OFFSET
0,3
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..400
N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
FORMULA
a(n) = (1/2) * Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k) (with a different offset).
D-finite with recurrence: (n-1)^2 * a(n) = (2*n-1)*(n^2 - n + 1)*a(n-1) + n^2*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * n^(n+1) / exp(n-1). - Vaclav Kotesovec, Jul 22 2015
a(n) = n*2^n*(1/2)_{n}*hypergeometric1f1(1-n, -2*n, 2), where (a)_{n} is the Pochhammer symbol. - G. C. Greubel, Aug 14 2017
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(2, 3/2; -; 2*t/(1-t)^2).
E.g.f.: (1 - 2*x)^(-3/2)*((1 - x)*sqrt(1 - 2*x) + (3*x - 1))*exp((1 - sqrt(1 - 2*x))). (End)
MAPLE
(As in A001497 define:) f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
[seq( subs(x=1, diff(f(n), x)), n=0..60)];
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k), k=0..n); end; [seq(f2(n), n=0..60)]; # uses a different offset
MATHEMATICA
Table[Sum[(n+k+1)!/((n-k-1)!*k!*2^(k+1)), {k, 0, n-1}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 22 2015 *)
Join[{0}, Table[n*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[1 - n, -2*n, 2], {n, 1, 50}]] (* G. C. Greubel, Aug 14 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n-1, (n+k+1)!/((n-k-1)!*k!*2^(k+1))), ", ")) \\ G. C. Greubel, Aug 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved