Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000288
Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.
(Formerly M3307 N1332)
72
1, 1, 1, 1, 4, 7, 13, 25, 49, 94, 181, 349, 673, 1297, 2500, 4819, 9289, 17905, 34513, 66526, 128233, 247177, 476449, 918385, 1770244, 3412255, 6577333, 12678217, 24438049, 47105854, 90799453, 175021573, 337364929, 650291809, 1253477764
OFFSET
0,5
COMMENTS
The "standard" Tetranacci numbers with initial terms (0,0,0,1) are listed in A000078. - M. F. Hasler, Apr 20 2018
For n>=0: a(n+2) is the number of length-n words with letters {0,1,2,3} where the letter x is followed by at least x zeros, see Fxtbook link. [Joerg Arndt, Apr 08 2011]
Satisfies Benford's law [see A186191]. - N. J. A. Sloane, Feb 09 2017
REFERENCES
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..3503 (terms 0..200 from T. D. Noe)
Joerg Arndt, Matters Computational (The Fxtbook), pp.311-312.
B. G. Baumgart, Letter to the editor, Part 1, Part 2, Part 3, Fib. Quart. 2 (1964), 260, 302.
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
W. C. Lynch, The t-Fibonacci numbers and polyphase sorting, Fib. Quart., 8 (1970), pp. 6ff.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Álvaro Serrano Holgado and Luis Manuel Navas Vicente, The zeta function of a recurrence sequence of arbitrary degree, arXiv:2301.11747 [math.NT], 2023.
FORMULA
[a(n), a(n+1), a(n+2), a(n+3)]' = (M^n)*[1 1 1 1]', where M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 1 1 1]. E.g. [7 13 25 49]' = (M^5)*[1 1 1 1]' = [a(5), a(6), a(7), a(8)]'. Here the prime denotes transpose. - Gary W. Adamson, Feb 22 2004.
a(0) = a(1) = a(2) = a(3) = 1, a(4) = 4, a(n) = 2*a(n-1) - a(n-5). - Vincenzo Librandi, Dec 21 2010
a(n) = -2*A000078(n)-A000078(n+1)+A000078(n+3). - R. J. Mathar, Apr 07 2011
G.f.: (1 - x^2 - 2*x^3) / (1 - x - x^2 - x^3 - x^4) = 1 / (1 - x / (1 - 3*x^3 / (1 - x^2 / (1 + x / (1 - x))))). - Michael Somos, May 12 2012
G.f. A(x) = 1 + x / (1 - x / (1 - 3 * x^2 / (1 + 2 * x^2))). - Michael Somos, Jan 04 2013
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 4*x^4 + 7*x^5 + 13*x^6 + 25*x^7 + 49*x^8 + ...
MAPLE
A000288:=(-1+z**2+2*z**3)/(-1+z**2+z**3+z+z**4); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4]; Table[ a[n], {n, 0, 34}] (* Robert G. Wilson v, Oct 27 2005 *)
LinearRecurrence[{1, 1, 1, 1}, {1, 1, 1, 1}, 30] (* Harvey P. Dale, May 23 2011 *)
a[ n_] := If[ n < 0, SeriesCoefficient[ x (-2 - x + x^3) / (1 + x + x^2 + x^3 - x^4), {x, 0, -n}], SeriesCoefficient[ (1 - x^2 - 2 x^3) / (1 - x - x^2 - x^3 - x^4), {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *)
PROG
(Maxima) A000288[0]:1$ A000288[1]:1$ A000288[2]:1$ A000288[3]:1$ A000288[n]:=A000288[n-1] + A000288[n-2]+ A000288[n-3] + A000288[n-4]$ makelist(A000288[n], n, 0, 30); /* Martin Ettl, Oct 25 2012 */
(PARI) {a(n) = if( n<0, n = -n; polcoeff( x*(-2 - x + x^3) / (1 + x + x^2 + x^3 - x^4) + x*O(x^n), n), polcoeff( (1 - x^2 - 2*x^3) / (1 - x - x^2 - x^3 - x^4) + x*O(x^n), n))}; /* Michael Somos, Jan 04 2013 */
CROSSREFS
Cf. A060455.
Cf. A000078: Tetranacci numbers with a(0) = a(1) = a(2) = 0, a(3) = 1.
Sequence in context: A248098 A229439 A371916 * A074863 A118334 A205538
KEYWORD
nonn,easy
EXTENSIONS
More terms from Robert G. Wilson v, Oct 27 2005
STATUS
approved