Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005403
Number of protruded partitions of n with largest part at most 2.
(Formerly M2463)
0
1, 3, 5, 10, 17, 31, 53, 92, 156, 265, 445, 746, 1243, 2066, 3421, 5652, 9314, 15320, 25152, 41232, 67497, 110361, 180249, 294115, 479500, 781143, 1271675, 2068987, 3364358, 5468074, 8883329, 14425997, 23418648, 38004865, 61658326, 100007327
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Ordered structures and partitions, Memoirs of the Amer. Math. Soc., no. 119 (1972).
LINKS
R. P. Stanley, A Fibonacci lattice, Fib. Quart., 13 (1975), 215-232.
FORMULA
G.f.: (1-x)^2/Product(1-x-x^i+x^(1+2*i), i=1..2)-1. - Emeric Deutsch, Dec 19 2004
MAPLE
G:=(1-x)^2/Product(1-x-x^i+x^(1+2*i), i=1..2)-1: Gser:=series(G, x=0, 39): seq(coeff(Gser, x^n), n=1..37); # Emeric Deutsch, Dec 19 2004
CROSSREFS
Sequence in context: A192757 A079934 A215004 * A018072 A090170 A301751
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Dec 19 2004
STATUS
approved