Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008646
Molien series for cyclic group of order 5.
17
1, 1, 3, 7, 14, 26, 42, 66, 99, 143, 201, 273, 364, 476, 612, 776, 969, 1197, 1463, 1771, 2126, 2530, 2990, 3510, 4095, 4751, 5481, 6293, 7192, 8184, 9276, 10472, 11781, 13209, 14763, 16451, 18278, 20254, 22386, 24682, 27151, 29799, 32637, 35673
OFFSET
0,3
COMMENTS
a(n) is the number of necklaces with 5 black beads and n white beads.
The g.f. is Z(C_5,x), the 5-variate cycle index polynomial for the cyclic group C_5, with substitution x[i]->1/(1-x^i), i=1,...,5. Therefore by Polya enumeration a(n) is the number of cyclically inequivalent 5-necklaces whose 5 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_5,x). - Wolfdieter Lang, Feb 15 2005
REFERENCES
B. Sturmfels, Algorithms in Invariant Theory, Springer, '93, p. 65.
FORMULA
G.f.: (1 +x^2 +3*x^3 +4*x^4 +6*x^5 +4*x^6 +3*x^7 +x^8 +x^10)/((1-x)*(1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)).
a(-5-n) = a(n) for all integers.
a(n) = ceiling( binomial(n+5, 5) / (n+5) ).
G.f.: (1 -3*x +5*x^2 -3*x^3 +x^4)/((1-x)^4*(1-x^5)). - Michael Somos, Dec 04, 2001
a(n) = (n^4 +10*n^3 +35*n^2 +50*n +24*(3 -2*(-1)^(2^(n-5*floor(n/5)) )))/120. - Luce ETIENNE, Oct 31 2015
G.f.: (4/(1-x^5) + 1/(1-x)^5)/5. - Herbert Kociemba, Oct 15 2016
MAPLE
seq(coeff(series((1+x^2+3*x^3+4*x^4+6*x^5+4*x^6+3*x^7+x^8+x^10)/((1-x)* (1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)), x, n+1), x, n), n = 0..50); # corrected by G. C. Greubel, Sep 06 2019
seq(ceil(binomial(n, 4)/5), n=4..41); # Zerinvary Lajos, Jan 12 2009
MATHEMATICA
k = 5; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
CoefficientList[Series[(1 +x^2 +3*x^3 +4*x^4 +6*x^5 +4*x^6 +3*x^7 +x^8 +x^10)/((1-x)*(1-x^2)*(1-x^3)*(1- x^4)*(1-x^5)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{4, -6, 4, -1, 1, -4, 6, -4, 1}, {1, 1, 3, 7, 14, 26, 42, 66, 99}, 50] (* Harvey P. Dale, Jan 11 2017 *)
PROG
(PARI) a(n)=ceil((n+4)*(n+3)*(n+2)*(n+1)/120)
(Magma) [Ceiling((n+4)*(n+3)*(n+2)*(n+1)/120): n in [0..50]]; // Vincenzo Librandi, Jun 11 2013
(PARI) Vec((1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1-x^5)) + O(x^50)) \\ Altug Alkan, Oct 31 2015
(Sage) [ceil(binomial(n+5, 5)/(n+5)) for n in (0..50)] # G. C. Greubel, Sep 06 2019
CROSSREFS
Sequence in context: A206417 A207381 A343017 * A036830 A014153 A001924
KEYWORD
nonn,easy
STATUS
approved