Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000062
A Beatty sequence: a(n) = floor(n/(e-2)).
(Formerly M0948 N0355)
4
1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
I. G. Connell, Some properties of Beatty sequences II, Canad. Math. Bull., 3 (1960), 17-22.
J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458.
J. Lambek and L. Moser, On some two way classifications of integers, Canad. Math. Bull. 2 (1959), 85-89.
MAPLE
for n from 1 to 200 do printf(`%d, `, floor( n/(exp(1)-2))) od:
MATHEMATICA
Table[Floor[n/(E-2)], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
PROG
(PARI) a(n)=floor( n/(exp(1)-2) ) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 11 2008
(Magma) [Floor( n/(Exp(1)-2) ): n in [1..80]]; // Vincenzo Librandi, Mar 27 2015
CROSSREFS
Cf. A194807 (1/(e-2)).
Sequence in context: A087118 A249115 A039032 * A247964 A047317 A376953
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
STATUS
approved