SCMP Architecture:
An Asymmetric Multiprocessor System-on-Chip for
Dynamic Applications

Nicolas VENTROUX and Raphaél DAVID
CEA, LIST,
Embedded Computing Laboratory,
91191 Gif-sur-Yvette CEDEX, France
nicolas.ventroux@cea.fr

ABSTRACT

Future systems will have to support multiple and concur-
rent dynamic compute-intensive applications, while respect-
ing real-time and energy consumption constraints. Within
this framework, this paper presents an architecture, named
SCMP. This asymmetric multiprocessor can support dynamic
migration and preemption of tasks, thanks to a concurrent
control of tasks, while offering a specific data sharing solu-
tion. Its tasks are controlled by a dedicated HW-RTOS that
allows online scheduling of independent real-time and non-
real-time tasks. By incorporating a connected component
labeling algorithm into this platform, we have been able to
measure its benefits for real-time and dynamic image pro-
cessing.

Categories and Subject Descriptors

C.1.4 [Computer System Organization]: Processor ar-
chitecture - Multiprocessors; C.3 [Special-purpose and
application-based systems]: Real-time and embedded
systems; D.4.7 [Software]|: Operating Systems - Organi-
zation and Design, Embedded Systems

Keywords
multiprocessor, MPSoC, real-time, adaptive computing, HW-
RTOS, image processing

1. INTRODUCTION

In response to an ever increasing demand for computational
efficiency, the performance of embedded system architec-
tures have improved constantly over the years. This has
been made possible through fewer gates per pipeline stage,
deeper pipelines, better circuit designs, faster transistors
with new manufacturing processes, and enhanced instruction-
level or data-level parallelism (ILP or DLP). An increase
in the level of parallelism requires the integration of larger
cache memories and more sophisticated branch prediction

systems. It therefore has a negative impact on the transis-
tors’ efficency, since the part of these that performs compu-
tations is being gradually reduced. Switching time and tran-
sistor size are also reaching their minimum limits. Besides,
only low ILP is possible in a given sequence of processor
instructions (within a same sequence, instructions tend to
be highly dependent) [1, 2]. As a result, superscalar proces-
sors register diminishing returns as they attempt to execute
more instructions per clock cycle, while the logic required
to process these multiple cycle instructions drastically in-
creases. Besides, existing sophisticated software approaches
with VLIW processors do not reach better results, due to
inevitable parallelism limitations.

The emergence of new embedded applications for telecom,
automotive, digital television and multimedia applications,
has fueled demand for architectures with higher performances,
more chip area and power efficiency. These applications are
usually compute-intensive, which prevents them from be-
ing used in general-purpose processors. They must be able
to simultaneously process concurrent information flows; and
their information must all be efficiently collected, dispatched
and processed. This is only feasible in a multithreaded ex-
ecution environment. Designers are thus showing interest
in a System-on-Chip (SoC) paradigm composed of multi-
ple computation resources and a network that is highly ef-
ficient in terms of latency and bandwidth. The resulting
new trend in architectural design is the MultiProcessor SoC
(MPSoC) [3]. MPSoCs are multithreaded architectures and,
as such, support the integration of multiple computing re-
sources. These resources concurrently execute threads using
explicit multithreaded workloads [4, 5]. They rely on sev-
eral approaches, the most important of which are simulta-
neous multithreading (SMT), chip multiprocessing (CMP)
and chip multithreading (CMT).

Another very important feature of future embedded computat-
intensive applications is the dynamism. For instance, the
connected component algorithm [6] is one of them and its
computation time depends on the size and the number of
handled objects. It is very interesting to analyze its compu-
tation time on a complete video sequence. Figure 1 shows
these results.

This algorithm is highly data-dependent and the execution
time depends on the image content. Consequently, on a
multiprocessor platform, optimal static partitionning can-

3,5 1

25

Execution time (ms)

1

1 83 165 247 329 411 493 575 657 739 821 903 985 1067 1149 1231 1313 1395 1477
Images

Figure 1: Execution time of the connected component
labeling algorithm on a video sequence with an Intel Pen-
tium 4 Xeon processor (2.99 GHz).

not exist since all the processing times depend on the given
data. The only optimal solution consists in dynamically
allocating tasks according to the availability of computing
resources. In this paper, a task is an independent sequence
of instructions. Moreover, to share the computation power
between concurrent real-time applications or tasks, it is nec-
essary to support the preemption and migration of tasks. If
a task has a higher priority level than another one, it must
preempt the current task to guarantee its deadline. Besides,
the preempted task must be able to migrate on another free
computing resource to increase the performance efficiency of
the architecture.

Unfortunately, existing architectures offer only partial solu-
tions to the power, chip area, performance, reliability and
dynamism problems associated with embedded systems. For
this reason, our paper presents an alternative solution. In
section 2, we describe existing multithreaded approaches and
why they are unsuited to embedded systems. Then, section
3 details our own architecture, which is called SCMP. This
CMP-type architecture supports task migration and pre-
emption with very few timing penalties. Section 4 presents
its control system, which is a real-time hardware operating
system accelerator dubbed OSoC. This component accom-
modates a high degree of control parallelism and integrates
an online dynamic scheduler that supports both real-time
and non-real-time tasks. Section 5 focuses on computa-
tion, by explaining our concurrent, prefetched configuration
mechanism, as well as the solution adopted for data sharing
management. Section 6 presents the SCMP simulator that is
used to obtain the implementation results of the connected
component labeling algorithm in our architecture, which are
elaborated in section 7. This paper expects to highlight the
impact of the OSoC on the whole system, and to show the
benefit that can be obtained by using a hardware OS ac-
celerator with multiprocessor platforms. Finally, section 8
concludes this paper by discussing work already underway
on this system, along with that to come.

2. RELATED WORK

Use of thread-level parallelism (TLP) is becoming necessary
for embedded applications. It calls for simultaneously exe-

cuting multiple threads within single execution units (SMT),
or dispatching threads to separate physical processing units
(CMP). Another approach, called CMT, consists of merging
both these capabilities.

Simultaneous MultiThreading -. SMT architectures are
multithreaded processors that interleave the execution of in-
structions from different threads in the same pipeline [7]. In
this configuration, multiple program counters are available
in the fetch unit, and multiple contexts are saved in local
registers. The penalties, that occur during execution of a
single instruction stream, due to cache miss or data depen-
dencies, are filled by computations of another thread. This
technique has been integrated into solution-server architec-
tures such as MARS-M [8], Compaq Alpha 21464 [9], and
IBM’s Power5 [10]. Xeon processors also have a simulta-
neous multithreading technology known as hyperthreading
(HT) [11]. Hyperthreading makes a single physical proces-
sor appear as two logical processors. Only state resources,
such as general-purpose registers, are then duplicated to per-
mit concurrent execution of two control threads. Because
an SMT processor simultaneously exploits coarse- and fine-
grained parallelism, namely TLP and ILP, it can use its
resources more efficiently, achieving better throughput and
speedup than single-threaded superscalar processors for mul-
tithreaded workloads (Figure 2-a). Its implementation nev-
ertheless requires complex issue stages and generates huge
architectures that are not feasible for embedded systems,
with their demanding energy consumption and computing
density constraints. Moreover, control-dominated processes
are executed like regular, time-critical processes within the
same computation unit. Consequently, computational re-
sources must support both regular and irregular processes,
and this prevents their optimization for embedded applica-
tions.

Chip MultiProcessing -. Contrary to SMT architectures,
this solution is widely used in embedded systems, due to
its ease of design [12]. A CMP architecture is composed of
computing resources driven by a single control unit, which
allocates to them the ready-to-be-executed tasks (Figure 2-
b). In this paper, we consider a task as a divided part of a
thread. This is done to extract parallelism within any one
thread, while executing multiple threads in parallel across
multiple processors. The CMP approach minimizes the size
of the final architecture, since it attempts to exploit a higher
degree of TLP, using more processors instead of larger is-
sue widths within a single processor. As a result, its struc-
ture is adapted to embedded constraints; and its high degree
of TLP can meet future application needs. Such architec-
tures can integrate heterogeneous or homogeneous resources.
Typically, heterogeneous structures are dedicated to a spe-
cific applicative domain. Because the order of task execution
is defined at compile-time, task dispatching is simplified at
runtime. Among these application-driven solutions, we note
Texas Instruments’ OMAP [13], the VIPER architecture de-
veloped by Philips [14], and ST Microelectronics’ Nomadik
platform [15]. Homogeneous structures, on the other hand,
can either be dedicated to certain applications, as is the case
of the CT3616 proposed by Cradle Technologies [16], or sup-
port general-purpose processing like IBM’s CELL [17] and

Time (proc cycles) ——ee—u»

a) [alalalald[d[d]d][d[dlel [T
al|blajald|b[d|d[d|d]e|f]|c
alclalald[b[d[d[d]|d][e[f]c Issue slots
blclala|d|a|d]|d[d[e|d]|f]|g

Task loading
by _EIAIA[A[A[A[ATATERIG]]
N EBEEEEEREE
Free slots

[clcIclclcIc I FIFIFIF]
[Eo[o[p[o[o[o]o[p[o[D[D[D]

0) [ATAAA[A[AIE[E[A]]
I E[e[EIF[FIB[FIF[B[B
[cIcIcclclc iG] |
[ERIo[o[olo[o[o[o]b[o]b[o[D]
‘Context switching latency
d) ATA[AYB[B[BAATATAIAL]
Eclclclclc[cImElEl |
[o]olo[o[po[o[o[p]p[D]D]

Figure 2: Different approaches to multithreaded task execution: (a) 4-issue SMT; (b) 4-way CMP; (c) 4-way CMT;
and (d) 4-way CMP with task migration and preemption. Each line represents the issue slots for single execution

cycles.

ARM’s MPCore platforms [18].

Chip MultiThreading -. This third multithreaded tech-
nique is a combination of CMP and SMT [19]. It sup-
ports the execution of simultaneous threads within each dis-
tributed processing unit (Figure 2-c). In the same way as
for certain SMT architectures, each time a thread is stopped
by a cache-miss or a data dependency, for instance, the exe-
cution unit executes another thread. In CMT, unlike CMP
architectures, the penalty for task switching is reduced to
a local context switch. However, like SMT, CMT is only
suited to server applications, because of its lower compu-
tational density and energy efficiency. The UltraSparc IV
[20] or the UltraSparc T3 [21] processor are some example
of CMT multiprocessors.

Previous works [7, 5] have shown that SMT performances
are better than those of CMP for the same number of is-
sue slots. This is mainly due to poorer use of computation
resources in CMP than in SMT, since an n-way SMT has
the same theoretical performances as n processing elements
with only one issue. In CMP architectures, processing ele-
ments mainly stay idle when thread-level parallelism is low.
Dynamic partitioning of SMT resources among threads also
affords efficient use of both ILP and TLP, depending on the
application’s properties. Within SMT architectures, com-
munication between threads does not imply the same signif-
icant penalties as for CMP. With the CMP approach, the
control unit and the processing elements are distributed and
are linked by standard system buses that are inefficient in
terms of latency and bandwidth. Their latencies penalize
the reactivity of the architecture and prevent the whole sys-
tem from optimizing its resources. For a constant chip area
and integration density, however, the complexity of 16-issue
CMP design is no greater than that of a 12-issue superscalar
or SMT processor [12]. With its higher thread-level paral-
lelism potential, the CMP execution model thus outperforms
other multithreaded techniques. While CMP architectures
have drawbacks, they are definitely recommended for em-
bedded systems. They consume less power, are easier to
implement and afford better performances than other mul-
tithreaded approaches, for a same degree of complexity [22].

In conclusion, none of these architectures completely solves
the problems raised by embedded systems. The CMP ap-
proach can meet embedded constraints, but suffers from a
lack of optimization. SMT architectures exhibit good per-
formances at a high level of parallelism, but are not designed
for the embedded system market. Previous use of the alter-
native CMT approach has shown how difficult it is to exploit
both these advantages without combining their drawbacks.
CMT hybrid architecture provides a good compromise be-
tween the excellent performance of SMT and the high en-
ergy efficiencies of CMP, but is hindered by large chip areas
and energy consumption overheads. The solution proposed
in this paper affords an attractive trade-off between mul-
tithreaded approaches. At the same time, unlike CMT or
existing CMP, our approach is dedicated to dynamic em-
bedded applications. Our architecture is called SCMP. It
is a Scalable Chip MultiProcessor having a loosely-coupled
interface with the CPU. The SCMP is based on a CMP
execution model that supports dynamic migration and pre-
emption of tasks, can hide control latencies and optimizes
use of computation resources.

3. SCMP ARCHITECTURE

The SCMP architecture has a CMP structure and uses mi-
gration and fast preemption mechanisms to eliminate idle
execution slots. Asshown in Figure 2-d, our execution model
is similar to the CMT approach. While this means bigger
switching penalties, it ensures greater flexibility and reac-
tivity for real-time systems. Take the example of task B (on
Figure 2-d), which has a higher level of priority than task A
but a lower level of priority than task F. In the CMT model,
task B execution must wait until the end of task F, i.e. un-
til the necessary resources are freed. Thanks to preemption
and migration, in SCMP, task B can continue being executed
on another processing unit. The order of priority for task
execution is then respected, which is not the case for other
multithreaded approaches, which execute tasks according to
resource or data availability.

3.1 Programming model

The programming model for the SCMP architecture is specif-
ically adapted to dynamic applications and global scheduling
methods. The proposed programming model is based on the
explicit separation of the control and the computation parts.

As depicted in Figure 3, each application must be manually
(the tool chain is still under development) parallelized and
cut into different tasks. Thus, computation tasks and the
control task are extracted from the application, so as each
task is a standalone program. The control task handles the
computation task scheduling and other control functionali-
ties, like synchronizations and shared resource management
for instance. Each embedded application can be divided into
a set of independent threads, from which explicit execution
dependencies are extracted. Each thread can in turn be di-
vided into a finite set of tasks. The greater the number of
independent and parallel tasks are extracted, the more the
application can be accelerated at runtime.

; Dependencyand ! ||
Parallelism Extracticn
I 1

4

Computation
s Controltask

¥ ¥
Heterogeneous //Compi\ation/

Cross-compilation
Compiled Application

Processing Caontrol
Resources Manager

+227 Manual operation

Figure 3: Programming model

A specific Hardware Abstraction Layer (HAL) is provided
to manage all memory accesses and local synchronizations,
as well as dynamic memory allocation and management ca-
pabilities. With these functions, it is possible to carry out
local control synchronizations or to let the control manager
taking all control decisions. Concurrent tasks can share data
through local synchronizations to enable a dataflow execu-
tion, or wait for the controller decision before reading input
data. Each task is defined by a task identity, which is used
to dialog between the control and the computation parts.
Then, a manual partitioning must be carried out in case of
heterogeneous MPSoCs. Heterogeneous resource manage-
ment takes place before task compilation. Finally, all tasks
are compiled and made available to the processing resources
or the control manager.

The control task is a Control Data Flow Graph (CDFG)
extracted from the application, which represents all control
and data dependencies. The control task handles the com-
putation task scheduling and other control functionalities,
like synchronizations and shared resource management for
instance. A specific and simple assembly language is used
to describe this CDFG and must be manually written. As
depicted Figure 4, each control task, for each different ap-
plication, needs to define the number of computation tasks,
the binary file names corresponding to these tasks, and their
necessary memory stack size. Then, because their is no in-
struction order, we must specify which are the first and end
tasks of the application. We must also describe each transi-
tion with the sentence. Finally, for real-time scheduling, the
deadline of the application, as well as the worst case execu-
tion time of each task, must be defined. The processor type

of each task is also specified and this information is used
during the allocation process. Only this representation of
the control task is necessary, whereas a specific compilation
tool is used for the binary generation.

--Exemple

NBTASK 2
DEADLINE 9976
NAME_TASKS TO T1
SIZE_STACK O0Ox1F Ox1F

--Appli
INIT TO;

NEXT TO = T1,ev0;

ev0
o |:> NEXT T1 = END;
O

EVENT ev0 =0;

--Length
LENGTHTO,1 =10;
LENGTHT1,1 =50;

--End
ENDAPPLI;

Figure 4: Control task assembly code example. The
next task T1 is activated when the event ev0 from the
current task T0 is received by the controller

3.2 Execution model

Our execution model calls for executing constrained tasks on
computing resources. Two execution models are supported:
a contrained-task or a streaming execution model. Both of
them are simultaneously supported.

The first one allows the execution of tasks when all previous
tasks have finished their execution and therefore have pro-
duced their intermediate results (Figure 5). All tasks are
uninterrupted by data or control dependencies. During its
execution, a task cannot access data not selected at the ex-
traction step. It cannot use work-in-progress data, and it
must follow the execution order established by the control
unit. The execution of non-blocking tasks starts as soon as
all input operands are available. Consequently, the model
eliminates data coherency problems without the need for
specific coherency mechanisms. This constitutes an impor-
tant feature for embedded systems, since their architecture
is accordingly simplified.

PE PE PE PE

@ (TO) (T1) (T2) (T3)
| X [N | |
@.@ Tt
& i

™ T2 T3

Figure 5: Task-constraint execution model. Reads and
writes are non-blocking. Each arrow represents an inter-
connection through the data network between a Process-
ing Element (PE) and a data stored in local memories
(Mem). Dark arrows are read/write accesses, whereas
gray arrows represent read-only accesses. Task execution
requires only data produced by tasks that have finished
their execution on a PE.

We have also the possibility to share data with other concur-
rent tasks via a dynamic buffer allocation. In this model,

a task can wait for data produced by another task in the
dataflow pipeline (Figure 6). The granularity of the shared
data is the page. Since all tasks have an exclusive access
to pages, we eliminate data coherency problems without the
need for specific coherency mechanisms.

@ (?g) ($1E) (?5) (?5)
—H——=H=—H
-1 [f 0
=
(19

—
y

=< =< =< = <

)) © @ o |---|@

3 3 3 3 3 3

TO T T2 T3

Figure 6: Streaming execution model. Each arrow rep-
resents an interconnection through the data network be-
tween a Processing Element (PE) and a data stored in
local memories (Mem). Dark arrows are read/write ac-
cesses, whereas gray arrows represent read-only accesses.
Task execution begins as soon as intermediate data are
ready. Local synchronization is afforded through a mem-
ory management unit.

However, the data sharing problem between processing re-
sources still remains. It is linked to the structure of memory
resources. With a single shared memory, concurrent accesses
create overheads, due to its incapacity to provide sufficient
bandwidth. With a distributed memory system, shared data
are dispatched and additional data transfers generate heavy
penalties and reduce overall performances. Our architecture
must also support dynamic migration of tasks. The solu-
tion therefore consists of sharing all distributed resources.
In our approach, tasks nevertheless maintain exclusive ac-
cess to their memories throughout execution (Figure 5 and
6). This is guaranteed, since all the executed tasks are con-
strained by the others or by the memory management unit;
and data modifications by other concurrent tasks does not
need to be taken into account. The result of this solution is
high functional and temporal predictability, which is impor-
tant for embedded systems.

This execution model requires a dedicated controller with an
efficient scheduling mechanism. Existing control solutions
could not ensure the high degree of parallelism or the same
reactivity as a hardware solution. For this reason, we have
designed a hardware real-time operating system called Oper-
ating System accelerator on Chip (OSoC). This component
can manage all the distributed resources (processing and
storage) of our architecture and dynamically dispatch tasks
under real-time constraints. The SCMP architecture thus
comprises the OSoC, multiple computing, memories and In-
put/Output (I/O) resources.

3.3 SCMP structure

The SCMP architecture is a compute-intensive resource that
is seen by the CPU as a coprocessor (Figure 7). The soft-
ware operating system (OS) hosted by the CPU is commonly
used for general-purpose processing or interface manage-
ment. All control of intensive processes must nevertheless
be performed by an efficient control system. While using
a simple OS would be adequate, this solution is prohibited

by parallelism, reactivity and determinism considerations.
Because our system has centralized control and implies per-
manent communication between its control unit and its pro-
cessors, reactivity also significantly impacts overall perfor-
mances. Moreover, software OS structures based on inter-
rupts do not allow determinism, since the response to an
interrupt depends on OS activity. The various hardware ab-
straction layers, between the OS and the hardware likewise
penalize performance and overall system reactivity. This
generates critical sections during hardware/software com-
munication. Use of dedicated hardware components is thus
vital to our system. Many acceleration solutions for real-
time operating systems (RTOS) have been proposed and
their benefits clearly demonstrated [23, 24, 25].

SCMP-LC

0SoC - HW-RTOS 8
CPU - E
K=y Processingand KO
(RT)OS communication §
units 3
ES3 83 3

Interconnection Network

& ¢

Main
cT HMI
memory

Figure 7: SCMP architecture: The HW-RTOS or OSoC
controls multiple computing resources dynamically to af-
ford intensive computation capability.

To ensure an efficient control of our multiple computing
resources, we have designed a hardware real-time operat-
ing system named OSoC (Operating System accelerator on
Chip). The OSoC dynamically determines the list of eli-
gible tasks to be executed, based on control and data de-
pendencies. It also manages exclusive accesses to shared
resources, and non-deterministic processes. Then, task al-
location follows online global scheduling, which selects real-
time tasks according to their dynamic priority, and mini-
mizes overall execution time for non-real-time tasks. Dy-
namic power management exploits the processor’s dynamic
voltage and frequency scaling (DVFS) [26], and sleep mode
mechanisms. In addition, the OSoC manages memory allo-
cations and the exclusive sharing of physically distributed
and logically shared memory space. It also prefetches tasks
in these memories so that the beginning of the execution of
the task do not suffer from memory latencies. Heterogeneous
resource management takes place before task compilation.

The CPU can accelerate applications through the SCMP ar-
chitecture at runtime. It communicates with the OSoC via
the interconnection network used in the system (Figure 7).
It can ask for execution of a new application, stop or sus-
pend it, or wake up a suspended application. Periodic tasks
are automatically synchronized and deadlines of tasks are
updated. Multiple applications and multiple instances of a
same application can be executed and managed concurrently
by the OSoC. To execute a new application, the CPU must
load all necessary instructions or data for the application
into the OSoC Memory. When the transfer is completed,

the CPU informs the OSoC and sends an execution order.
After execution of the application, an acknowledgement is
sent to the CPU.

Computing resources can be heterogeneous. This affords
better chip area and power efficiency for our system. Hetero-
geneity may concern either software or hardware. It is pos-
sible to implement general-purpose or dedicated processors
(DSP, VLIW, etc.), coarse-grained reconfigurable resources
(ADRES [27], DART [28], XPP [29], etc.), time-critical I/O
controllers (video sensor, etc.), and dedicated or acceler-
ated hardware components (IP). These dedicated units can
take part in critical processes, for which no programmable
or reconfigurable solution with sufficient computing perfor-
mances exists. All processing elements (PEs) must be able
to execute a task without additional external control, sup-
port the preemption of tasks, and access available memories.
Finally, each task is executed by a predefined processor.

These processing elements communicate through local mem-
ories and a multi-bus network. This network connects all
PEs and I/O controllers to all memory resources. Each PE
owns two Level-1 instruction and data memories, which are
not shared with other PEs or I/Os. The write-through cache
policy is used to allow fast preemptions. Scratchpad mem-
ories are supported and must be preferred to reduce the
energy consumption, but its content must be saved during
a preemption. Preemptions and executions can be concur-
rent without execution conflicts. For better performances,
the interconnection network supports simultaneous accesses
without writing or reading conflicts; and each PE can ac-
cess all distributed local memories. Moreover, all PEs can
communicate with memories and I/O resources without un-
determined latency, even if the consumer is absent or not
ready. Data exchanges are non-blocking and deterministic,
regardless of network load or execution constraint.

The following sections detail both OSoC architecture and
SCMP computing mechanisms.

4. THE OSOC: A HW-RTOS

Accelerated components for RT'OSs can be divided into two
main categories. The first category provides dynamic, static
or configurable scheduling mechanisms, supports external
interrupts for aperiodic tasks and can eventually manage
dependencies through a set of semaphores. Mooney et al.,
for example, have proposed the CHS architecture [30] to re-
duce scheduling time for highly reactive systems. Its sched-
uler provides three scheduling methods: priority-based, rate
monotonic (RM) and earliest-deadline-first (EDF). This hard-
ware implementation eliminates scheduling and time-tick
processing overheads in RTOS. Nakano et al. have designed
a solution called Silicon OS, which associates the pITRON
real-time kernel and a hardware platform called Silicon TRON
[31]. The Silicon TRON platform implements the sched-
uler and a set of semaphores, flags and timers, whereas
OS software supports overall system management. Software
primitives maintain the applicative coherency and the pro-
grammability of the system.

The second category of RTOSs additionally provides multi-
processor management. This is the case of the Méilardalen
University’s real-time unit (RTU) [32] and the real-time pro-

cessor operating system (RTPOS) proposed by Isaacson et
al. [33]. RTU architecture can drive three heterogeneous
or homogeneous resources through a VME bus protocol. It
provides static scheduling of 64 tasks on eight levels of prior-
ity, and manages external interrupts, resources and synchro-
nizations through flags and timers. Like other solutions, it
has decreased overall system overhead, resulting in improved
predictability and response time. Both these types of archi-
tecture afford significant improvements. However, they do
not meet our specific needs [31, 33]. That is why we have
designed the OSoC.

The RTOS architectures just described are limited in terms
of possible number of tasks. In contrast, the OSoC can
create tasks dynamically, according to execution mode and
environment, without user intervention or preprogramming
functions. At runtime, it can adapt its resources to applica-
tion needs. An OSoC can execute 256 tasks per application,
16 concurrent applications simultaneously and 16 instances
of the same application. Furthermore, its architecture owns
only 32 task resources. Whereas the number of processed
applications does not impact performances, the number of
available resources modifies both scheduling time and the
chip area. With 32 task resources, it is possible to simulta-
neously activate 32 tasks. Each task resource is updating at
run-time and will represent different tasks, and very complex
application can be executed as long as it never runs over a
32-task parallelism. This degree of parallelism is sufficient
to control a 32-resource platform. Existing multiprocessor
HW-RTOS solutions use priority-level scheduling policies.
Even if they allow priority change during execution, they
are unsuited to our execution model. The performance of a
CMP architecture depends on the number of available tasks.
If only one level of priority is associated with each task, the
number of available tasks is reduced by the resulting lim-
ited levels of priority. It is then impossible to exploit the
parallelism of the architecture. Dynamic priority scheduling
without priority levels is thus necessary to manage CMP
architectures.

As shown in Figure 8, the OSoC architecture is made up of a
control unit in charge of communications with the CPU and
the external OSoC memory, and of functional blocks dedi-
cated to application scheduling. The first block, known as
the Task Synchronization and Management Unit (TSMU),
is carried out by a modified version of RAC architecture [34,
35]. As already seen in the discussion of our programming
model, applications are divided into a set of independent
precompiled tasks and a set of Petri Nets that represent data
and control dependencies for each application. The RAC is
a self-adapting architecture, which can exploit its resources
dynamically to construct Petri Nets. This block can select
all active tasks and prefetch all tasks that are going to be
executed afterwards. This permits to ask for the execution
of multiple tasks in parallel and to reduce access latency
to memories. The explicit description of data and control
dependencies ensure the sequential execution of tasks. Non-
deterministic processes are supported through conditional
execution without speculation.

With the OSoC, the configuration of resources is done before
the execution of tasks. They can thus begin their execution
without suffering from external memory latencies. In ad-

CPU Bus

P —— 0SoC

[Control Interface / CPL (Cl) }
A 3 A
i>CPU Managementi>
Task Execution| election Unit (CMU)
and nit (SU) Iy PE and Control
Synchro. + Memory s Unit
Management ask Main Scheduli Allocation (V)
Unit Memory cheduling — Lf jnit (AU)
(TSMU) aMm) = UnitSu) -
it R

From PEs To PEs J\ \/_

Figure 8: Detailed OSoC architecture: this component
accelerates main RTOS functions. The Task Execution
and Synchronization Unit (TSMU) manages control and
data dependencies of tasks and directly implements Petri
Nets. The Selection Unit (SU) synchronizes demands
from the CPU, the TSMU and PEs. The CPU Manage-
ment Unit (CMU) and the Scheduling Unit (SU) sched-
ule tasks according to CPU demand, the set of ready
tasks and PE information. Finally, the PE and Memory
Allocation Unit (AU) assigns eligible tasks to resources
through the Control Unit (CU).

dition, specific memory are used into the OSoC to enable
multi-application execution. With the identity of the task,
it is possible to retrieve its corresponding information into
the memory, thanks to specific content addressable memory
structures.

The OSoC integrates a modified version of the preemptive
least-laxity-first algorithm proposed by J. Hildebrandt et al.
[36]. The task whose time-to-end-of-execution is shortest
is the one with the highest priority. Thus, the priority of
each active task is evaluated at every clock-tick. Moreover,
if two tasks have the same laxity, the task with the shortest
deadline has a higher priority level, and the other task is ex-
cluded to prevent trashing. Non-real-time tasks are sched-
uled according to their execution time to optimize overall
execution time and PE utilization [37]. Non-real-time tasks
are executed only when a PE is available and when no more
real-time tasks are waiting to be executed.

The OSoC can also schedule periodic real-time tasks or non-
periodic tasks. Like any application, periodic tasks are spec-
ified in the form of task graphs. A task graph is a directed
acyclic graph in which each node is associated with a task
and each edge is associated with an event conditioned by the
execution. For all tasks, the OSoC supports delayed execu-
tion and variable execution time as long as the deadline is
respected. According to embedded application needs, each
real-time application has a deadline, which represents the
maximum time-to-end-of-execution. The deadline for each
task of the application is then computed at runtime, accord-
ing to the type of execution and environment. The deadline
is a function of previous task deadlines and durations. Un-
like all previous solutions, this permits non-deterministic ex-
ecution.

In addition, the OSoC supports dynamic and parallel mi-
gration and preemption of tasks on multiple homogeneous
resources. When a task is eligible, the allocation process
selects a free computing resource identical to the expected
target. If all resources are already used, the lowest priority
task is preempted.

Finally, the OSoC manages system energy consumption by
exploiting the DVF'S and sleep modes of processing units and
memories. Because we know the next task to be executed,
we can locally optimize the consumption of our system. The
optimization method used in the OSoC is based on making
use of slack time [38]. This involves cumulating differences
between worst case execution time (WCET), which is used
to schedule tasks, and actual execution time. When the cu-
mulative time is sufficient to activate a DVFS mode for the
next task, the next resource is configured to the correspond-
ing DVFS mode. In case of AND divergences, the slack time
is allocated to the longest task. Sleep modes, on the other
hand, are not used dynamically, but instead at the start and
end of applications.

S. SCMP PROCESSING EXAMPLE

As shown in Figure 9, the SCMP architecture is made of
multiple PEs and I/O controllers. This architecture is de-
signed to provide real-time guarantees, while optimizing re-
source utilization and energy consumption. The next section
describes execution of applications in a SCMP architecture.

When the OSoC receives an execution order of an applica-
tion, its Petri Net representation is built into the Task Ex-
ecution and Synchronization Management Unit (TSMU) of
the OSoC. Then, the execution and configuration demands
are sent to the Selection unit according to application sta-
tus. They contain all identifiers of active tasks that can be
executed and of coming active tasks that can be prefetched.
Scheduling of all active tasks must then incorporate the tasks
for the newly loaded application. If a non-configured task
is ready and waiting for its execution, or a free resource
is available, the PE and Memory Allocation Unit sends a
configuration primitive to the Configuration Unit.

Based on the task identifier, the Memory Management and
Configuration Unit (MCMU) allocates a memory space for
the context, the code and the stack of the task. Then, its
loads the instruction code related to that task, from the
Main Instruction Memory; and initializes the context. Con-
figuration of these local memories is sequential and takes
place only once before execution of the task. Thus, no read-
ing conflicts are possible when the Main Instruction Memory
is accessed. Once the transfer is finished, the address of the
selected memory along with the task identifier are written
into the MCMU.

After the configuration of the task, if an execution demand
has been received from the TSMU, the Scheduling Unit
again updates priorities and the state of each task. If there
is a free resource, or one task has a higher priority over an-
other that uses the same type of resource, the OSoC sends
an execution primitive to the selected PE. If a task is being
executed by the selected PE, the OSoC demands its preemp-
tion. Then the task execution context is saved. Because all

OSoC / HW-RTOS

‘ Interconnect and Interface Unit for the OSoC (12U)

U U U Iy
Mem Mem Mem
INSTR INSTR INSTR
PE PE BE 1o || Vo |___| 1o
Mem Mem Mem ctrl || ctrl ctrl
DATA DATA DATA
Y A TT T
Memory 4 L/ v ¥ ;_L IL A
Configu- o
ration and [+ Data Network vo [[vo |--4 =
Manage- >
ment Unit _
Mem||Mem |[Mem| [Mem||Mem |[Mem| -~ [Mem||Mem

Figure 9: SCMP structure: computing portion of CMP architecture.

memories are shared, this execution context can be accessed
by another PE, enabling easy migration of task execution
from one PE to another.

When a PE receives an execution request, it asks the MCMU
for the translation address table of the task memory. This
table contains all translations of allocated pages for the con-
text, the code and the stack. With these addresses the PE
can begin executing the task. The distribution of such data
management units among the PEs allows concurrent com-
munications and data transfers between tasks. I/O con-
trollers are used by the OSoC as other PEs. For example,
a data transfer from a DMA implies moving external data
to the task memory. Local transfers can take place, where
necessary, via another PE to distribute large amounts of
data among other local memories, thereby improving access
memory parallelism. Because all data required to execute
the task are ready and all synchronization has been com-
pleted at the task selection level, the execution then simply
consists of processing the data from local memories and stor-
ing the result in a memory open to the other tasks.

In the following section, we present the simulator of the
SCMP architecture. This simulator is used to execute our
application and to obtain the results presented in this article.

6. SCMP SIMULATOR

The SCMP simulator has been modelized within the SESAM
(Simulation Environment for Scalable Asymmetric Multi-
processors) framework [39]. SESAM is a tool that has been
specifically designed to demonstrate the feasibility of our ar-
chitecture and its performance. This tool can also be used
for the architecture exploration and optimization.

This framework is described with the SystemC description
language and uses the ArchC tool [40] to generate Instruc-
tion Set Simulators (ISS) at the functional level. All the

blocks of the simulator are timed, according to synthesized
results, and communications use an approximate-timed Trans-
actional Level Modeling (TLM) protocol [41]. This model
brings hardware behavior to the simulator and exhibits, for
instance, communication bottlenecks that are essential to
correctly size the architecture. A study in [41] depicts a
90 % accuracy compared to a fully cycle accurate simulator.

We use ArchC MIPS32 processors as processing resources
with data and instruction cache memories. To execute an
application on the simulator, we use a terminal to send ex-
ecution commands to the CPU. They boot on a read-only
memory that contains all system code dubbed system mem-
ory. When the initialization is done, they wait for OSoC
requests. We can dynamically execute tasks on processors.
All communications are done at the transactional level and
we can accurately estimate the time spent in every com-
munication. Preemption and migration of tasks are done
through an interruption mechanism that switch the context
of the processing unit, saving and loading context code from
the system memory. Because we use cache memories and
write through policies, the preemption mechanism needs to
save only file registers of the processor. With scratchpad
memories, its content should have been saved. Besides, we
use a fifo with each memory to store memory accesses from
computing units. The arbiters use a fair round-robin policy.
All features of the architecture can be modified after compi-
lation to allow its sizing according to a specific application
or customer needs.

All parts of the architecture have been described at the
Register Transfer Level (RTL) in VHDL, except processors
and cache memories. All latencies and constraints, charac-
terized by the Synopsys Design Compiler tool with a low-
leakage 0.13 um@1.2V technology have been added into the
behavioral SystemC model. The time between two succes-
sive schedulings, named time-tick, is about 19 us with an

OSoC that can support 32 simultaneous active tasks and 8
processors. All networks have a latency of 2.5ns and each
memory has an access time of 2.5ns. Each processor has a
1KB data and instruction cache memory and has an access
to 64 memory banks of 16KB each.

We have deliberately used a homogeneous architecture to
highlight our parallelism management approach rather than
overall system performance. Nonetheless, we use a DMA
unit to carry out input image transfers between internal local
memories and the external data memory.

SCMP architecture offers a very high degree of parallelism.
Thanks to dedicated hardware scheduling and fast reactiv-
ity, it also enhances resource utilization. To measure SCMP
performance for embedded applications, several applications
have already been implemented with it. In the following sec-
tion, we discuss implementation of the connected component
labeling algorithm, which is a critical application for embed-
ded vision systems and is particularly relevant to this study
in terms of dynamism, parallelism and control dependencies.

7. RESULTS

As an example, we decided to implement a labeling algo-
rithm on our architecture. Omne of the most fundamen-
tal operation in pattern recognition is the labeling of con-
nected components in a binary image. The labeling algo-
rithm transforms a binary image into a symbolic image in
order that each connected component is uniquely labeled
based on a given heuristic. Connected component labeling
is used in computer vision to detect unconnected regions in
binary images. Various algorithms have been proposed ([42,
43]) but we have chosen a contour tracing technique that
is interesting to stress the architecture [6]. This very fast
technique labels an image in only one single pass over the
image. It can detect external and internal contours, and also
identify and label interior area for each component.

First of all, the image is scanned from top to bottom and
from left to right per each line. When we detect an external
or an internal contour point for the first time, we make a
complete trace of the contour until we return to that point.
We assign a label to this point and to all of that countour.
When a labeled internal or external contour is encountered,
we follow the scan line to find all subsequent black pixel and
assign them to the same label. Because this application is
very dynamic and its computation time depends on the size
and the number of components, it is a good candidate to
demonstrate the benefits of our solution.

We simulated the platform parameters that affect our results
and the OSoC penalties (e.g. communication, control, access
time to memories, etc.). The whole architecture described
in this paper is considered in our evaluation. We also sim-
ulated the connected component labeling algorithm on the
SCMP architecture. We parallelized the initial algorithm by
creating independent tasks and carried out the correspond-
ing application graph. According to Figure 10, we cut the
image into sub-images and applied the algorithm on each
sub-image. Then, we carried out successively a vertical and
a horizontal fusion of labels in analyzing frontiers between
sub-images. We constructed corresponding tables between
labels and changed in parallel all labels in sub-images. To

get multiple independent tasks, we executed the application
on a 512x512 image, cut into 128 sub-images. At the end,
the parallelization brought new software complexity but in-
volves independent and parallel tasks without modifying the
algorithm. In this example, the application is restricted to
a 8-task parallelism.

As shown in Figure 11-a, thanks to the multi-bank mem-
ory architecture, the overhead due to data accesses (wait-
ing for ready data) or the OSoC is very low and represents
only 2.5% with 1PE to 7% with 8 PEs. This leads to an
acceleration that can reach around 7 on 8 PEs (Figure 11-
b). Unlike a software OS, the OSoC does not increase the
overhead as the number of executed tasks rises [44]. Our
fast migration mechanisms ensure a good occupation of our
multiple resources. They increase the global performance
and the flexibility of our multiprocessor. This capitalizes on
free resources after the preemption of tasks. The migration
just consists in saving execution contexts in a shared mem-
ory space, to allow any computing resource to continue the
execution. No additional mechanisms are required except
an efficient shared memory management. This is also pos-
sible because data dependencies are managed by the OSoC.
Figure 11-c also confirms its good resource utilization rate
(more than 80 %) even with 8 processors.

From both Figures 11-d and 11-e, it can be ascertained that
a dynamic task scheduling brings a large benefit with dy-
namic applications. We considered two kinds of images: an
asymmetric image and an image extracted from a real video
sequence. With the static allocation strategy, we supposed
that each column of the image is executed by a different
processor. For instance, the left column of the image is exe-
cuted by the first PE. Because the processing length of each
labeling task depends on the pattern size and number, the
execution time on each processor is variable. With an asym-
metric image, the content of some sub-images are empty and
only one processor is loaded whereas the others are rapidely
free. In the example presented in Figure 11-e, the execution
time increase with a static allocation strategy is about 75 %.
With a dynamic allocation strategy, a load balancing is pos-
sible and all available resources can be used. In average,
benefits are still important and reach more than 30%. In a
real video sequence, the content of sub-images is very hetero-
geneous and a dynamic approach can improve performances
and therefore the energy and the transistor efficiency.

8. CONCLUSION

This paper presented a CMP architecture that supports task
migration and preemption. The new architecture, which has
been called SCMP, consists of a hardware real-time operat-
ing system accelerator (HW-RTOS), and multiple comput-
ing, memory, and input/output resources. The HW-RTOS,
itself called OSoC, can manage all of the architecture’s dis-
tributed resources and dispatches tasks dynamically under
real-time constraints. This architecture has been designed
to answer dynamic application needs. It supports very fast
preemption and migration mechanisms to ensure dynamic
load balancing depending on processor availabilities. A com-
plete timed simulator, based on SESAM, has been carried
out to demonstrate all implemented and new mechanismsn
presented in this paper. This simulator environment allows
the implementation of real applications, while keeping a high

N

™ -—Q)
N i)

END

Tasks Function
0 Initializations
1t08 DMA transfers to internal shared
memories
9to 16 Labelling on subimages
1710 24 Synchronizations
25 to 26 | Horinzontal correspondence and fusion
28 Data synchronization
2910 32 Vertical correspondence and fusion
33 DMA transfer to external memory

Figure 10: Labeling application after its parallelization. The labeling is done in all sub-images and two horizontal and

vertical fusions are done to get the final labelized image
all tasks are processed by MIPS32 ISS.

accuracy level (90 %). Implementation of a connected com-
ponent labeling algorithm with this system has confirmed
the efficiency of our multiprocessor architecture, in terms
of both processing element utilization and performance. Its
resource utilization reaches more than 80 % on 8 MIPS32s.
The overhead due to control and execution management is
limited by our highly efficient task and data sharing man-
agement scheme, despite of using a centralized control that
would have been induced important overhead to multiple
requests to a same remote device. In addition, even if it
was not presented in this paper, a complete hardware pro-
totype of our architecture is currently running on a FPGA
platform. This contributes to validate the architecture in
order to design it on silicon to integrate future embedded
systems. For the moment, we do not have a complete de-
velopment flow, thus parallelization requires manual efforts.
Future works will focus on the development of tools to ease
the programmation of the SCMP architecture.

9. REFERENCES

[1] D.W. Wall. Limits of instruction-level parallelism. In
Int’l Conf. on Architectural Support for Programming
Languages and OperatingSystems (ASPLOS), Santa
Clara, USA, April 1991.

[2] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales,
and M. Shebanow. Single instruction stream
parallelism is greater than two. In 18th Int’l Symp. on
Computer Architecture (ISCA), Toronto, Canada,
May 1991.

[3] A. A. Jerraya and W. Wolf. Multiprocessor
Systems-on-Chips. Elsevier, 2005.

[4] R.A. Iannuci, G.R. Gao, R. Halstead, and B. Smith.
Multithreaded Computer Architecture: A Summary of
the State of the Art. Kluwer Academic Publishers,
1994.

[5] T. Ungerer, B. Robic, and J. Silc. Mutithreaded
Processors. The Computer Journal, 45(3):320-348,
2002.

[6] C.J. Chen F. Chang and C.J. Lu. A Linear-Time
Component-Labeling Algorithm Using Contour

. The corresponding graph is executed by the OSoC, whereas

Tracing Technique. Computer Vision and Image
Understanding, 93(2):206-220, 2004.

[7] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In
ISCA-22, Santa Margherita Ligure, Italy, June 1995.

[8] M. Tremblay. The El'brus3 and MARS-M: recent
advances in Russian high-performance computing. J.
Supercomp., 6:5-48, 1992.

[9] J. Emer. Simultaneous multithreading: multiplying
Alpha’s performance. In Microprocessor Forum, San
Jose, USA, 1999.

[10] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5
chip: a dualcore multithreaded processor. IEEE
Micro, 24(2):40-47, 2004.

[11] D. Koufaty and D.T. Marr. Hyperthreading
Technology in the NetBurst Microarchitecture. IEEE
Micro, 23(2):56-65, 2003.

[12] L. Hammond, B. Nayfeh, and K. Olukotun. A
Single-Chip Multiprocessor. IEEE Computer,
30(9):79-89, 1997.

[13] Texas Instrument. High-Performance OMAP
Platform: OMAP3430. http://www.ti.com, 2008.

[14] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A
Multiprocessor SOC for Advanced Set-Top Box and
Digital TV Systems. IEEE Design and Test of
Computers, 18(5):21-31, 2001.

[15] M. Paganini. Nomadik: A Mobile Multimedia
Application Processor Platform. In IEEE Asia and
South Pacific Design Automation Conference
(ASP-DAC), Yokohama, Japan, 2007.

[16] Cradle Technology. The Cradle 3616.
http://www.cradle.com, 2008.

[17] D. Boerstler et al. D.C. Pham, T. Aipperspach.
Overview of the architecture, circuit design, and
physical implementation of a first-generation cell
processor. IEEE Journal of Solid-State Circuits,
41(1):179-196, 2006.

[18] ARM11 MPCore Processor: Technical Reference
Manual. Technical report, ARM, 2005.

[19] L. Spracklen and S. Abraham. Chip Multithreading:

a) 600 ms b) 9
=] .
500 ms T—— [Oscheduling — D acceleration
) 7T - maximum-possible acceleration 7,01
Ewait for data
© 400 ms +—— S 67T
.E drunning labelling = 51
2 300ms —_ °
g o 4T 385
2 200ms +— < 3
] 2 198
100 ms —— | :
0ms 0
1 2 4 8 2 4 8
PE number PE number
) 100% d) e) -
© o .. . f” 140 ms ‘92
T 80% ’ v b N
= . . 120 ms
c 60 ms 3 4;1
£ 60% | © s | | o 0oms f\
=3 g 40 s 1 - g 80 ms
8 40 % A 2 gz 60
o = 30ms = ms
E 20 % A S 20ms S 40ms
10 ms | T 20ms
0% T T
1 2 4 8 0ms T 0ms
PE number static dynamic static dynamic

Figure 11: Connected component labeling algorithm execution in an SCMP architecture: (a) total execution time
and overhead details depending on the Processing Element (PE) number (MIPS32 processors); (b) acceleration rate
with multiple PE versus only one PE, and comparison with the maximum possible acceleration that we could obtain
without overheads; (c) utilization rate of PEs; (d) total execution time with a static and a dynamic allocation strategy
(realistic image); and (e) total execution time with a static and a dynamic allocation strategy (asymmetric image).

[20]

[21]

[25]

Opportunities and Challenges. In 11th Int’l Symp. on
High-Performance Computer Architecture (HPCA),
San Francisco, USA, February 2005.

UltraSPARC IV Processor Achitecture Overview,
http://www.sun.com.

M. Tremblay and S. Chaudhry. A Third-Generation
65nm 16-core 32-Thread Plus 32-Scout-Thread CMT
SPARC Processor. In IEEFE International Solid-State
Circuits Conference (ISSCC), San Francisco, USA,
2008.

R. Sasanka, S.V. Adve, Y.-K. Chen, and E. Debes.
Comparing the Energy Efficiency of CMP and SMT
Architectures for MultimediaWorkloads. Technical
Report UITUCDCS-R-2003-2325, University of Illinois
at Urbana-Champaign, March 2003.

J. Lee, V.J. Mooney III, A. Daleby, K. Ingstrom, and
T. Klevin andL. Lindh. A Comparison of the RTU
Hardware RTOS with a Hardware/Software RTOS. In
Asia and South Pacific Design Automation Conference
(ASPDAC), Yokohama, Japan, January 2003.

T. Samuelsson, M. Akerholm, P. Nygren, J. Starner,
and L. Lindh. A Comparison of Multiprocessor
Real-Time Operating Systems Implementedin
Hardware and Software. In Int’l Workshop on
Advanced Real-Time Operating System Services
(ARTOSS), Porto, Portugal, July 2003.

M. Sindhwani, T.F. Oliver, D.L. Maskell, and

T. Srikanthan. RTOS Acceleration Techniques -
Review and Challenges. In 6th Real-Time Linux
Workshop, Singapore, November 2004.

(26]

(28]

29]

(30]

(31]

(32]

W. Kim, D. Shin, H.-S. Yun, J. Kim, and S.-L. Min.
Performance Comparison of Dynamic Voltage Scaling
Algorithms for Hard Real-TimeSystems. In 8th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), Halmstad University, Sweden,
January 2002.

B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins.
Design Methodology for a Tightly Coupled

VLIW /Reconfigurable Matrix Architecture: A Case
Study. In Design, Automation and Test in Furope
(DATE), Paris, France, February 2004.

R. David, S. Pillement, and O. Sentieys. Low Power
Electronics Design, volume 1 of Computer
Engineering, chapter Energy-Efficient Reconfigurable
Processors. CRC Press, 2004.

V. Baumgarte, G. Ehlers, F. May, A. Niickel, and

M. Vorbach. PACT XPP - A Self-Reconfigurable Data
Processing Architecture. Supercomputing, 26:167—-184,
2003.

P. Kuacharoen, M.A. Shalan, and V.J. Mooney III. A
Configurable Hardware Scheduler for Real-Time
Systems. In Engineering of Reconfigurable Systems and
Algorithms, pages 95-101, Las Vegas, USA, June 2003.
T. Nakano, A. Utama, M. Ttabashi, A. Shiomi, and
M. Imai. Hardware Implementation of a Real-time
Operating System. In IEEE Computer Society Press,
editor, TRON Project International Symposium, pages
34-42, Tokyo, Japan, November 1995.

J. Adomat, J. Furunis, L. Lindh, and J. Stérner.
Real-Time Kernel in Hardware RTU: A step towards

[38]

[39]

[40]

[41]

[43]

[44]

deterministic and highperformance real-time systems.
In ECRTS, 1’Aquila, Italy, June 1996.

S. Isaacson and D. Wilde. The Task-Resource Matrix:
Control for a Distributed Reconfigurable
Multi-ProcessorHardware RTOS. In Engineering of
Reconfigurable Systems and Algorithms, Las Vegas,
USA, June 2004.

N. Ventroux, S. Chevobbe, F. Blanc, and T. Collette.
An Auto-Adaptative Reconfigurable Architecture for
the Control. In LNCS 3189, editor, 9th Asia-Pacific
Conf. on Advances in Computer Systems Architecture
(ACSAC), pages 72-87, Beijing, China, September
2004.

S. Chevobbe, R. David, F. Blanc, T. Collette, and

O. Sentieys. Control unit for parallel embedded
system. In Reconfigurable Communication-centric
SoCs, Montpellier, France, July 2006.

J. Hildebrandt, F. Golatowski, and D. Timmermann.
Scheduling Coprocessor for Enhanced
Least-Laxity-First Scheduling in HardReal-Time
Systems. In FCRTS, York, England, June 1999.

N. Ventroux, F. Blanc, and D. Lavenier. A Low
Complex Scheduling Algorithm for Multi-Processor
System-on-Chip. In JASTED Int’l Conf. on Parallel
and Distributed Computing and Networks (PDCN),
Innsbriick, Austria, February 2005.

D. Zhu, R. Melhem, and B. Childers. Scheduling with
Dynamic Voltage/Speed Adjustment Using Slack
Reclamationin Multi-Processor Real-Time Systems. In
22nd IEEE Real-Time Systems Symposium (RTSS),
London, UK, December 2001.

N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil,
C. Bechara, and R. David. SESAM: an MPSoC
Simulation Environment for Dynamic Application
Processing. In IEEE International Conference on
Embedded Software and Systems (ICESS), Bradford,
UK, July 2010.

M. Bartholomeu G. Araujo C. Araujo R. Azevedo,

S. Rigo and E. Barros. The ArchC Architecture
Description Language and Tools. Parallel
Programming, 33(5):453-484, 2005.

A. Guerre, N. Ventroux, R. David, and A. Merigot.
Approximate-Timed Transactional Level Modeling for
MPSoC Exploration: a Network-on-Chip Case Study.
In 12th Euromicro Conference on Digital System
Design, Patras, Greece, August 2009.

I. Horiba K. Suzuki and N. Sugie. Linear-time
connected-component labeling based on sequential
local operations. Computer Vision and Image
Understanding, 89(1):1-23, 2003.

Lionel Lacassagne and Bertrand Zavidovique. Light
speed labeling: efficient connected component labeling
on RISC architectures. Journal of Real Time Image
Processing, December 2009.

P. Kohout, B. Ganesh, and B. Jacob. Hardware
Support for Real-Time Operating Systems. In
International Conference on Hardware/Software
Codesign and System Synthesis(CODES-1SSS),
Newport Beach, USA, October 2003.

