Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016123
a(n) = (11^(n+1) - 1)/10.
58
1, 12, 133, 1464, 16105, 177156, 1948717, 21435888, 235794769, 2593742460, 28531167061, 313842837672, 3452271214393, 37974983358324, 417724816941565, 4594972986357216, 50544702849929377, 555991731349223148
OFFSET
0,2
COMMENTS
11^a(n) is highest power of 11 dividing (11^(n+1))!.
Partial sums of powers of 11 (A001020).
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=11, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=12, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
LINKS
Eric Weisstein's World of Mathematics, Repunit
FORMULA
a(n) = Sum_{k=0..n} 11^k = (11^(n+1) - 1)/10.
G.f.: (1/(1-11*x) - 1/(1-x))/(10*x) = 1/((1-11*x)*(1-x)).
a(0)=1, a(n) = 11*a(n-1) + 1. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=1, a(n) = 12*a(n-1) - 11*a(n-2). - Harvey P. Dale, Apr 05 2012
E.g.f.: exp(x)*(11*exp(10*x) - 1)/10. - Stefano Spezia, Mar 11 2023
MATHEMATICA
(11^Range[0, 20]-1)/10 (* or *) LinearRecurrence[{12, -11}, {0, 1}, 20] (* Harvey P. Dale, Apr 05 2012 *)
PROG
(Sage) [lucas_number1(n, 12, 11) for n in range(1, 19)] # Zerinvary Lajos, Apr 27 2009
(Sage) [gaussian_binomial(n, 1, 11) for n in range(1, 19)] # Zerinvary Lajos, May 28 2009
(Maxima) A016123(n):=(11^(n+1)-1)/10$
makelist(A016123(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(PARI) a(n)=(11^(n+1)-1)/10 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [(11^(n+1)-1)/10: n in [0..30]]; // G. C. Greubel, Feb 21 2024
CROSSREFS
For analogs with primes 2, 3, 5, 7, 13 and 17 see: A000225, A003462, A003463, A023000, A091030 and A091045, respectively.
Sequence in context: A120673 A120674 A244205 * A353148 A015457 A015469
KEYWORD
nonn,easy
EXTENSIONS
Title edited by Daniel Forgues, Jul 08 2011
STATUS
approved