Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A003166
Numbers whose square in base 2 is a palindrome.
(Formerly M3181)
24
0, 1, 3, 4523, 11991, 18197, 141683, 1092489, 3168099, 6435309, 12489657, 17906499, 68301841, 295742437, 390117873, 542959199, 4770504939, 17360493407, 73798050723, 101657343993, 107137400475, 202491428745, 1615452642807, 4902182461643, 9274278357017, 12863364360297
OFFSET
1,3
COMMENTS
Numbers k such that k^2 is in A006995.
The only palindromes in this sequence are 0, 1, and 3. See AMM problem 11922. - Max Alekseyev, Oct 22 2022
REFERENCES
G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Don Knuth, Table of n, a(n) for n = 1..50 [This table extends earlier work of Gus Simmons, Jon Schoenfield, Don Knuth, and Michael Coriand]
M. A. Alekseyev, Problem 11922. American Mathematical Monthly 123:7 (2016), 722.
Carlos Rivera, Problem 89. Palindromic binary expression of primes squared, The Prime Puzzles & Problems Connection.
G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy]
EXAMPLE
3^2 = 9 = 1001_2, a palindrome.
4523^2 = 20457529 = 1001110000010100000111001_2.
MATHEMATICA
Do[c = RealDigits[n^2, 2][[1]]; If[c == Reverse[c], Print[n]], {n, 0, 10^9}]
PROG
(PARI) is(n)=my(b=binary(n^2)); b==Vecrev(b) \\ Charles R Greathouse IV, Feb 07 2017
(Python)
from itertools import count, islice
def A003166_gen(): # generator of terms
return filter(lambda k: (s:=bin(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1], count(0))
A003166_list = list(islice(A003166_gen(), 10)) # Chai Wah Wu, Jun 23 2022
CROSSREFS
Cf. A002778 (base 10 analog), A029983 (the actual squares). In binary: A262595, A262596.
Cf. A006995.
Sequence in context: A094319 A362536 A229766 * A251603 A168556 A200950
KEYWORD
base,nonn,hard,nice,changed
EXTENSIONS
a(16) = 4770504939 found by Patrick De Geest, May 15 1999
a(17)-a(31) from Jon E. Schoenfield, May 08 2009
a(32) = 285000288617375,
a(33) = 301429589329949,
a(34) = 1178448744881657 from Don Knuth, Jan 28 2013 [who doublechecked the previous results and searched up to 2^104]
STATUS
approved