Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A013988
Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
11
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
OFFSET
1,2
COMMENTS
Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Peter Luschny, The Bell transform
FORMULA
T(n, m) = n!*A049224(n, m)/(m!*6^(n-m));
T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n<m, and T(n, 0) = 0, T(1, 1) = 1.
E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!.
Sum_{k=1..n} T(n, k) = A028844(n).
EXAMPLE
Triangle begins as:
1;
5, 1;
55, 15, 1;
935, 295, 30, 1;
21505, 7425, 925, 50, 1;
623645, 229405, 32400, 2225, 75, 1;
21827575, 8423415, 1298605, 103600, 4550, 105, 1;
894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
MATHEMATICA
(* First program *)
rows = 10;
b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;
A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1, k] +T[n-1, k-1]]];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
PROG
(Sage) # uses[inverse_bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
(Magma)
function T(n, k) // T = A013988
if k eq 0 then return 0;
elif k eq n then return 1;
else return (6*(n-1)-k)*T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
CROSSREFS
Cf. A028844 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6).
Sequence in context: A144341 A144342 A144268 * A340472 A342318 A246006
KEYWORD
easy,nonn,tabl
EXTENSIONS
New name from Peter Luschny, Jan 16 2016
STATUS
approved