) — bl egepo [T A
|~llas|—1aly| -

By Lemma 1.4.3, the sparsity condition (1.28) implies (1.29) which immediately
yields (1.40), and hence (1.38), for yo small enough.

Letting y = Y’y + Agb, we conclude that, as (1.28) holds, then for y° small
enough (as it certainly would be for the initial guess of zero)

I ={jllajy|=llajl = L3} nI* #0

where JV is defined by (1.20).

The question remains as to how small y° need be. For this we refer to the index
set () defined by (1.24) with L~! = L°. Note that this is just the set of indices of
active faces in J](J)r U Jg corresponding to the exact line search step length Ay com-
puted by (1.37). Viewed as a function, A° is the minimum of a finite collection of
affine functions of 1 and is thus a continuous function of ¥°. Moreover, the set
of indices corresponding to the affine functions at which the minimum is attained,
I(y°), satisfies I(y") C I(0) on a neighborhood of 0. In other words, the index jj of
the minimum element at which the exact step length Ay is attained belongs to 1°(0)
for all ¥° small enough. This yields an implementable strategy for determining the
proper scaling in subsequent iterations by checking the coincidence of the set of
active indices IV (7y) with the set of faces reached from the origin, IV (0).

Subgradient selection. There always exists ¥ > 0 with y” = 7'y’ such that
PNC(LOJW)(),H)b € ri(Ne(zo 1 ) (v")) since for ¥ = 0 the normal cone to c(L°,J',0)

at y"" = 0 defined by (1.22) is the subspace

wj R for j € J!
Neo g 0)(0) = {AW ‘ {Wj =0 forjglJ' [~

This follows from the fact that the only active faces of the polyhedron C(L°,J',0)
at the origin are the ones corresponding to the point [0] (the degenerated inter-
val). Thus, at least for ¥ = 0, the projection of b onto the subspace spanned by
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the columns of A corresponding to J' is equivalent to PNc( b. By Propo-

10 31 0)(0)
sition 1.3.5, then, for ¥ small enough (possibly zero) the direction of descent

d'=b-— PNc<L0 r J/)O,u)b is orthogonal to the columns of A corresponding to the

index set J'.
Rescaling. For the choice of ¥ above, we have (J 1+ uJ 1,) NJ' = 0 where
Jiz{j|aJT»d1>0}, J{E{j|a]T-d1<0}.

There are two cases to consider: ¥ =0 and ¢ > 0. If ¥/ = 0, then ¥! = 0 and by

Lemma 1.4.4
L0
I'(0) = argmin T7]1 ,
1y lajd']
so that
;)0 for all j € 1'(0)
J L? else
and y' =0.

If, on the other hand, ¥ > 0, the previous argument shows that there exists at
least some y' € [0,7/] such that ' (y!) C ' (0), which is sufficient for our purposes.
With 7! in hand, we set the weights

. Y'LY  forall jeT'(y")
A L(j). else.

and update the iterate y' = y'y’ as prescribed.

Note that y! is feasible and the set of active faces J! is unchanged since ajTy1 =
aly'y withafy'y' = y'L =L} forall j € J', and a}y'y < aly' < L} otherwise.
Induction. Proceeding now by induction, we suppose for v > 0 that aJT- y = L]V- for
all j ¢ JV C J* and that \aJTyV| < LY = |laj|| for all j ¢ J¥ where v < |JV] < |J*].
We show that there are only two possibilities for the next iteration: either 4¥*! =0,
in which case JV! = J* and w¥+! = x*; or d¥*! # 0, in which case J¥*! C J* with
IV < JJVF2| < |7 and |afyY | = LY for j € IV and [afyY| < LY for
j I '

In either case, in a somewhat awkward consequence of our indexing, note that
for 7" satisfying (1.25) and the induction hypothesis we have that JY*! C J*. Our
task is to show that JV*2 C J*

Case 1: 4¥+! = 0. In this case, we have
. 1
b= PNc(LV,Q]]VJrl:yl)(yl/)b c Vl(NC(Lv’JvHJ/)(y ))

fory” =9y withy = y¥ +21"d" and, by assumption (1.28),
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P = ][] 0F + A7) =LY} C I

Also note that J¥"! = @0, J¥™! = @ because ¢"*! = 0 and hence IV*!(y) = 0 for
all y > 0. So without any calculation one can choose y*! = 7 and determine L"*!
according to (1.26) and y¥ ™! = yV*1y/ Define C* = {y | ATy € R;v+1}. Thend" ! =

0ed (zc* (AT = BTy g (LY )) and y**+! for LY+ defined by (1.26) is

a fixed point of the iteration. By the definition of the subdifferential (1.4), y'*! is an
optimal solution to (1.14). The corresponding subgradient

w¥ ! = argmin {HAw—sz | WENR,,., (y"“)}

satisfies Aw*! = b and is supported on J¥*! C J*. Lemma 1.4.2 shows that x* is
the unique sparsest solution to Ax = b. Thus, J¥*! = J* and w¥*! = x* as claimed.

Case 2: "' 7 0. In this case b ¢ Ne(v v+1 ("), and it must be that |JV+] < [J*].
By the induction hypothesis J¥*! C J*. By the choice of ¥ we have

PNC LV7‘]]V+1 7’) (y”>b € ri(NC(LV,JV+1,]/) (y”))

(
and thus by Lemma 1.4.4 (J¥"'UJY*!) nJV*! = 0 and the active set is monotoni-
cally increasing, so we must show that JV+2 C J*.

We continue to the rescaling step to find y'*! satisfying (1.25). Since by con-
struction d¥*! is orthogonal to the columns a ; with j € JV*!, we can deflate the
matrix A to contain only those columns with indices not in JY*!. The weights corre-
sponding to the remaining indices, denoted LY"!, are unchanged from the initializa-
tion, that is, LY = ||a;|| for j ¢ JV+1 and so the elements of LY+ are just the norms of

the remaining columns of the deflated matrix AY*!. Repeating the argument for the
first iteration with b replaced by 4" !, condition (1.28) with y¥*! satisfying (1.25)
guarantees that [yV ! + A, 1dV ! = ||la/]| = I_,}’H for some j corresponding to an
element of J*\ JV*!, while [yV*! + Ay 1d"| < [|aj]| = LY for j corresponding
to the complement of J*. (Note that because of the deflation technique, the cor-
respondence between these indices is not direct.) Defining y = y¥*! 4+ A, 114" *!
JVt2 = {j||aly'| = LY*1}, by orthogonality and rescaling of the previous weights
we have that JY*2 C J* and [JV!| < |JV*2| < |J], as claimed.

Since the cardinality of the active set increases strictly monotonically with each
iteration, the algorithm is finitely terminating as asserted. |

The next corollary is an immediate consequence of Theorem 1.4.5. We will show
in the next section that the corollary is actually a statement of finite termination of
the orthogonal matching pursuit algorithm [4, Theorem 6].

Corollary 1.4.6 (greedy rescaling) Let A € R™*" (m < n) be full rank and denote
the jth column of A by aj. Initialize Algorithm 1.3.4 with initial guess y(} =0 and
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L? = ||laj|| for j=1,2,...,n, and at the rescaling step choose L}'H =yl =0 for
all je v+

If a point x* solves Ax = b and satisfies (1.28) then, with tolerance T = 0, Algo-
rithm 1.3.4 converges in finitely many steps to y* = O with the weight L* where,

argmin {||Aw —b||* | w € Ng,.(0)} =",
the unique sparsest solution to Ax = b.

Remark 1.4.7 We have called the rescaling strategy of Corollary 1.4.6 greedy to
conform with precedent, however in light of the variational derivation that we have
developed here, we would prefer to use the descriptor dogmatic. To see why we pre-
fer this, note that when the scaling of the active indices is set to zero, these elements
are forever “committed” to the active set, even if in later iterations it might be de-
termined that this was an error for some elements. In our algorithm the detection of
a possible error would occur in the determination of the preliminary scaling stage.
If PNC“‘,JV+ ‘M)O’”)b € ri(Ne (v gv+1,4y(y")) only for ¥ = 0 this is an indication that
the direction of descent will cause a sign change in one of the active elements.

If the scaling is bounded away from 0, then the orthogonality of the descent di-
rections with the active columns of A, see Proposition 1.3.5, is no longer guaranteed
and the strict monotonicity of the cardinality of the active set Lemma 1.4.4 is also
lost. This reflects the fact that, in this case, the algorithm can ‘“change its mind”
about the active set, that is, it has recourse. The more general Algorithm 1.3.4 is,
in fact, no less dogmatic than the greedy variant since we enforce orthogonality of
the descent direction with the active columns of A. It can be modified to include
recourse by simply not enforcing orthogonality of the descent direction with the ac-
tive constraints. The analysis of this implementation, however, is beyond the scope
of this work. |

1.4.1 Greedy Algorithms

As promised above, we now show that the greedy rescaling of Algorithm 1.3.4 spec-
ified in Corollary 1.4.6, is equivalent to a well-known greedy algorithm (see [4] and
references therein). The prototype greedy algorithm is formulated in [4] as follows:

Algorithm 1.4.8 (Orthogonal Matching Pursuit) Input the matrix A, the vector
b and a solution tolerance 7 > 0.

Initialization: Let v =0, y° =0, r* = b, and the support set J° = 0.
Main iteration:  For a given tolerance 7 > 0 do

e (Sweep.) For j = 1,2,...,n compute the errors 1(j) = min;; [|a;z; — V12

where a; denotes the jth column of A.
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e (Update support.) Compute J¥ = argmin{t(j) | j ¢ JV~!} and update J¥ =
Vru{vy.
e (Compute provisional solution and residual.) Compute

x = argmin {|JAx — b||* | support(x) =J'} and ¥ =b—Ax". (1.41)
e (Increment or stop.) If ||#¥|| < 7, stop; otherwise set v = v + 1 and repeat.

Note that the calculation of the provisional solution (1.41) is almost the same as
the calculation of the normal cone projection in Lemma 1.3.3, the only difference
being that xV in (1.41) is the projection onto the subspace corresponding to the index
set J¥ while the subgradient w¥ in Lemma 1.3.3 is the projection onto the associated
normal cone mapping.

Lemma 1.4.9 (provisional solution/subgradient equivalence) LetJ C J where ] =
{J | x; # O} for x* a solution to (1.1) with the counting objective @(x) = |\x[|o. Let
L= (Ly,Ly,... 7L_,,) and choose any y € R™ such that |c_le)7| < L; with equality hold-
ing only for j € J, and such that Ww; # O for any j € J where w = argmin{||Aw —
b|3 | w € Ng, (AT9)}. Then w = % = argmin {||Ax—b||* | x; =0 Vj¢I}.

Proof. If w; # 0 for all j € J then the minimizer of ||[Aw — b||? is in the relative
interior to Ng, (AT¥), an orthant of the subspace containing the support of . Hence
minimizers of |[Aw — b||> over the orthant and the entire subspace are equivalent,
thatis w = X. ]

Less obvious is the fact that the active index selection in Algorithm 1.4.8 is equiv-
alent to an exact line search with a dynamically reweighted ¢; norm.

Lemma 1.4.10 (step length/active index selection) Define J C {1,2,...,n} and
L= (l_,l ,l—,z, e ,l—,n) with

Yo for jel.

: {Mﬂ forj#3

and the sets Ry and C = {y ¢ R" | ATy € R; } accordingly. Letd = b — Py.(0)b. Then

J = argmin {minajzj—d_Hz} (1.42)
j¢d Zj
is the index set corresponding to the step length A given by (1.35), that is,

. wm} lajl . -
min b = — VjeldJ.
MJh%ﬂl ala]

Proof. We work forward from the definition of J. Substituting
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e
atd
J : 7112
—— —minlla;z; —d
Ha/”Z zj || J%J H
into (1.42) yields
ad |’
J = argmin ¢ || —L—a;—
= Tas

T 72 7
ald 112 d 2
= argmin | J |2 HajHT UZH -1
ST TP\ Tl
T 72
- ad
= argmin { ||d||* — 4 |2
i3 [lajl
jajdf?
argmax 3
5 Tl

= argmin ”aju
i | laidl

This completes the proof. |
We conclude that orthogonal matching pursuit is equivalent to the dynamically
reweighted steepest subgradient descent method with exact line search.

Proposition 1.4.11 Algorithm 1.4.8 is equivalent to Algorithm 1.3.4 initialized with
W =0and L° = (||la1], ||az|;---, l|anl|), and with the rescaling y* = 0 for all v.

Proof. This follows immediately from Lemmas 1.4.9 and 1.4.10. ]

1.5 Numerical Examples

The equivalence of Algorithm 1.3.4 with ¢¥ =0 for all v to the orthogonal matching
pursuit algorithm 1.4.8 makes the wealth of numerical experience with orthogonal
matching pursuit immediately available to our more general algorithm. We only
demonstrate in this section that the greedy version of the algorithm and the more
general version behave similarly on sufficiently sparse problems.

Remark 1.5.1 Before presenting our numerical examples, a few comments about
practical implementations are in order. As pointed out earlier, in the absence of exact
arithmetic, practical implementations cannot directly apply the most general form
of Algorithm 1.3.4. However, even without exact arithmetic, we can determine pre-
cisely the operative quantities as long as the numerical error is below the threshold
needed to discriminate between certain discrete cases.
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For example, suppose we have 14 digits of accuracy and |ajTyV| is to within 101
of L}: would it be equal to L} if we had exact arithmetic? If L} = 0, then it must
be that ajT»yv = 0 with exact arithmetic since it was proved in Propositions 1.3.5 and
1.3.7 that the iterates are generated from feasible directions with step length chosen
so that the iterates are always feasible. If the dynamic reweighting were chosen so
that L}’ > 0, then it is impossible to determine whether ajTyV should equal, say, —L}’,

T, v—1
iy

unless it is known that adeV = 0, in which case it should hold that a' = ajT-y",

where it has been determined from previous iterations that a]Ty"_1 = —L}’_ !, Again,
by Proposition 1.3.5, if w} # 0 for j in the active set J" and

w" = argmin {||Aw — b||2 | W€ Ng,, (ATyV)}

then a]TdV = 0. Let & be the numerical accuracy of the computation. If [w¥| > &
then we are certain that wY # 0, and thus a’d” = 0 so that aly” =aly*'~! = L}”‘l.
Ifinstead [wY| < &, then we cannot be sure that [w} | 7 0 and consequently we cannot
be certain that d¥ is orthogonal to the active columns of A.

This numerical uncertainty is related to the ill-posedness of the problem Ax = b:
if the sparsest signal x* has elements whose magnitude is below the numerical noise
level, then the algorithm must be regularized. We will have more to say about this
in the conclusion. For our numerical study we only take examples for which the
signal is above the numerical noise level, and so our exact arithmetic algorithm is
still implementable. |

We turn to our numerical illustration:

Our “Toy” problem. For our numerical example, we construct a real signal of
length 128> (n = 2 x 16,384 to account for real and imaginary parts) with 70
nonzero components (|J*| = 70), chosen at random, and randomly sample the dis-
crete Fourier transform of this signal at a rate of about 1/8. Since the true signal is
real-valued, our effective sampling rate is about 1/4 due to symmetry in the Fourier
coefficients (m = 2 x 3588 for the real and imaginary parts). Since we are dealing
with the Fourier transform, the scaling of columns of

A c R(2+16384)x(243588)

is just [|a;|| = 1/v/2%3588.
Algorithm illustrations. We illustrate the theory with two different implementa-
tions of Algorithm 1.3.4, the first with scaling parameter Y > 0 for each iteration
Vv (in fact, we need only take ¥¥ =1 to satisfy the requirements of the algorithm)
and the second with y¥ = 0 for all iterations corresponding to the “greedy” imple-
mentation. The complexity of the two implementations is identical. Both instances
converge in 70 iterations and require the same work to compute the subgradient.
Although the normal equations provide an explicit closed-form expression for
the calculation of the subgradient w in (1.18), this still involves the inversion of a
matrix, albeit small relative to the overall problem size. As we are interested in ap-
plications for which the sparsity is on the order of 10° to 10* nonzero elements, in-
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stead, we solve (1.18) iteratively using the Relaxed Average Alternating Reflection
(RAAR) algorithm [10, 11] for finding best approximation pairs between the sets
Ng, (ATy") and B = {x | Ax = b}. (It is important to note that we can only find best
approximation pairs since for all but the last iteration Ng, (A”y”) N B = 0.) Ordinary
alternating projections would have also sufficed to solve this subproblem, however
we found that the RAAR algorithm required, on average, 33% fewer iterations with
the proper choice of relaxation parameter.

Both of our implementations of Algorithm 1.3.4 require exactly the same number

of iterations of the RAAR algorithm to compute (1.18) since they both solve the
exact same subproblem at each iteration. The subproblems require, on average, 82.6
iterations to get to within the numerical tolerance (10712,
Complexity. Rather than explicitly forming the partial Fourier matrix A we take
advantage of the fast Fourier transform. The FFT is the most complex computation
in the algorithm. The RAAR algorithm requires 2 FFT computations per iteration
on a complex-valued vector of length 128> and the main loop of Algorithm 1.3.4
requires 3 FFT computations of the same complexity. For the example reported here,
over all the iterations, the algorithm required in total 821,871 FFT computations
on complex-valued vectors of length 1282, or on the order of 10'!' floating point
operations. On a 2.2 GHz Intel Core 2 Duo processor with 2GB 667 MHz memory
this takes 32 seconds of CPU time.

If instead of using the FFT we had used the normal equations to explicitly com-
pute the subgradients we would have needed only 211 FFT computations, and the
matrix inversions required in the normal equations would have required, at the worst,
inversion of a 70 x 70 real-valued matrix. The computational complexity of this ap-
proach is estimated to be on the order of 107 floating point operations. For problems
with sparsity < 700 elements the normal equation approach will probably be faster;
thereafter iterative methods, such as RAAR, using the FFT become competitive.

Figure 1.1(a) shows the error between the reconstructed signal and the true signal.
The reconstruction for both implementations are identical. Figure 1.1(b) shows the
weights corresponding to the implementation with scaling y” = 0 for all v. The
weights for the implementation with y” = 1 for all v are not shown since these are
all identical and unchanged from the initialization. Note that y¥ = 1 for all v is
then the behavior of the algorithm for solving the fixed, reweighted ¢; optimization
problem for this problem. These will not, in general be the scalings chosen by the
algorithm on different problems. Finally, in Figure 1.1(c) we give a comparison of
the step lengths at each iteration of the two implementations.

1.6 Comments and Conclusion

Our goals herein were to apply convex analysis to the nonconvex problem of sparse
signal recovery and to take notions that have evolved from different approaches and
incorporate these advances into convex analysis and algorithms. With this work we
have made a first step in this direction.
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Fig. 1.1 (a) Pointwise reconstruction error. (b) Weights at the optimal solution for the implemen-
tation with y¥ = 0 for all v. (¢) Comparison of magnitude of steps between y¥ =0 and y¥ =1
implementations at each iteration
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We proposed convex dual-space relaxations of the original nonconvex problem
and have analyzed one extreme of possible relaxations. We have proved conver-
gence in finitely many steps of a nonsmooth steepest descent method with exact line
search and dynamically reweighted ¢; norms when applied to problems satisfying
the mutual coherence condition.

An instance of our algorithm is shown to be equivalent to orthogonal matching
pursuit, which has been well-studied in the literature, though we are unaware of any
identification of this method to dual-space linesearch methods as presented here.
This explicit connection of orthogonal matching pursuit to reweighted ¢; minimiza-
tion in the dual opens the door to a greater synthesis of algorithms and a better
understanding of the behavior of these algorithms.

Indeed, the proof of the coincidence of the solution to the £; minimization prob-
lem to the solution of the corresponding minimization of the counting metric || - ||
is usually given indirectly. Here, under the assumption of mutual coherence and
certain interiority qualifications on the projection of the data onto the normal cone
associated with the active constraints, we have an explicit proof of the equivalence
of the solutions to the ¢; and || - || problems. An instance of this equivalence was
demonstrated in the numerical example.

Our numerical examples do not extend to circumstances not covered by the the-
ory developed here. There are two sources of failure of the algorithm, one due to
the sparsity conditions not being met, and the other due to numerical error. We
emphasized the importance of recognizing algorithms that implicitly rely on exact
arithmetic and how implementations can succeed or fail without it. We are unaware
of a numerical study that distinguishes between instances where the sparsity condi-
tions are not met and instances where the numerical tolerance is not precise enough
for a practical implementation. This is a topic worthy of greater attention than we
have space for here.

The next step in this research will be to investigate the other relaxations, € > 0
of (1.8). For this instance the objective is smooth (infinitely differentiable) in its do-
main Ry, and the gradient can be written in closed-form. We conjecture that the cor-
responding steepest descent, exact linesearch algorithm with dynamic reweighting
will behave much like an interior point algorithm since the effect of the parameter €
is to keep the iterates on the interior of the feasible region.

Another direction that needs to be addressed is sparse approximate solutions to
the model Ax = b. This is more appropriate for applications where the image b is
corrupted by noise, or, as we have seen, numerical error. There has been a lot of
very good work in this direction by other researchers. Our approach is appropriate
for fast (finitely terminating), highly accurate exact solutions. It remains to be seen
whether this basic program extends to fast (polynomial time), reasonably accurate
approximate solutions.
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